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Schwarz Domain Decomposition
Preconditioning



Solving A Model Problem

α(x) = 1 heterogeneous α(x)

Consider a diffusion model problem:

−∇ · (α(x)∇u(x)) = f in Ω = [0, 1]2,

u = 0 on ∂Ω.

Discretization using finite elements yields a
sparse linear system of equations

Ku = f .

Direct solvers
For fine meshes, solving the system using a direct
solver is not feasible due to superlinear
complexity and memory cost.

Iterative solvers
Iterative solvers are efficient for solving sparse
linear systems of equations, however, the
convergence rate generally depends on the
condition number κ (A). It deteriorates, e.g., for

• fine meshes, that is, small element sizes h

• large contrasts maxx α(x)
minx α(x)

⇒ We introduce a preconditioner M−1 ≈ A−1 to improve the condition number:

M−1Au = M−1f
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Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner
Overlap δ = 1h Solution of local problem

Based on an overlapping domain decomposition, we
define a one-level Schwarz operator

M−1
OS-1K =

∑N

i=1
RT

i K−1
i Ri K ,

where Ri and RT
i are restriction and prolongation

operators corresponding to Ω′
i , and Ki := Ri KRT

i .
Condition number estimate:

κ
(

M−1
OS-1K

)
≤ C

(
1 + 1

Hδ

)
with subdomain size H and overlap width δ.

Lagrangian coarse space
Coarse triangulation Coarse solution

The two-level overlapping Schwarz operator reads

M−1
OS-2K = ΦK−1

0 ΦT K︸ ︷︷ ︸
coarse level – global

+
∑N

i=1
RT

i K−1
i Ri K︸ ︷︷ ︸

first level – local

,

where Φ contains the coarse basis functions and
K0 := ΦT KΦ; cf., e.g., Toselli, Widlund (2005).
The construction of a Lagrangian coarse basis requires
a coarse triangulation.
Condition number estimate:

κ
(

M−1
OS-2K

)
≤ C

(
1 + H

δ

)
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Strengths and Weaknesses of Classical Two-Level Schwarz Preconditioners

Numerical scalability
Diffusion with heterogeneous coefficient:

−∆u = f in Ω = [0, 1]2,

u = 0 on ∂Ω.

# subdomains = # cores, H/h = 100

Robustness
Diffusion with heterogeneous coefficient:
−∇ · (α(x)∇u(x)) = f(x) in Ω = [0, 1]2,

u = 0 on ∂Ω.

dark blue: α = 108 light blue: α = 1

10 × 10 subdomains with H/h = 10 and overlap 1h

Prec. its. κ

– >2 000 4.51 · 108

M−1
OS-1 >2 000 4.51 · 108

M−1
OS-2 586 5.56 · 105
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Two-Level Schwarz Preconditioners – GDSW Coarse Space

Instead of a Lagrangian coarse space, we consider a framework based on the GDSW (Generalized
Dryja–Smith–Widlund) coarse space introduced in Dohrmann, Klawonn, Widlund (2008).

Non-overlapping DD Ident. vertices & edges Restr. of the null space Energy minimizing ext.

The coarse basis functions are constructed as
energy minimizing extensions of functions ΦΓ

that are defined on the interface Γ:

Φ =
[

−A−1
II AT

ΓIΦΓ

ΦΓ

]
=

[
ΦI

ΦΓ

]
The functions ΦΓ are restrictions of the null
space of global Neumann matrix to the edges,
vertices, and, in 3D, faces (partition of unity).

The condition number of the GDSW
two-level Schwarz operator is bounded by

κ
(
M−1

GDSWK
)

≤ C
(

1 + H
δ

) (
1 + log

(H
h

))2
;

cf. Dohrmann, Klawonn, Widlund (2008),
Dohrmann, Widlund (2009, 2010, 2012).

Algebraic approach!
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Examples of Extension-Based Coarse Spaces
GDSW (Generalized Dryja–Smith–Widlund)

• Dohrmann, Klawonn, Widlund (2008)
• Dohrmann, Widlund (2009, 2010, 2012)

Q1 Lagrangian / piecewise bilinear

Piecewise linear interface partition of unity functions
and a structured domain decomposition.

RGDSW (Reduced dimension GDSW)

• Dohrmann, Widlund (2017)
• H., Klawonn, Knepper, Rheinbach, Widlund (2022)

MsFEM (Multiscale Finite Element Method)

• Hou (1997), Efendiev and Hou (2009)
• Buck, Iliev, and Andrä (2013)
• H., Klawonn, Knepper, Rheinbach (2018)
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• Dohrmann, Klawonn, Widlund (2008)
• Dohrmann, Widlund (2009, 2010, 2012)

RGDSW (Reduced dimension GDSW)

• Dohrmann, Widlund (2017)
• H., Klawonn, Knepper, Rheinbach, Widlund (2022)

GDSW vs RGDSW
Heinlein, Klawonn, Rheinbach, Widlund (2019).
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Examples of Extension-Based Coarse Spaces
GDSW (Generalized Dryja–Smith–Widlund)

• Dohrmann, Klawonn, Widlund (2008)
• Dohrmann, Widlund (2009, 2010, 2012)

RGDSW (Reduced dimension GDSW)

• Dohrmann, Widlund (2017)
• H., Klawonn, Knepper, Rheinbach, Widlund (2022)

GDSW vs RGDSW
Heinlein, Klawonn, Rheinbach, Widlund (2019).

Parallel computations using the FROSch
domain decomposition solver package (part

of Trilinos)
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Heterogeneous Problems



Highly Heterogeneous Multiscale Problems

Highly heterogeneous multiscale problems appear in most areas of modern science and
engineering, e.g., composite materials, porous media, and turbulent transport in high
Reynolds number flow.

Microsection of a dual-phase steel.
(Courtesy of Jörg Schröder, University of
Duisburg-Essen, Germany; cooperation
with ThyssenKrupp Steel.)

Groundwater flow: model 2 from
the Tenth SPE Comparative
Solution Project; cf. Christie and
Blunt (2001).

Representation of the composition
of a small segment of arterial walls;
taken from O’Connell et al.
(2008).

→ The solution of such problems requires a high spatial and temporal resolution but also
poses challenges to the solvers.
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Highly Heterogeneous Model Problem
Consider the diffusion boundary value problem: find u such
that

−∇ · (α(x)∇u(x)) = f(x) in Ω,

u = 0 on ∂Ω,

with a highly varying coefficient function α. The
corresponding weak formulation is: find u ∈ H1

0 (Ω), such that

aΩ(u, v) = f(v) ∀v ∈ H1
0 (Ω)

with the bilinear form and linear functional

aΩ(u, v) :=
∫

Ω
α(x)(∇u(x))T ∇v(x) dx and f(v) :=

∫
Ω
f(x)v(x) dx .

Discretization using finite elements yields the linear system

Au = f

with stiffness matrix A, discrete solution u, and right hand side
f .

Original microsection of a
dual-phase steel

Binary coefficient function

Solution of the BVP
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Heterogeneous Problem – Random Distribution

Problem Configuration

Diffusion problem with random binary coefficient α: find u

such that

−∇ · (α(x)∇u(x)) = f(x) in Ω,

u = 0 on ∂Ω.

Domain decomposition into 10 × 10 subdomains with H/h = 10
and overlap 1h. dark blue: α = 108 light blue: α = 1

Prec. its. κ

– >2 000 4.51 · 108

M−1
OS-1 >2 000 4.51 · 108

M−1
OS-2 586 5.56 · 105

Observations
→ For heterogeneous coefficients, the condition number clearly

deteriorates. It depends on the contrast of the coefficient
function

Let us consider some pathological cases to better understand the behavior of overlapping Schwarz
methods for heterogeneous coefficient distributions.
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Heterogeneous Problem – Heterogeneities Only Inside Subdomains

Problem Configuration
Diffusion problem with random binary coefficient α without
high coefficients touching the interface: find u such that

−∇ · (α(x)∇u(x)) = f(x) in Ω,

u = 0 on ∂Ω.

Domain decomposition into 10 × 10 subdomains with H/h = 10
and overlap 1h.

dark blue: α = 108 light blue: α = 1

Prec. its. κ

– >2 000 7.99 · 108

M−1
OS-1 64 133.16

M−1
OS-2 78 139.15

Observations
→ In the first level, we solve the subdomain problems exactly

⇒ Jumps inside the subdomains are not problematic

→ Classical one- and two-level methods are robust for jumps
within the subdomains
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Heterogeneous Problem – Channels Across the Interface

Problem Configuration
Diffusion problem with binary coefficient α with high contrast
channels: find u such that

−∇ · (α(x)∇u(x)) = f(x) in Ω,

u = 0 on ∂Ω.

Domain decomposition into 10 × 10 subdomains with H/h = 10
and overlap 1h.

dark blue: α = 108 light blue: α = 1

Prec. δ its. κ

– 987 8.03 · 108

1h 259 83.34 · 106

2h 216 5.56 · 106M−1
OS-1

3h 37 91.97
1h 163 4.70 · 105

2h 128 3.24 · 105M−1
OS-2

3h 44 91.94

Observations
→ In case the channels with high coefficient lie completely

within the overlapping subdomains, the method is again
robust. Otherwise, the convergence deteriorates.

→ In general, it is not practical to extend the overlap until each
high coefficient component lies completely within one
overlapping subdomain.
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Heterogeneous Problem – Inclusions at the Vertices
Problem Configuration
Diffusion problem with binary coefficient α with high
coefficient inclusions at the vertices: find u such that

−∇ · (α(x)∇u(x)) = f(x) in Ω,

u = 0 on ∂Ω.

Domain decomposition into 10 × 10 subdomains with H/h = 10
and overlap 1h.

dark blue: α = 108 light blue: α = 1

Prec. its. κ

– 874 1.35 · 109

M−1
OS-1 163 4.06 · 107

M−1
OS-2 138 1.07 · 106

M−1
MsFEM 24 8.05

Observations
→ In general, one- or two-level Schwarz

methods are not robust for high
coefficient inclusions at the vertices

→ Robustness can be retained by using
multiscale finite element method
(MsFEM) type functions instead; cf. Hou
(1997), Efendiev and Hou (2009)

Lagrangian function

MsFEM function
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Heterogeneous Problem – Channels & Inclusions

Problem Configuration

Diffusion problem with binary coefficient α with channels and
vertex inclusions: find u such that

−∇ · (α(x)∇u(x)) = f(x) in Ω,

u = 0 on ∂Ω.

Domain decomposition into 10 × 10 subdomains with H/h = 10
and overlap 1h. dark blue: α = 108 light blue: α = 1

Prec. its. κ

– 1708 1.16 · 109

M−1
OS-1 447 4.17 · 107

M−1
OS-2 268 1.10 · 106

M−1
MsFEM 117 4.34 · 105

Observations
→ All of the aforementioned approaches fail for this example.
→ Since we were able to deal with the vertex inclusions, the

problem has to be related to the edges. How can we
construct suitable coarse basis functions to deal with
coefficient jumps at the edges?

Let us now discuss the Schwarz theory in order to construct a robust coarse space for arbitrary
heterogeneous problems.
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Idea of Adaptive Coarse Spaces

Assumption 1: Stable Decomposition
There exists a constant C0, s.t. for every u ∈ V , there
exists a decomposition u =

∑N
i=0 RT

i ui , ui ∈ Vi , with∑N

i=0
ai (ui , ui ) ≤ C2

0 a(u, u).

Assumption 2: Strengthened
Cauchy–Schwarz Inequality
There exist constants 0 ≤ ϵij ≤ 1, 1 ≤ i , j ≤ N, s.t.∣∣a(RT

i ui , RT
j uj )

∣∣ ≤ ϵij
(

a(RT
i ui , RT

i ui )
)1/2(

a(RT
j uj , RT

j uj )
)1/2

for ui ∈ Vi and uj ∈ Vj .
(Consider E = (εij ) and ρ (E) its spectral radius)

Assumption 3: Local Stability
There exists ω < 0, such that, for 0 ≤ u ̸= N,

a(RT
i ui , RT

i ui ) ≤ ωai (ui , ui ), ui ∈ range
(

P̃i
)

.

Idea of spectral coarse spaces
Ensure

a(u0, u0) ≤ C2
0 a(u, u)

by introducing two bilinear forms c(·, ·) and d(·, ·)
a(u0, u0) ≤ C1d(u0, u0) (high energy)

and
c(u0, u0) ≤ C2a(u, u), (low energy)

where C1C2 is independent of the contrast of the
coefficient function and u0 := I0u is a suitable coarse
function.
We enhance the coarse space by all eigenvectors
with eigenvalues below a tolerance tol of

d(v , w) = λ c(v , w)
and directly obtain

a(u0, u0) ≤ C1 d(u0, u0) ≤ C1 tol c(u0, u0)
≤ C1 C2 tol a(u, u)

In practice, eigenvalue problem is partitioned into
many local eigenvalue problems → parallelization!
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Robust Coarse Spaces for
Heterogeneous Problems



Adaptive Coarse Spaces in Domain Decomposition Methods – Literature
Overview

This list is not exhaustive:
• FETI & Neumann–Neumann: Bjørstad and Krzyzanowski (2002); Bjørstad, Koster, and Krzyzanowski

(2001); Rixen and Spillane (2013); Spillane (2015, 2016)
• BDDC & FETI-DP: Mandel and Sousedík (2007); Sousedík (2010); Sístek, Mandel, and Sousedík

(2012); Dohrmann and Pechstein (2013, 2016); Klawonn, Radtke, and Rheinbach (2014, 2015, 2016);
Klawonn, Kühn, and Rheinbach (2015, 2016, 2017); Kim and Chung (2015); Kim, Chung, and Wang
(2017); Beirão da Veiga, Pavarino, Scacchi, Widlund, and Zampini (2017); Calvo and Widlund (2016);
Oh, Widlund, Zampini, and Dohrmann (2017); Klawonn, Lanser, and Wasiak (preprint 2021)

• Overlapping Schwarz: Galvis and Efendiev (2010, 2011); Nataf, Xiang, Dolean, and Spillane (2011);
Spillane, Dolean, Hauret, Nataf, Pechstein, and Scheichl (2011); Gander, Loneland, and Rahman
(preprint 2015); Eikeland, Marcinkowski, and Rahman (preprint 2016); Heinlein, Klawonn, Knepper,
Rheinbach (2018); Marcinkowski and Rahman (2018); Al Daas, Grigori, Jolivet, Tournier (2021);
Bastian, Scheichl, Seelinger, and Strehlow (2022); Spillane (preprint 2021, preprint 2021); Bootland,
Dolean, Graham, Ma, Scheichl (preprint 2021); Al Daas and Jolivet (preprint 2021)

• Approaches for overlapping Schwarz methods in this talk:
• AGDSW: Heinlein, Klawonn, Knepper, Rheinbach (2019, 2019), Heinlein, Klawonn, Knepper,

Rheinbach, and Widlund (2022)
• Fully Algebraic Coarse Space: Heinlein and Smetana (Preprint: arXiv:2207.05559)

There is also related work on multigrid methods, such as AMGe by Brezina, Cleary, Falgout, Henson, Jones,
Manteuffel, McCormick, Ruge (2000).
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AGDSW – An Adaptive GDSW Coarse Space
The adaptive GDSW (AGDSW) coarse space is a related approach,
which also depends on a partition of the domain decomposition
interface into edges and vertices. We use

• the GDSW vertex basis functions and
• edge functions computed from a generalized edge eigenvalue

problem.

As a result, the AGDSW coarse space

• always contains the classical GDSW coarse space.

Cf. Heinlein, Klawonn, Knepper, Rheinbach (2019, 2019).

AGDSW vertex basis function
The interior values are then obtained by extending 1 by zero onto
the remainder of the interface followed by an energy minimizing
extension into the interior:

φv = EΓ→Ω (Rv→Γ (1v ))
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AGDSW – An Adaptive GDSW Coarse Space

AGDSW edge basis functions
Low energy extension Ee→Ωe (·) High energy extension Re→Ωe (·) Ext. into the interior

First, we solve the following eigenvalue problem (in a-harmonic space) for each edge e ∈ E:
aΩe (Ee→Ωe (τe,∗) , Ee→Ωe (θ)) = λe,∗aΩe (Re→Ωe (τe,∗) , Re→Ωe (θ)) ∀θ ∈ Ve

Then, we select eigenfunctions using the threshold TOL and extend the edge values to Ω:
φe,∗ = EΓ→Ω (Re→Γ (τe,∗))

Condition number bound
Using the coarse space VAGDSW = {φv } ∪ {φe} in the two-level Schwarz preconditioner, we obtain

κ
(
M−1

AGDSWK
)

≤ C (1/TOL),

where C is independent of H, h, and the contrast of the coefficient function α.
Alexander Heinlein1 (TU Delft) Czech Technical University in Prague 15/33



Numerical Results of Adaptive Coarse Spaces (2D)

Example 1

dark blue: α = 108 light blue: α = 1

4 × 4 subdomains, H/h = 30, δ = 2h
V0 tol it. κ dim V0

VMsFEM - 199 7.8 · 105 9
VOS-ACMS 10−2 23 5.1 69
VSHEM 10−3 20 4.3 69
VAGDSW 10−2 29 7.2 93

Example 2

dark blue: α = 108 light blue: α = 1

4 × 4 subdomains, H/h = 30, δ = 2h
V0 tol it. κ dim V0

VMsFEM - 282 3.8 · 107 9
VOS-ACMS 10−2 41 13.2 33
VSHEM 10−3 29 6.4 93
VAGDSW 10−2 42 16.5 45

SHEM by Gander, Loneland, Rahman (TR 2015), OS-ACMS from H., Klawonn, Knepper, Rheinbach (2018),
AGDSW from H., Klawonn, Knepper, Rheinbach (2019)
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Extensions of the AGDSW Approach

Reducing the coarse space dimension
GDSW partition RGDSW partition

As in the reduced dimension GDSW (RGDSW)
approach, we partition the interface into
interface components centered around the
vertices. On these interface components, we
solve (slightly modified) eigenvalue problems.

Cf. Heinlein, Klawonn, Knepper, Rheinbach (2021) and
Heinlein, Klawonn, Knepper, Rheinbach, Widlund (2022).

Extension to three dimensions
Face Edge

• In AGDSW, we have to solve face and edge
eigenvalue problems

• In RAGDSW, only the definition of the interface
components changes

RGDSW interface component

Alexander Heinlein1 (TU Delft) Czech Technical University in Prague 17/33



Reduced Dimension (Adaptive) GDSW – 3D Numerical Example

cross section detailed view of partially peeled
beams

Heterogeneous linear elasticity problem
• Ω: cube; Dirichlet boundary condition on ∂Ω.
• Structured tetrahedral mesh; 132 651 nodes

(397 953 DOFs); unstructured domain
decomposition (METIS); 125 subdomains.

• Poisson ration ν = 0.4.
• Young modulus: elements with E(T ) = 106 in

light blue (beams); remainder set to E(T ) = 1.
• Right hand side f ≡ 1.
• Overlap: two layers of finite elements.

V0 tol iter κ dim V0
dim V0
dim V h

GDSW − >2 000 3.1·105 9 996 2.51%
RGDSW − >2 000 3.9·105 3 358 0.84%
AGDSW 0.100 71 41.1 14 439 3.63%
AGDSW 0.050 90 59.5 13 945 3.50%
AGDSW 0.010 132 161.1 13 763 3.46%
RAGDSW 0.100 67 34.6 8 249 2.07%
RAGDSW 0.050 88 61.3 7 683 1.93%
RAGDSW 0.010 114 117.4 7 501 1.88%

• RAGDSW: 45% reduction of coarse space
dimension compared to AGDSW (highlighted
line).

• RAGDSW: smaller coarse space dimension
compared to GDSW and still robust!
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Neumann Matrices and Algebraicity

The low energy property

c(u0, u0) ≤ C2a(u, u)

of the bilinear form in the left hand side of the eigenvalue
problems of AGDSW method is satisfied due to the use of
Neumann boundary conditions:

aΩe (Ee→Ωe (τe,∗) , Ee→Ωe (θ)) = λe,∗aΩe (Re→Ωe (τe,∗) , Re→Ωe (θ)) ∀θ ∈ V 0
e

The right hand side matrix just corresponds to the submatrix Kee of K corresponding to the
edge e, whereas the Neumann matrices on the left hand sides cannot be extracted from the
fully assembled matrix K . → not algebraic
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Fully Algebraic Adaptive Coarse Space
We can make use of the a-orthogonal decomposition

VΩe = V 0
Ωe ⊕ {E∂Ωe→Ωe (v) : v ∈ V∂Ωe }︸ ︷︷ ︸

=:VΩe ,harm

to “split the AGDSW eigenvalue problem” into two:

• Dirichlet eigenvalue problem on V 0
Ωe

• Transfer eigenvalue problem on VΩe ,harm; cf. Smetana, Patera (2016)

Dirichlet eigenvalue problem
Low energy ext. (lhs evp) High energy ext. (rhs evp) Basis function

We solve the eigenvalue problem, choose λe,∗ < TOL1, and extend the basis functions to Ω as before:

aΩe

(
E∂Ωe

e→Ωe
(τe,∗) , E∂Ωe

e→Ωe
(θ)

)
= λe,∗aΩe (Re→Ωe (τe,∗) , Re→Ωe (θ)) ∀θ ∈ V 0

e
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Fully Algebraic Adaptive Coarse Space – Transfer Eigenvalue Problem

Transfer eigenvalue problem
Low energy ext. E∂Ωe →Ωe (·) High energy ext. Re→Ωe (E∂Ωe →Ωe (·)) Basis function

The transfer eigenvalue problem is based on Smetana, Patera (2016). Different from all the
eigenvalue problems before, it is solved on the boundary of Ωe :

aΩe (E∂Ωe→Ωe (ηe,∗) , E∂Ωe→Ωe (θ)) = λe,∗aΩe (Re→Ωe (E∂Ωe→Ωe (τe,∗)) , Re→Ωe (E∂Ωe→Ωe (θ))) ∀θ ∈ V 0
∂Ωe

We select all eigenfunctions ηe,∗ with λe,∗ above a second user-chosen threshold TOL2. Then, we
first compute the edge values τe,∗ = E∂Ωe→Ωe (ηe,∗) |e and then extend them into the interior

φe,∗ = EΓ→Ω (Re→Γ (τe,∗))

→ Even though no Neumann matrices are needed to compute E∂Ωe→Ωe (θ), Neumann matrices
are needed to evaluate aΩe (·, ·) for functions with nonnegative trace on ∂Ωe
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Fully Algebraic Adaptive Coarse Space – Transfer Eigenvalue Problem
Algebraic transfer eigenvalue problem

Low energy ext. E∂Ωe →Ωe (·)

Low energy ext. E∂Ωe →Ωe (·)

High energy ext. Re→Ωe (E∂Ωe →Ωe (·))

High energy ext. Re→Ωe (E∂Ωe →Ωe (·))

Basis function for aΩe (·, ·)

Basis function for (·, ·)l2(∂Ωe )

In order to obtain an algebraic transfer eigenvalue problem, we replace aΩe (·, ·) by (·, ·)l2(∂Ωe ):

(E∂Ωe→Ωe (τe,∗) , E∂Ωe→Ωe (θ))l2(∂Ωe ) = λe,∗aΩe (Re→Ωe (E∂Ωe→Ωe (τe,∗)) , Re→Ωe (E∂Ωe→Ωe (θ))) ∀θ ∈ V 0
∂Ωe
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Fully Algebraic Adaptive Coarse Space – Condition Number Bound

Condition number estimate (non-algebraic variant)
Using the non-algebraic eigenvalue problem (transfer eigenvalue problem with aΩe (·, ·)), we obtain a
condition number of the form:

κ
(
M−1

DIR&TRK
)

≤ C max
( 1

TOL1
, TOL2

)
,

where C is independent of H, h, and the contrast of the coefficient function α.

Condition number estimate (algebraic variant)
Using the algebraic eigenvalue problem (transfer eigenvalue problem with (·, ·)l2(∂Ωe )), we obtain a
condition number of the form:

κ
(
M−1

DIR&TRK
)

≤ C max
{ 1

TOL1
,

TOL2
αmin

}
,

where C is independent of H, h, and the contrast of the coefficient function α.

→ The αmin arises from the fact that
h

N∂Ωe
αmin∥θ∥2

l2(∂Ωe ) ≡ |E∂Ωe→Ωe (θ) |2a,Ωe ∀θ ∈ V∂Ωe .

Cf. Heinlein and Smetana (Preprint: arXiv:2207.05559).
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Numerical Results – Channel Coefficient Function

yellow: α = 106 blue: α = 1

V0 variant TOLDIR TOLTR TOLPOD dim V0 κ # its.
VGDSW - - - - 33 2.7 · 105 118
VAGDSW - 1.0 · 10−2 57 7.4 24
VDIR&TR aΩe (·, ·) 1.0 · 10−3 1.0 · 101 1.0 · 10−5 57 7.2 24
VDIR&TR (·, ·)l2(∂Ωe ) 1.0 · 10−3 1.0 · 101 1.0 · 10−5 57 7.2 24

→ In order to get rid of potential linear dependencies between the VDIR and VTR spaces,
apply a proper orthogonal decomposition (POD) with threshold TOLPOD for each edge.
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Numerical Results – Model 2, SPE10 Benchmark
Layer 70 from model 2 of the SPE10 benchmark; cf. Christie and Blunt (2001)

V0 variant TOLDIR TOLTR TOLPOD dim V0 κ # its.
VGDSW - - - - 85 2.0 · 105 57
VAGDSW - 1.0 · 10−2 93 19.3 38
VDIR&TR aΩe (·, ·) 1.0 · 10−3 1.0 · 105 1.0 · 10−5 90 19.4 39
VDIR&TR (·, ·)l2(∂Ωe ) 1.0 · 10−3 1.0 · 105 1.0 · 10−5 147 9.6 31

Original coefficient αmax ≈ 104, αmin ≈ 10−2 (without thresholding)
VGDSW - - - - 85 20.6 42
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Machine Learning in Adaptive Domain Decomposition Methods

AGDSW & machine learning
Hybrid algorithm: using machine learning
techniques in AGDSW.

• Reduce the computational costs by
detecting all edges (and faces) where local
eigenvalue problem have to be solved

• Samples of the coefficient function are
used as input for a dense neural network
→ image recognition task

...

...

...

...

...

...

...

...

Two subdomains sharing an edge Neural network

EVP?

→ Approach originally introduced for adaptive FETI-DP and BDDC;
cf. Heinlein, Lanser, Klawonn, Weber (2019, 2020, 2021, 2021, 2021).

algorithm τ cond it evp fp fn acc
GDSW - 3.66e6 > 500 0 - - -

AGDSW - 162.60 95 112 - - -
AGDSW + ML 0.5 9.64e4 98 25 2 2 95 %
AGDSW + ML 0.45 163.21 95 27 4 0 95 %

Heinlein, Lanser, Klawonn, Weber (2022)

Binary dual-phase steel
microstructure

necessary for robustness
false positive (fp)
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A Frugal FETI-DP and BDDC Coarse Space for Heterogeneous Problems
Observation
In adaptive FETI-DP or BDDC methods based on Mandel, Sousedík (2005,
2007), for each edge E or face F , a local eigenvalue problem of the form

vT PT
D SPDw = µvT Sw ∀v ∈ (ker S)⊥

has to be solved. Here, PD is a local scaled jump operator and S contains the
Schur complement matrices of the subdomains adjacent to E or F . By adding
eigenfunctions w with µ ≥ TOL to the coarse space, we obtain

κ(M−1F) ≤ C · TOL;
cf. Klawonn, Radtke, Rheinbach (2016), Klawonn, Kühn, Rheinbach (2016).

Microsection of a dual-phase steel.
Courtesy of J. Schröder.

−∇ · (ρ(x)∇u(x)) = f(x) in Ω,

u = 0 on ∂Ω.

Approach
By constructing coarse basis functions wfr with
large values for

wT
fr PT

D SPDwfr

wT
fr Swfr

using the coefficient function ρ, we obtain
functions which are close the adaptive coarse
space. ⇒ Robust and efficient coarse space.
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Frugal Coarse Spaces – Parallel Results for Heterogeneous Problems
coefficient jump 1e + 3; H/h = 24

approach # c. cond it TtS
frugal 9 093 1.67e+2 76 123.8s

face-avg 5 061 1.19e+3 274 275.6s
face-avg & rot 9 093 5.09e+2 179 211.7s

coefficient jump 1e + 6; H/h = 24
approach # c. cond it TtS

frugal 9 093 2.44e+4 179 210.9s
face-avg 5 061 9.73e+5 >1000 >893.7s

face-avg & rot 9 093 4.70e+5 >1000 >924.9s Dual-phase steel RVE with linear elasticity; 83 subdomains.

Heterogeneous diffusion with coefficient 106

Parallel simulations on magnitUDE (UDUE) / Theta (ANL); cf. Heinlein, Klawonn, Lanser, Weber (2020).
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Robust Coarse Spaces for
Nonlinear Schwarz
Preconditioning



Linear & Nonlinear Preconditioning

Let us consider the nonlinear problem arising from the discretization of a partial differential equation

F (u) = 0.

We solve the problem using a Newton-Krylov approach, i.e., we solve a sequence of linearized
problems using a Krylov subspace method:

DF
(
u(k)) ∆u(k+1) = F

(
u(k)) .

Linear preconditioning
In linear preconditioning, we improve the
convergence speed of the linear solver by
constructing a linear operator M−1 and solve
linear systems

M−1DF
(
u(k)) ∆u(k+1) = M−1F (u(k)).

Goal: • κ
(
M−1DF

(
u(k)))

≈ 1.
⇒ M−1DF

(
u(k)) ≈ I.

Nonlinear preconditioning
In nonlinear preconditioning, we improve the
convergence speed of the nonlinear solver by
constructing a nonlinear operator G and solve
the nonlinear system

(G ◦ F ) (u) = 0.

Goals: • G ◦ F almost linear.
• Additionally: κ (D (G ◦ F ) (u)) ≈ 1.
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Nonlinear Domain Decomposition Methods

Additive nonlinear left preconditioners (based on Schwarz methods)
ASPIN/ASPEN: Cai, Keyes 2002; Cai, Keyes, Marcinkowski (2002); Hwang, Cai (2005, 2007);
Groß, Krause (2010, 2013)

RASPEN: Dolean, Gander, Kherijii, Kwok, Masson (2016)

MSPIN: Keyes, Liu, (2015, 2016, 2021); Liu, Wei, Keyes (2017)

Two-Level nonlinear Schwarz: Heinlein, Lanser (2020); Heinlein, Lanser, Klawonn (2022)

Nonlinear right preconditioners
Nonlinear FETI-DP/BDDC: Klawonn, Lanser, Rheinbach (2012, 2013, 2014, 2015, 2016, 2018);
Klawonn, Lanser, Rheinbach, Uran (2017, 2018)
Nonlinear Elimination: Hwang, Lin, Cai (2010); Cai, Li (2011); Wang, Su, Cai (2015); Hwang,
Su, Cai (2016); Gong, Cai (2018); Luo, Shiu, Chen, Cai (2019); Gong, Cai (2019)
Nonlinear Neumann-Neumann: Bordeu, Boucard, Gosselet (2009)
Nonlinear FETI-1: Pebrel, Rey, Gosselet (2008); Negrello, Gosselet, Rey (2021)

Other DD work reversing linearization and decomposition: Ganis, Juntunen, Pencheva, Wheeler,
Yotov (2014); Ganis, Kumar, Pencheva, Wheeler, Yotov (2014)
Early nonlinear DD work: Cai, Dryja (1994); Dryja, Hackbusch (1997)
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Nonlinear One-Level Schwarz Preconditioners

ASPEN & ASPIN
Our approach is based on the nonlinear one-level Schwarz
methods ASPEN (Additive Schwarz Preconditioned
Exact Newton) and ASPIN (Additive Schwarz
Preconditioned Inexact Newton) introduced in Cai and
Keyes (2002). The nonlinear finite element problem

F (u) = 0 with F : V → V

is reformulated to

F(u) = G(F (u)) = 0.

The nonlinear left-preconditioner G is only given
implicitly by solving the nonlinear problem locally on
each of the (overlapping) subdomains. Roughly,

Fi (u − Ci (u)︸ ︷︷ ︸
local correction

), i = 1, ..., N.

Ω1 Ω2 Ω3

Ω4 Ω5 Ω6

Ω7 Ω8 Ω9

F(u) = 0

Ω1 Ω2 Ω3

Ω4 Ω5 Ω6

Ω7 Ω8 Ω9

Ω′
5

Fi (u − Ci (u)) = 0

Ω1 Ω2 Ω3

Ω4 Ω5 Ω6

Ω7 Ω8 Ω9

F(u) = 0
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Nonlinear One-Level Schwarz Preconditioners

ASPEN
Local corrections Ti (u):

Ri F (u − Pi Ti (u)) = 0, i = 1, ..., N, with

restrictions Ri : V → Vi ,

prolongations Pi : Vi → V .

Nonlinear ASPEN problem:

FA(u) :=
∑N

i=1
Pi Ti (u) = 0

We solve FA(u) = 0 using Newton’s method with
ui = u − Pi Ti (u). The Jacobian writes

DFA(u) =
∑N

i=1
Pi (Ri DF (ui )Pi )−1 Ri DF (ui )︸ ︷︷ ︸

local Schwarz operators
(preconditioned operators)

• F (u) = 0 ⇔ FA(u) = 0 near a given solution
• DF (ui ) global but can be assembled locally

Ω1 Ω2 Ω3

Ω4 Ω5 Ω6

Ω7 Ω8 Ω9

F(u) = 0

Ω1 Ω2 Ω3

Ω4 Ω5 Ω6

Ω7 Ω8 Ω9

Ω′
5

Ri F(u − RT
i Ti (u)) = 0

Ω1 Ω2 Ω3

Ω4 Ω5 Ω6

Ω7 Ω8 Ω9 ∑N
i=1 RT

i Ti (u) = 0
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Nonlinear One-Level Schwarz Preconditioners

RASPEN (Dolean et al. (2016))
Local corrections Ti (u):

Ri F (u − Pi Ti (u)) = 0, i = 1, ..., N, with

restrictions Ri : V → Vi ,

prolongations Pi , P̃i : Vi → V .

Nonlinear RASPEN problem:

FRA(u) :=
∑N

i=1
P̃i Ti (u) = 0

We solve FRA(u) = 0 using Newton’s method with
ui = u − Pi Ti (u). The Jacobian writes

DFRA(u) =
∑N

i=1
P̃i (Ri DF (ui )Pi )−1 Ri DF (ui )︸ ︷︷ ︸

local Schwarz operators
(preconditioned operators)

•
∑N

i=1 P̃i Ri = I
• Reduced communication & (often) better conv.

Results
p-Laplacian model problem

−α∆pu = 1 in Ω,

u = 0 on ∂Ω.

with α∆pu := div(α|∇u|p−2∇u).

p = 4; H/h = 16; overlap δ = 1

N solver

nonlin. lin.
outer inner GMRES

it. it. it.
(avg.) (sum)

9 NK-RAS 18 - 272
RASPEN 5 25.2 89

25 NK-RAS 19 - 488
RASPEN 6 28.3 172

49 NK-RAS 20 - 691
RASPEN 6 27.3 232

⇒ Improved nonlinear convergence, but no
scalability in the linear iterations.
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Nonlinear Two-Level Schwarz Preconditioners

Two-level (R)ASPEN (Heinlein & Lanser (2020))
Local/Coarse corrections Ti (u):

Ri F (u − Pi Ti (u)) = 0, i = 0, 1, ..., N, with

restrictions Ri : V → Vi ,

prolongations Pi : Vi → V .

Nonlinear two-level ASPEN problem:

FA(u) := P0T0(u) +
∑N

i=1
Pi Ti (u) = 0

We solve FA(u) = 0 using Newton’s method with
ui = u − Pi Ti (u). The Jacobian writes

DFRA(u) =
coarse Schwarz operator︷ ︸︸ ︷

P0 (R0DF (u0)P0)−1 R0 DF (u0)

+
∑N

i=1
Pi (Ri DF (ui )Pi )−1 Ri DF (ui )︸ ︷︷ ︸

local Schwarz operators

Results for p-Laplace
1-lvl One-level RASPEN
2-lvl A Two-level RASPEN with

additively coupled coarse level
2-lvl M Two-level RASPEN with

multiplicatively coupled coarse
level

p = 4; H/h = 16; overlap δ = 1

N RASPEN

solver

nonlin. lin.
outer inner coarse GMRES

it. it. it. it.
(avg.) (sum)

9
1-lvl 5 25.2 - 89
2-lvl A 6 33.4 27 93
2-lvl M 4 17.1 29 52

49
1-lvl 6 27.3 - 232
2-lvl A 6 29.2 28 137
2-lvl M 4 12.6 29 80

⇒ Improved nonlinear convergence and
scalability.
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Numerical Results – Nonlinear Schwarz Methods with AGDSW Coarse Spaces
Problem configuration (Heinlein, Klawonn, Lanser (2022))
p-Laplacian problem with p = 4 and a binary coefficient α:
find u such that

−α∆pu = 1 in Ω,

u = 0 on ∂Ω.

Domain decomposition into 6 × 6 subdomains with H/h = 32
and overlap 1h. yellow: α = 103 blue: α = 1

no globalization
size outer local coarse GMRES

cp method coarse space it. it. (avg.) it. it. (sum)
145 H1-RASPEN AGDSW 5 27.0 35 77
25 H1-RASPEN MsFEM-D >20 - - -
25 H1-RASPEN MsFEM-E >20 - - -

145 NK-RAS AGDSW >20 - - -
inexact Newton backtracking (INB); cf. Eisenstat and Walker (1994)

145 H1-RASPEN AGDSW 5 24.8 21 77
25 H1-RASPEN MsFEM-D 15 75.8 62 645
25 H1-RASPEN MsFEM-E 18 83.9 75 852

145 NK-RAS AGDSW 13 - - 207
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Numerical Results – Nonlinear Adaptive FETI-DP Methods
Problem configuration (Heinlein, Klawonn, Lanser (2022))

p-Laplacian problem and a binary coefficient α: find u

such that
−α∆pu = 1 in Ω,

u = 0 on ∂Ω.

Domain decomposition into 6 × 6 subdomains with
H/h = 32 and overlap 1h. yellow: α = 103, p = 4 blue: α = 1 , p = 4

light blue: α = 1 , p = 2
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Thank you for your attention!
Summary

• Robustness of domain decomposition preconditioners for highly heterogeneous problems
generally require special treatment. One effective approach is the use of robust coarse spaces,
for instance, using local generalized eigenvalue problems.

• Newton convergence for nonlinear problems (as well as the linear convergence in each
linearization step) can be significantly improved using nonlinear domain decomposition
methods.

• For highly heterogeneous nonlinear problems, (only) the combination of nonlinear
preconditioning and robust coarse spaces may ensure a robust solver framework.
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