Tillinis

TUDelft

Domain decomposition methods for highly heterogeneous problems

Robust coarse spaces and nonlinear preconditioning

Alexander Heinlein ${ }^{1}$
Czech Technical University in Prague, Prague, Czech Republic, February 13, 2023
${ }^{1}$ TU Delft
Based on joint work with Axel Klawonn, Jascha Knepper, Martin Lanser, Janine Weber (University of Cologne), Oliver Rheinbach (TU Bergakademie Freiberg), Kathrin Smetana (Stevens Institute of Technology), and Olof Widlund (New York University)

1. Schwarz Domain Decomposition Preconditioning
2. Heterogeneous Problems

3 Robust Coarse Spaces for Heterogeneous Problems

4 Robust Coarse Spaces for Nonlinear Schwarz Preconditioning

Schwarz Domain Decomposition Preconditioning

Solving A Model Problem

$$
\alpha(x)=1
$$

heterogeneous $\alpha(x)$

Direct solvers

For fine meshes, solving the system using a direct solver is not feasible due to superlinear complexity and memory cost.

Iterative solvers

Iterative solvers are efficient for solving sparse linear systems of equations, however, the convergence rate generally depends on the condition number $\kappa(\boldsymbol{A})$. It deteriorates, e.g., for

- fine meshes, that is, small element sizes h
- large contrasts $\frac{\max _{x} \alpha(x)}{\min _{x} \alpha(x)}$

$$
K u=f
$$

Solving A Model Problem

$$
\alpha(x)=1
$$

heterogeneous $\alpha(x)$

Direct solvers

For fine meshes, solving the system using a direct solver is not feasible due to superlinear complexity and memory cost.

Iterative solvers

Iterative solvers are efficient for solving sparse linear systems of equations, however, the convergence rate generally depends on the condition number $\kappa(\boldsymbol{A})$. It deteriorates, e.g., for

- fine meshes, that is, small element sizes h
- large contrasts $\frac{\max _{x} \alpha(x)}{\min _{x} \alpha(x)}$

$$
K u=f
$$

\Rightarrow We introduce a preconditioner $\boldsymbol{M}^{-1} \approx \boldsymbol{A}^{-1}$ to improve the condition number:

$$
\boldsymbol{M}^{-1} \boldsymbol{A} \boldsymbol{u}=\boldsymbol{M}^{-1} \boldsymbol{f}
$$

Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner

Solution of local problem

Based on an overlapping domain decomposition, we define a one-level Schwarz operator

$$
M_{\mathrm{OS}-1}^{-1} \boldsymbol{K}=\sum_{i=1}^{N} \boldsymbol{R}_{i}^{T} \boldsymbol{K}_{i}^{-1} \boldsymbol{R}_{i} \boldsymbol{K}
$$

where \boldsymbol{R}_{i} and \boldsymbol{R}_{i}^{T} are restriction and prolongation operators corresponding to Ω_{i}^{\prime}, and $\boldsymbol{K}_{i}:=\boldsymbol{R}_{i} \boldsymbol{K} \boldsymbol{R}_{i}^{T}$.

Condition number estimate:

$$
\kappa\left(M_{\mathrm{OS}-1}^{-1} \boldsymbol{K}\right) \leq C\left(1+\frac{1}{H \delta}\right)
$$

with subdomain size H and overlap width δ.

Lagrangian coarse space

The two-level overlapping Schwarz operator reads

$$
\boldsymbol{M}_{\mathrm{OS}-2}^{-1} \boldsymbol{K}=\underbrace{\Phi \boldsymbol{K}_{0}^{-1} \Phi^{T} \boldsymbol{K}}_{\text {coarse level - global }}+\underbrace{\sum_{i=1}^{N} \boldsymbol{R}_{i}^{T} \boldsymbol{K}_{i}^{-1} \boldsymbol{R}_{i} \boldsymbol{K}}_{\text {first level - local }},
$$

where Φ contains the coarse basis functions and
$K_{0}:=\Phi^{\top} K \Phi$; cf., e.g., Toselli, Widlund (2005).
The construction of a Lagrangian coarse basis requires a coarse triangulation.

Condition number estimate:

$$
\kappa\left(M_{\mathrm{OS}-2}^{-1} K\right) \leq C\left(1+\frac{H}{\delta}\right)
$$

Strengths and Weaknesses of Classical Two-Level Schwarz Preconditioners

Numerical scalability

Diffusion with heterogeneous coefficient:

$$
\begin{aligned}
&-\Delta u=f \text { in } \Omega=[0,1]^{2} \\
& u=0 \\
& \text { on } \partial \Omega
\end{aligned}
$$

\# subdomains $=\#$ cores, $H / h=100$

Robustness

Diffusion with heterogeneous coefficient:

$$
\begin{aligned}
-\nabla \cdot(\alpha(x) \nabla u(x)) & =f(x) & & \text { in } \Omega=[0,1]^{2}, \\
u & =0 & & \text { on } \partial \Omega .
\end{aligned}
$$

dark blue: $\alpha=10^{8} \quad$ light blue: $\alpha=1$

$$
10 \times 10 \text { subdomains with } H / h=10 \text { and overlap } 1 h
$$

Prec.	its.	κ
-	>2000	$4.51 \cdot 10^{8}$
$M_{\mathrm{OS}-1}^{-1}$	>2000	$4.51 \cdot 10^{8}$
$M_{\mathrm{OS}-2}^{-1}$	586	$5.56 \cdot 10^{5}$

Two-Level Schwarz Preconditioners - GDSW Coarse Space

Instead of a Lagrangian coarse space, we consider a framework based on the GDSW (Generalized Dryja-Smith-Widlund) coarse space introduced in Dohrmann, Klawonn, Widlund (2008).

Non-overlapping DD

Ident. vertices \& edges

The coarse basis functions are constructed as energy minimizing extensions of functions Φ_{Γ} that are defined on the interface Γ :

$$
\Phi=\left[\begin{array}{c}
-\boldsymbol{A}_{/ /}^{-1} \boldsymbol{A}_{\Gamma /}^{T} \Phi_{\Gamma} \\
\Phi_{\Gamma}
\end{array}\right]=\left[\begin{array}{l}
\Phi_{/} \\
\Phi_{\Gamma}
\end{array}\right]
$$

The functions Φ_{Γ} are restrictions of the null space of global Neumann matrix to the edges, vertices, and, in 3D, faces (partition of unity).

Restr. of the null space

Energy minimizing ext.

The condition number of the GDSW two-level Schwarz operator is bounded by $\kappa\left(\boldsymbol{M}_{\mathrm{GDSW}}^{-1} \boldsymbol{K}\right) \leq C\left(1+\frac{H}{\delta}\right)\left(1+\log \left(\frac{H}{h}\right)\right)^{2} ;$
cf. Dohrmann, Klawonn, Widlund (2008), Dohrmann, Widlund (2009, 2010, 2012).

Two-Level Schwarz Preconditioners - GDSW Coarse Space

Instead of a Lagrangian coarse space, we consider a framework based on the GDSW (Generalized Dryja-Smith-Widlund) coarse space introduced in Dohrmann, Klawonn, Widlund (2008).

Non-overlapping DD

Ident. vertices \& edges

The coarse basis functions are constructed as energy minimizing extensions of functions Φ_{Γ} that are defined on the interface Γ :

$$
\Phi=\left[\begin{array}{c}
-\boldsymbol{A}_{/ /}^{-1} \boldsymbol{A}_{\Gamma /}^{T} \Phi_{\Gamma} \\
\Phi_{\Gamma}
\end{array}\right]=\left[\begin{array}{l}
\Phi_{/} \\
\Phi_{\Gamma}
\end{array}\right]
$$

The functions Φ_{Γ} are restrictions of the null space of global Neumann matrix to the edges, vertices, and, in 3D, faces (partition of unity).

Restr. of the null space

Energy minimizing ext.

The condition number of the GDSW two-level Schwarz operator is bounded by
$\kappa\left(\boldsymbol{M}_{\mathrm{GDSW}}^{-1} \boldsymbol{K}\right) \leq C\left(1+\frac{H}{\delta}\right)\left(1+\log \left(\frac{H}{h}\right)\right)^{2} ;$
cf. Dohrmann, Klawonn, Widlund (2008), Dohrmann, Widlund (2009, 2010, 2012).

Algebraic approach!

Examples of Extension-Based Coarse Spaces

GDSW (Generalized Dryja-Smith-Widlund)

- Dohrmann, Klawonn, Widlund (2008)
- Dohrmann, Widlund $(2009,2010,2012)$

RGDSW (Reduced dimension GDSW)

- Dohrmann, Widlund (2017)
- H., Klawonn, Knepper, Rheinbach, Widlund (2022)

Q1 Lagrangian / piecewise bilinear

Piecewise linear interface partition of unity functions and a structured domain decomposition.
MsFEM (Multiscale Finite Element Method)

- Hou (1997), Efendiev and Hou (2009)
- Buck, Iliev, and Andrä (2013)
- H., Klawonn, Knepper, Rheinbach (2018)

Examples of Extension-Based Coarse Spaces

GDSW (Generalized Dryja-Smith-Widlund)

- Dohrmann, Klawonn, Widlund (2008)
- Dohrmann, Widlund $(2009,2010,2012)$

RGDSW (Reduced dimension GDSW)

- Dohrmann, Widlund (2017)
- H., Klawonn, Knepper, Rheinbach, Widlund (2022)

GDSW vs RGDSW

Heinlein, Klawonn, Rheinbach, Widlund (2019).

Examples of Extension-Based Coarse Spaces

Heterogeneous Problems

Highly Heterogeneous Multiscale Problems

Highly heterogeneous multiscale problems appear in most areas of modern science and engineering, e.g., composite materials, porous media, and turbulent transport in high Reynolds number flow.

Microsection of a dual-phase steel. (Courtesy of Jörg Schröder, University of Duisburg-Essen, Germany; cooperation with ThyssenKrupp Steel.)

Groundwater flow: model 2 from the Tenth SPE Comparative Solution Project; cf. Christie and Blunt (2001).

Representation of the composition of a small segment of arterial walls; taken from O'Connell et al. (2008).
\rightarrow The solution of such problems requires a high spatial and temporal resolution but also poses challenges to the solvers.

Highly Heterogeneous Model Problem

Consider the diffusion boundary value problem: find u such that

$$
\begin{aligned}
-\nabla \cdot(\alpha(x) \nabla u(x)) & =f(x) & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega,
\end{aligned}
$$

with a highly varying coefficient function α. The corresponding weak formulation is: find $u \in H_{0}^{1}(\Omega)$, such that

$$
a_{\Omega}(u, v)=f(v) \quad \forall v \in H_{0}^{1}(\Omega)
$$

with the bilinear form and linear functional

$$
a_{\Omega}(u, v):=\int_{\Omega} \alpha(x)(\nabla u(x))^{T} \nabla v(x) d x \text { and } f(v):=\int_{\Omega} f(x) v(x) d x .
$$

Discretization using finite elements yields the linear system

$$
A u=f
$$

with stiffness matrix \boldsymbol{A}, discrete solution \boldsymbol{u}, and right hand side

Original microsection of a dual-phase steel

Binary coefficient function

Solution of the BVP
 f.

Heterogeneous Problem - Random Distribution

Problem Configuration

Diffusion problem with random binary coefficient α : find u such that

$$
\begin{aligned}
-\nabla \cdot(\alpha(x) \nabla u(x)) & =f(x) & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega .
\end{aligned}
$$

Domain decomposition into 10×10 subdomains with $H / h=10$ and overlap $1 h$.

Prec.	its.	κ
-	>2000	$4.51 \cdot 10^{8}$
$M_{\text {OS-1 }}^{-1}$	>2000	$4.51 \cdot 10^{8}$
$M_{\text {OS-2 }}^{-1}$	586	$5.56 \cdot 10^{5}$

Observations

\rightarrow For heterogeneous coefficients, the condition number clearly deteriorates. It depends on the contrast of the coefficient function

Heterogeneous Problem - Random Distribution

Problem Configuration

Diffusion problem with random binary coefficient α : find u such that

$$
\begin{aligned}
-\nabla \cdot(\alpha(x) \nabla u(x)) & =f(x) & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega .
\end{aligned}
$$

Domain decomposition into 10×10 subdomains with $H / h=10$ and overlap 1 h .

Prec.	its.	κ		
-	>2000	$4.51 \cdot 10^{8}$		
$M_{\mathrm{OS}-1}^{-1}$	>2000	$4.51 \cdot 10^{8}$		
$M_{\mathrm{OS}-2}^{-1}$	586	$5.56 \cdot 10^{5}$	\quad	Observations
:---:				
\rightarrow		For heterogeneous coefficients, the condition number clearly		
:---				
deteriorates. It depends on the contrast of the coefficient				
function				

Let us consider some pathological cases to better understand the behavior of overlapping Schwarz methods for heterogeneous coefficient distributions.

Heterogeneous Problem - Heterogeneities Only Inside Subdomains

Problem Configuration

Diffusion problem with random binary coefficient α without high coefficients touching the interface: find u such that

$$
\begin{aligned}
-\nabla \cdot(\alpha(x) \nabla u(x)) & =f(x) & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega .
\end{aligned}
$$

Domain decomposition into 10×10 subdomains with $H / h=10$ and overlap $1 h$.

dark blue: $\alpha=10^{8} \quad$ light blue: $\alpha=1$

Prec.	its.	κ
-	>2000	$7.99 \cdot 10^{8}$
$M_{\mathrm{OS}-1}^{-1}$	64	133.16
$M_{\mathrm{OS}-2}^{-1}$	78	139.15

Observations

\rightarrow In the first level, we solve the subdomain problems exactly \Rightarrow Jumps inside the subdomains are not problematic
\rightarrow Classical one- and two-level methods are robust for jumps within the subdomains

Heterogeneous Problem - Channels Across the Interface

Problem Configuration

Diffusion problem with binary coefficient α with high contrast channels: find u such that

$$
\begin{aligned}
-\nabla \cdot(\alpha(x) \nabla u(x)) & =f(x) & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega .
\end{aligned}
$$

Domain decomposition into 10×10 subdomains with $H / h=10$ and overlap $1 h$.

dark blue: $\alpha=10^{8} \quad$ light blue: $\alpha=1$

Prec.	δ	its.	κ
-		987	$8.03 \cdot 10^{8}$
	1h	259	$83.34 \cdot 10^{6}$
$M_{\text {OS-1 }}^{-1}$	$2 h$	216	$5.56 \cdot 10^{6}$
	3h	37	91.97
	1h	163	$4.70 \cdot 10^{5}$
$M_{\text {OS-2 }}^{-1}$	$2 h$	128	$3.24 \cdot 10^{5}$
	$3 h$	44	91.94

Observations

\rightarrow In case the channels with high coefficient lie completely within the overlapping subdomains, the method is again robust. Otherwise, the convergence deteriorates.
\rightarrow In general, it is not practical to extend the overlap until each high coefficient component lies completely within one overlapping subdomain.

Heterogeneous Problem - Inclusions at the Vertices

Problem Configuration

Diffusion problem with binary coefficient α with high coefficient inclusions at the vertices: find u such that

$$
\begin{aligned}
-\nabla \cdot(\alpha(x) \nabla u(x)) & =f(x) & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega .
\end{aligned}
$$

Domain decomposition into 10×10 subdomains with $H / h=10$ and overlap $1 h$.

Prec.	its.	κ
-	874	$1.35 \cdot 10^{9}$
$\boldsymbol{M}_{\text {OS-1 }}^{-1}$	163	$4.06 \cdot 10^{7}$
$M_{\text {OS-2 }}^{-1}$	138	$1.07 \cdot 10^{6}$
$\boldsymbol{M}_{\text {MsFEM }}^{-1}$	24	8.05

Observations

\rightarrow In general, one- or two-level Schwarz methods are not robust for high coefficient inclusions at the vertices
\rightarrow Robustness can be retained by using multiscale finite element method (MsFEM) type functions instead; cf. Hou (1997), Efendiev and Hou (2009)

Lagrangian function

MsFEM function

Heterogeneous Problem - Channels \& Inclusions

Problem Configuration

Diffusion problem with binary coefficient α with channels and vertex inclusions: find u such that

$$
\begin{aligned}
-\nabla \cdot(\alpha(x) \nabla u(x)) & =f(x) & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega .
\end{aligned}
$$

Domain decomposition into 10×10 subdomains with $H / h=10$ and overlap $1 h$.

Prec.	its.	κ
-	1708	$1.16 \cdot 10^{9}$
$M_{\mathrm{OS}-1}^{-1}$	447	$4.17 \cdot 10^{7}$
$M_{\mathrm{OS}-2}^{-1}$	268	$1.10 \cdot 10^{6}$
$M_{\text {MsFEM }}^{-1}$	117	$4.34 \cdot 10^{5}$

Observations

\rightarrow All of the aforementioned approaches fail for this example.
\rightarrow Since we were able to deal with the vertex inclusions, the problem has to be related to the edges. How can we construct suitable coarse basis functions to deal with coefficient jumps at the edges?

Heterogeneous Problem - Channels \& Inclusions

Problem Configuration

Diffusion problem with binary coefficient α with channels and vertex inclusions: find u such that

$$
\begin{aligned}
-\nabla \cdot(\alpha(x) \nabla u(x)) & =f(x) & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega .
\end{aligned}
$$

Domain decomposition into 10×10 subdomains with $H / h=10$ and overlap $1 h$.

Prec.	its.	κ
-	1708	$1.16 \cdot 10^{9}$
$M_{\text {OS-1 }}^{-1}$	447	$4.17 \cdot 10^{7}$
$M_{\text {OS-2 }}^{-1}$	268	$1.10 \cdot 10^{6}$
$M_{\text {MsFEM }}^{-1}$	117	$4.34 \cdot 10^{5}$

Observations

\rightarrow All of the aforementioned approaches fail for this example.
\rightarrow Since we were able to deal with the vertex inclusions, the problem has to be related to the edges. How can we construct suitable coarse basis functions to deal with coefficient jumps at the edges?

Let us now discuss the Schwarz theory in order to construct a robust coarse space for arbitrary heterogeneous problems.

Idea of Adaptive Coarse Spaces

Assumption 1: Stable Decomposition

There exists a constant C_{0}, s.t. for every $\boldsymbol{u} \in V$, there exists a decomposition $\boldsymbol{u}=\sum_{i=0}^{N} \boldsymbol{R}_{i}^{T} \boldsymbol{u}_{i}, \boldsymbol{u}_{i} \in V_{i}$, with

$$
\sum_{i=0}^{N} a_{i}\left(\boldsymbol{u}_{i}, \boldsymbol{u}_{i}\right) \leq C_{0}^{2} a(\boldsymbol{u}, \boldsymbol{u}) .
$$

Assumption 2: Strengthened

Cauchy-Schwarz Inequality

There exist constants $0 \leq \epsilon_{i j} \leq 1,1 \leq i, j \leq N$, s.t.

$$
\begin{aligned}
\left|a\left(\boldsymbol{R}_{i}^{T} \boldsymbol{u}_{i}, \boldsymbol{R}_{j}^{T} u_{j}\right)\right| \leq \epsilon_{i j} & \left(a\left(\boldsymbol{R}_{i}^{T} \boldsymbol{u}_{i}, \boldsymbol{R}_{i}^{T} \boldsymbol{u}_{i}\right)\right)^{1 / 2} \\
& \left(a\left(\boldsymbol{R}_{j}^{T} \boldsymbol{u}_{j}, \boldsymbol{R}_{j}^{T} \boldsymbol{u}_{j}\right)\right)^{1 / 2}
\end{aligned}
$$

for $\boldsymbol{u}_{i} \in V_{i}$ and $\boldsymbol{u}_{j} \in V_{j}$.
(Consider $\mathcal{E}=\left(\varepsilon_{i j}\right)$ and $\rho(\mathcal{E})$ its spectral radius)

Assumption 3: Local Stability

There exists $\omega<0$, such that, for $0 \leq \boldsymbol{u} \neq N$,

$$
a\left(\boldsymbol{R}_{i}^{T} \boldsymbol{u}_{i}, \boldsymbol{R}_{i}^{T} \boldsymbol{u}_{i}\right) \leq \omega a_{i}\left(\boldsymbol{u}_{i}, \boldsymbol{u}_{i}\right), \quad \boldsymbol{u}_{i} \in \operatorname{range}\left(\tilde{P}_{i}\right)
$$

Idea of spectral coarse spaces

Ensure

$$
a\left(\boldsymbol{u}_{0}, \boldsymbol{u}_{0}\right) \leq C_{0}^{2} a(u, u)
$$

by introducing two bilinear forms $c(\cdot, \cdot)$ and $d(\cdot, \cdot)$

$$
a\left(\boldsymbol{u}_{0}, \boldsymbol{u}_{0}\right) \leq C_{1} d\left(\boldsymbol{u}_{0}, \boldsymbol{u}_{0}\right) \quad \text { (high energy) }
$$

and

$$
c\left(\boldsymbol{u}_{0}, \boldsymbol{u}_{0}\right) \leq C_{2} a(\boldsymbol{u}, \boldsymbol{u}), \quad \text { (low energy) }
$$

where $C_{1} C_{2}$ is independent of the contrast of the coefficient function and $u_{0}:=I_{0} u$ is a suitable coarse function.
We enhance the coarse space by all eigenvectors with eigenvalues below a tolerance $t o l$ of

$$
d(\boldsymbol{v}, \boldsymbol{w})=\lambda c(\boldsymbol{v}, \boldsymbol{w})
$$

and directly obtain

$$
\begin{aligned}
a\left(u_{0}, u_{0}\right) & \leq C_{1} d\left(\boldsymbol{u}_{0}, \boldsymbol{u}_{0}\right) \leq C_{1} \text { tol } c\left(\boldsymbol{u}_{0}, \boldsymbol{u}_{0}\right) \\
& \leq C_{1} C_{2} \text { tol } a(\boldsymbol{u}, \boldsymbol{u})
\end{aligned}
$$

In practice, eigenvalue problem is partitioned into many local eigenvalue problems \rightarrow parallelization!

Robust Coarse Spaces for

 Heterogeneous Problems
Adaptive Coarse Spaces in Domain Decomposition Methods - Literature Overview

This list is not exhaustive:

- FETI \& Neumann-Neumann: Bjørstad and Krzyzanowski (2002); Bjørstad, Koster, and Krzyzanowski (2001); Rixen and Spillane (2013); Spillane $(2015,2016)$
- BDDC \& FETI-DP: Mandel and Sousedík (2007); Sousedík (2010); Sístek, Mandel, and Sousedík (2012); Dohrmann and Pechstein (2013, 2016); Klawonn, Radtke, and Rheinbach $(2014,2015,2016)$; Klawonn, Kühn, and Rheinbach (2015, 2016, 2017); Kim and Chung (2015); Kim, Chung, and Wang (2017); Beirão da Veiga, Pavarino, Scacchi, Widlund, and Zampini (2017); Calvo and Widlund (2016); Oh, Widlund, Zampini, and Dohrmann (2017); Klawonn, Lanser, and Wasiak (preprint 2021)
- Overlapping Schwarz: Galvis and Efendiev (2010, 2011); Nataf, Xiang, Dolean, and Spillane (2011); Spillane, Dolean, Hauret, Nataf, Pechstein, and Scheichl (2011); Gander, Loneland, and Rahman (preprint 2015); Eikeland, Marcinkowski, and Rahman (preprint 2016); Heinlein, Klawonn, Knepper, Rheinbach (2018); Marcinkowski and Rahman (2018); Al Daas, Grigori, Jolivet, Tournier (2021); Bastian, Scheichl, Seelinger, and Strehlow (2022); Spillane (preprint 2021, preprint 2021); Bootland, Dolean, Graham, Ma, Scheichl (preprint 2021); Al Daas and Jolivet (preprint 2021)
- Approaches for overlapping Schwarz methods in this talk:
- AGDSW: Heinlein, Klawonn, Knepper, Rheinbach (2019, 2019), Heinlein, Klawonn, Knepper, Rheinbach, and Widlund (2022)
- Fully Algebraic Coarse Space: Heinlein and Smetana (Preprint: arXiv:2207.05559)

There is also related work on multigrid methods, such as AMGe by Brezina, Cleary, Falgout, Henson, Jones, Manteuffel, McCormick, Ruge (2000).

AGDSW - An Adaptive GDSW Coarse Space

The adaptive GDSW (AGDSW) coarse space is a related approach, which also depends on a partition of the domain decomposition interface into edges and vertices. We use

- the GDSW vertex basis functions and
- edge functions computed from a generalized edge eigenvalue problem.

As a result, the AGDSW coarse space

- always contains the classical GDSW coarse space.

Cf. Heinlein, Klawonn, Knepper, Rheinbach (2019, 2019).

AGDSW vertex basis function

The interior values are then obtained by extending 1 by zero onto the remainder of the interface followed by an energy minimizing extension into the interior:

$$
\varphi_{v}=E_{\Gamma \rightarrow \Omega}\left(R_{v \rightarrow \Gamma}\left(\mathbb{1}_{v}\right)\right)
$$

AGDSW - An Adaptive GDSW Coarse Space

AGDSW edge basis functions

Low energy extension $E_{e \rightarrow \Omega_{e}}(\cdot)$

High energy extension $\boldsymbol{R}_{e \rightarrow \Omega_{e}}(\cdot)$

Ext. into the interior

First, we solve the following eigenvalue problem (in a-harmonic space) for each edge $e \in \mathcal{E}$:

$$
a \Omega_{e}\left(E_{e \rightarrow \Omega_{e}}\left(\tau_{e, *}\right), E_{e \rightarrow \Omega_{e}}(\theta)\right)=\lambda_{e, *} a_{\Omega_{e}}\left(R_{e \rightarrow \Omega_{e}}\left(\tau_{e, *}\right), R_{e \rightarrow \Omega_{e}}(\theta)\right) \quad \forall \theta \in V_{e}
$$

Then, we select eigenfunctions using the threshold $T O L$ and extend the edge values to Ω :

$$
\varphi_{e, *}=E_{\Gamma \rightarrow \Omega}\left(R_{e \rightarrow \Gamma}\left(\tau_{e, *}\right)\right)
$$

Condition number bound

Using the coarse space $V_{\text {AGDSW }}=\left\{\varphi_{v}\right\} \cup\left\{\varphi_{e}\right\}$ in the two-level Schwarz preconditioner, we obtain

$$
\kappa\left(\boldsymbol{M}_{\mathrm{AGDSW}}^{-1} \boldsymbol{K}\right) \leq C(1 / T O L)
$$

where C is independent of H, h, and the contrast of the coefficient function α.

Numerical Results of Adaptive Coarse Spaces (2D)

Example 1

dark blue: $\alpha=10^{8} \quad$ light blue: $\alpha=1$
4×4 subdomains, $H / h=30, \delta=2 h$

V_{0}	tol	it.	κ	$\operatorname{dim} V_{0}$
$V_{\text {MSFEM }}$	-	$\mathbf{1 9 9}$	$7.8 \cdot 10^{5}$	9
$V_{\text {SS-ACMS }}$	10^{-2}	23	5.1	69
$V_{\text {SHEM }}$	10^{-3}	20	4.3	69
$V_{\text {AGDSW }}$	10^{-2}	29	7.2	93

Example 2

4×4 subdomains, $H / h=30, \delta=2 h$

V_{0}	tol	it.	κ	$\operatorname{dim} V_{0}$
$V_{\text {MSFEM }}$	-	282	$3.8 \cdot 10^{7}$	9
$V_{\text {SS-ACMS }}$	10^{-2}	41	13.2	33
$V_{\text {SHEM }}$	10^{-3}	29	6.4	93
$V_{\text {AGDSW }}$	10^{-2}	42	16.5	45

SHEM by Gander, Loneland, Rahman (TR 2015), OS-ACMS from H., Klawonn, Knepper, Rheinbach (2018), AGDSW from H., Klawonn, Knepper, Rheinbach (2019)

Extensions of the AGDSW Approach

Reducing the coarse space dimension

As in the reduced dimension GDSW (RGDSW) approach, we partition the interface into interface components centered around the vertices. On these interface components, we solve (slightly modified) eigenvalue problems.

Cf. Heinlein, Klawonn, Knepper, Rheinbach (2021) and
Heinlein, Klawonn, Knepper, Rheinbach, Widlund (2022).

Extension to three dimensions

Edge

- In AGDSW, we have to solve face and edge eigenvalue problems
- In RAGDSW, only the definition of the interface components changes

RGDSW interface component

Reduced Dimension (Adaptive) GDSW - 3D Numerical Example

detailed view of partially peeled

Heterogeneous linear elasticity problem

- Ω : cube; Dirichlet boundary condition on $\partial \Omega$.
- Structured tetrahedral mesh; 132651 nodes (397953 DOFs); unstructured domain decomposition (METIS); 125 subdomains.
- Poisson ration $\nu=0.4$.
- Young modulus: elements with $E(T)=10^{6}$ in light blue (beams); remainder set to $E(T)=1$.
- Right hand side $f \equiv 1$.
- Overlap: two layers of finite elements.

V_{0}	tol	iter	κ	$\operatorname{dim} V_{0}$	$\frac{\operatorname{dim} V_{0}}{\operatorname{dim} V^{h}}$
GDSW	-	>2000	$3.1 \cdot 10^{5}$	9996	2.51%
RGDSW	-	>2000	$3.9 \cdot 10^{5}$	3358	0.84%
AGDSW	0.100	71	41.1	14439	3.63%
AGDSW	0.050	90	59.5	13945	3.50%
AGDSW	0.010	132	161.1	13763	3.46%
RAGDSW	0.100	67	34.6	8249	2.07%
RAGDSW	0.050	88	61.3	7683	1.93%
RAGDSW	0.010	114	117.4	7501	1.88%

- RAGDSW: 45\% reduction of coarse space dimension compared to AGDSW (highlighted line).
- RAGDSW: smaller coarse space dimension compared to GDSW and still robust!

Neumann Matrices and Algebraicity

The low energy property

$$
c\left(u_{0}, u_{0}\right) \leq C_{2} a(u, u)
$$

of the bilinear form in the left hand side of the eigenvalue problems of AGDSW method is satisfied due to the use of Neumann boundary conditions:

$$
a \Omega_{e}\left(E_{e \rightarrow \Omega_{e}}\left(\tau_{e, *}\right), E_{e \rightarrow \Omega_{e}}(\theta)\right)=\lambda_{e, *} a_{\Omega_{e}}\left(R_{e \rightarrow \Omega_{e}}\left(\tau_{e, *}\right), R_{e \rightarrow \Omega_{e}}(\theta)\right) \quad \forall \theta \in V_{e}^{0}
$$

The right hand side matrix just corresponds to the submatrix $\boldsymbol{K}_{e e}$ of \boldsymbol{K} corresponding to the edge e, whereas the Neumann matrices on the left hand sides cannot be extracted from the fully assembled matrix $\boldsymbol{K} . \rightarrow$ not algebraic

Fully Algebraic Adaptive Coarse Space

We can make use of the a-orthogonal decomposition

$$
V_{\Omega_{e}}=V_{\Omega_{e}}^{0} \oplus \underbrace{\}}_{=: v_{\Omega_{e}, \text { harm }}\left\{E_{\partial \Omega_{e} \rightarrow \Omega_{e}}(v): v \in V_{\partial \Omega_{e}}\right\}}
$$

to "split the AGDSW eigenvalue problem" into two:

- Dirichlet eigenvalue problem on $V_{\Omega_{e}}^{0}$
- Transfer eigenvalue problem on $V_{\Omega_{e}, \text { harm }}$; cf. Smetana, Patera (2016)

Dirichlet eigenvalue problem

High energy ext. (rhs evp)

We solve the eigenvalue problem, choose $\lambda_{e, *}<T O L_{1}$, and extend the basis functions to Ω as before:

$$
a \Omega_{e}\left(E_{e \rightarrow \Omega_{e}}^{\partial \Omega_{e}}\left(\tau_{e, *}\right), E_{e \rightarrow \Omega_{e}}^{\partial \Omega_{e}}(\theta)\right)=\lambda_{e, *} a_{\Omega_{e}}\left(R_{e \rightarrow \Omega_{e}}\left(\tau_{e, *}\right), R_{e \rightarrow \Omega_{e}}(\theta)\right) \quad \forall \theta \in V_{e}^{0}
$$

Fully Algebraic Adaptive Coarse Space - Transfer Eigenvalue Problem

Transfer eigenvalue problem

Low energy ext. $E_{\partial \Omega_{e} \rightarrow \Omega_{e}}(\cdot)$

High energy ext. $R_{e \rightarrow \Omega_{e}}\left(E_{\partial \Omega_{e} \rightarrow \Omega_{e}}(\cdot)\right)$

Basis function

The transfer eigenvalue problem is based on Smetana, Patera (2016). Different from all the eigenvalue problems before, it is solved on the boundary of Ω_{e} :

$$
a_{\Omega_{e}}\left(E_{\partial \Omega_{e} \rightarrow \Omega_{e}}\left(\eta_{e, *}\right), E_{\partial \Omega_{e} \rightarrow \Omega_{e}}(\theta)\right)=\lambda_{e, *} a_{\Omega_{e}}\left(R_{e \rightarrow \Omega_{e}}\left(E_{\partial \Omega_{e} \rightarrow \Omega_{e}}\left(\tau_{e, *}\right)\right), R_{e \rightarrow \Omega_{e}}\left(E_{\partial \Omega_{e} \rightarrow \Omega_{e}}(\theta)\right)\right) \quad \forall \theta \in V_{\partial \Omega_{e}}^{0}
$$

We select all eigenfunctions $\eta_{e, *}$ with $\lambda_{e, *}$ above a second user-chosen threshold $T O L_{2}$. Then, we first compute the edge values $\tau_{e, *}=\left.E_{\partial \Omega_{e} \rightarrow \Omega_{e}}\left(\eta_{e, *}\right)\right|_{e}$ and then extend them into the interior

$$
\varphi_{e, *}=E_{\Gamma \rightarrow \Omega}\left(R_{e \rightarrow \Gamma}\left(\tau_{e, *}\right)\right)
$$

Fully Algebraic Adaptive Coarse Space - Transfer Eigenvalue Problem

Transfer eigenvalue problem

Low energy ext. $E_{\partial \Omega_{e} \rightarrow \Omega_{e}}(\cdot)$

High energy ext. $R_{e \rightarrow \Omega_{e}}\left(E_{\partial \Omega_{e} \rightarrow \Omega_{e}}(\cdot)\right)$

Basis function

The transfer eigenvalue problem is based on Smetana, Patera (2016). Different from all the eigenvalue problems before, it is solved on the boundary of Ω_{e} :

$$
a_{\Omega_{e}}\left(E_{\partial \Omega_{e} \rightarrow \Omega_{e}}\left(\eta_{e, *}\right), E_{\partial \Omega_{e} \rightarrow \Omega_{e}}(\theta)\right)=\lambda_{e, *} a_{\Omega_{e}}\left(R_{e \rightarrow \Omega_{e}}\left(E_{\partial \Omega_{e} \rightarrow \Omega_{e}}\left(\tau_{e, *}\right)\right), R_{e \rightarrow \Omega_{e}}\left(E_{\partial \Omega_{e} \rightarrow \Omega_{e}}(\theta)\right)\right) \quad \forall \theta \in V_{\partial \Omega_{e}}^{0}
$$

We select all eigenfunctions $\eta_{e, *}$ with $\lambda_{e, *}$ above a second user-chosen threshold $T O L_{2}$. Then, we first compute the edge values $\tau_{e, *}=\left.E_{\partial \Omega_{e} \rightarrow \Omega_{e}}\left(\eta_{e, *}\right)\right|_{e}$ and then extend them into the interior

$$
\varphi_{e, *}=E_{\Gamma \rightarrow \Omega}\left(R_{e \rightarrow \Gamma}\left(\tau_{e, *}\right)\right)
$$

\rightarrow Even though no Neumann matrices are needed to compute $E_{\partial \Omega_{e} \rightarrow \Omega_{e}}(\theta)$, Neumann matrices are needed to evaluate $a \Omega_{e}(\cdot, \cdot)$ for functions with nonnegative trace on $\partial \Omega_{e}$

Fully Algebraic Adaptive Coarse Space - Transfer Eigenvalue Problem

Algebraic transfer eigenvalue problem

Low energy ext. $E_{\partial \Omega_{e} \rightarrow \Omega_{e}}(\cdot)$

Low energy ext. $E_{\partial \Omega_{e} \rightarrow \Omega_{e}}(\cdot)$

High energy ext. $R_{e \rightarrow \Omega_{e}}\left(E_{\partial \Omega_{e} \rightarrow \Omega_{e}}(\cdot)\right)$

High energy ext. $R_{e \rightarrow \Omega_{e}}\left(E_{\partial \Omega_{e} \rightarrow \Omega_{e}}(\cdot)\right)$

Basis function for $a_{\Omega_{e}}(\cdot, \cdot)$

Basis function for $(\cdot, \cdot)_{I_{2}\left(\partial \Omega_{e}\right)}$
In order to obtain an algebraic transfer eigenvalue problem, we replace $a_{\Omega_{e}}(\cdot, \cdot)$ by $\left.(\cdot, \cdot)\right)_{I_{2}\left(\partial \Omega_{e}\right)}$:

$$
\left(E_{\partial \Omega_{e} \rightarrow \Omega_{e}}\left(\tau_{e, *}\right), E_{\partial \Omega_{e} \rightarrow \Omega_{e}}(\theta)\right)_{L_{2}\left(\partial \Omega_{e}\right)}=\lambda_{e, *}{\Omega \Omega_{e}}\left(R_{e \rightarrow \Omega_{e}}\left(E_{\partial \Omega_{e} \rightarrow \Omega_{e}}\left(\tau_{e, *}\right)\right), R_{e \rightarrow \Omega_{e}}\left(E_{\partial \Omega_{e} \rightarrow \Omega_{e}}(\theta)\right)\right) \quad \forall \theta \in V_{\partial \Omega_{e}}^{0}
$$

Fully Algebraic Adaptive Coarse Space - Condition Number Bound

Condition number estimate (non-algebraic variant)

Using the non-algebraic eigenvalue problem (transfer eigenvalue problem with $a_{\Omega_{e}}(\cdot, \cdot)$), we obtain a condition number of the form:

$$
\kappa\left(\boldsymbol{M}_{\mathrm{DIR} \mathrm{\& TR}}^{-1} \boldsymbol{K}\right) \leq C \max \left(\frac{1}{T O L_{1}}, \mathrm{TOL}_{2}\right)
$$

where C is independent of H, h, and the contrast of the coefficient function α.

Condition number estimate (algebraic variant)

Using the algebraic eigenvalue problem (transfer eigenvalue problem with $(\cdot, \cdot)_{1_{2}\left(\partial \Omega_{e}\right)}$), we obtain a condition number of the form:

$$
\kappa\left(\boldsymbol{M}_{\mathrm{DIR} \mathrm{\& TR}}^{-1} \boldsymbol{K}\right) \leq C \max \left\{\frac{1}{T O L_{1}}, \frac{T O L_{2}}{\alpha_{\min }}\right\}
$$

where C is independent of H, h, and the contrast of the coefficient function α.

Cf. Heinlein and Smetana (Preprint: arXiv:2207.05559).

Fully Algebraic Adaptive Coarse Space - Condition Number Bound

Condition number estimate (non-algebraic variant)

Using the non-algebraic eigenvalue problem (transfer eigenvalue problem with $a_{\Omega_{e}}(\cdot, \cdot)$), we obtain a condition number of the form:

$$
\kappa\left(\boldsymbol{M}_{\mathrm{DIR} \mathrm{\& TR}}^{-1} \boldsymbol{K}\right) \leq C \max \left(\frac{1}{T O L_{1}}, \mathrm{TOL}_{2}\right)
$$

where C is independent of H, h, and the contrast of the coefficient function α.

Condition number estimate (algebraic variant)

Using the algebraic eigenvalue problem (transfer eigenvalue problem with $(\cdot, \cdot)_{l_{2}\left(\partial \Omega_{e}\right)}$), we obtain a condition number of the form:

$$
\kappa\left(\boldsymbol{M}_{\mathrm{DIR} \mathrm{\& TR}}^{-1} \boldsymbol{K}\right) \leq C \max \left\{\frac{1}{T O L_{1}}, \frac{T O L_{2}}{\alpha_{\min }}\right\}
$$

where C is independent of H, h, and the contrast of the coefficient function α.
\rightarrow The $\alpha_{\text {min }}$ arises from the fact that

$$
\frac{h}{N_{\partial \Omega_{e}}} \alpha_{\min }\|\theta\|_{L_{2}\left(\partial \Omega_{e}\right)}^{2} \equiv\left|E_{\partial \Omega_{e} \rightarrow \Omega_{e}}(\theta)\right|_{a, \Omega_{e}}^{2} \quad \forall \theta \in V_{\partial \Omega_{e}}
$$

Cf. Heinlein and Smetana (Preprint: arXiv:2207.05559).

Numerical Results - Channel Coefficient Function

V_{0}	variant	TOL $_{\text {DIR }}$	TOL $_{\text {TR }}$	TOL $_{\text {POD }}$	$\operatorname{dim} V_{0}$	κ
$V_{\text {GDSW }}$	-	-	\# its.			
$V_{\text {AGDSW }}$	-	-	33	$2.7 \cdot 10^{5}$	118	
$V_{\text {DIR\&TR }}$	$a_{\Omega e}(\cdot, \cdot)$	$1.0 \cdot 10^{-3}$	$1.0 \cdot 10^{-2}$	10^{1}	$1.0 \cdot 10^{-5}$	57
$V_{\text {DIR\&TR }}$	$(-, \cdot) I_{2}\left(\partial \Omega_{e}\right)$	$1.0 \cdot 10^{-3}$	$1.0 \cdot 10^{1}$	$1.0 \cdot 10^{-5}$	57	7.4

$\rightarrow \ln$ order to get rid of potential linear dependencies between the V_{DIR} and $V_{\text {TR }}$ spaces, apply a proper orthogonal decomposition (POD) with threshold $T O L_{P O D}$ for each edge.

Numerical Results - Model 2, SPE10 Benchmark

Layer 70 from model 2 of the SPE10 benchmark; cf. Christie and Blunt (2001)

V_{0}	variant	$T O L_{\text {DIR }}$	$T O L_{\text {TR }}$	$T O L_{\text {POD }}$	$\operatorname{dim} V_{0}$
$V_{\text {GDSW }}$	-	-	κ	\# its.	
$V_{\text {AGDSW }}$	-	-	85	$2.0 \cdot 10^{5}$	57
$V_{\text {DIR\&TR }}$	$a \Omega_{e}(\cdot, \cdot)$	$1.0 \cdot 10^{-3} 1.0 \cdot 10^{5}$	$1.0 \cdot 10^{-5}$	93	19.3
$V_{\text {DIR\&TR }}$	$(\cdot, \cdot)_{I_{2}\left(\partial \Omega_{e}\right)}$	$1.0 \cdot 10^{-3} 1.0 \cdot 10^{5}$	$1.0 \cdot 10^{-5}$	147	19.4

Original coefficient $\alpha_{\max } \approx 10^{4}, \alpha_{\min } \approx 10^{-2}$ (without thresholding)

Machine Learning in Adaptive Domain Decomposition Methods

AGDSW \& machine learning

Hybrid algorithm: using machine learning techniques in AGDSW.

- Reduce the computational costs by detecting all edges (and faces) where local eigenvalue problem have to be solved
- Samples of the coefficient function are used as input for a dense neural network \rightarrow image recognition task
\rightarrow Approach originally introduced for adaptive FETI-DP and BDDC; cf. Heinlein, Lanser, Klawonn, Weber (2019, 2020, 2021, 2021, 2021).

algorithm	τ	cond	it	evp	fp	fn	acc
GDSW	-	3.66 e 6	>500	$\mathbf{0}$	-	-	-
AGDSW	-	162.60	$\mathbf{9 5}$	$\mathbf{1 1 2}$	-	-	-
AGDSW +ML	0.5	9.64 e 4	$\mathbf{9 8}$	25	2	2	95%
AGDSW +ML	0.45	163.21	$\mathbf{9 5}$	27	4	0	95%

Heinlein, Lanser, Klawonn, Weber (2022)

Binary dual-phase steel microstructure

necessary for robustness false positive (fp)

A Frugal FETI-DP and BDDC Coarse Space for Heterogeneous Problems

Observation

In adaptive FETI-DP or BDDC methods based on Mandel, Sousedík (2005, 2007), for each edge E or face F, a local eigenvalue problem of the form

$$
\boldsymbol{v}^{\top} \boldsymbol{P}_{D}^{T} \boldsymbol{S} \boldsymbol{P}_{D} \boldsymbol{w}=\mu \boldsymbol{v}^{\top} \boldsymbol{S} \boldsymbol{w} \quad \forall \boldsymbol{v} \in(\operatorname{ker} \boldsymbol{S})^{\perp}
$$

has to be solved. Here, \boldsymbol{P}_{D} is a local scaled jump operator and S contains the Schur complement matrices of the subdomains adjacent to E or F. By adding eigenfunctions \boldsymbol{w} with $\mu \geq$ TOL to the coarse space, we obtain

$$
\kappa\left(\boldsymbol{M}^{-1} \boldsymbol{F}\right) \leq C \cdot \mathrm{TOL}
$$

Microsection of a dual-phase steel.
Courtesy of J. Schröder.
cf. Klawonn, Radtke, Rheinbach (2016), Klawonn, Kühn, Rheinbach (2016).

$$
\begin{aligned}
-\nabla \cdot(\rho(x) \nabla u(x)) & =f(x) & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega .
\end{aligned}
$$

Approach

By constructing coarse basis functions $w_{\text {fr }}$ with large values for

$$
\frac{w_{\mathrm{fr}}^{T} P_{D}^{T} S P_{D} w_{\mathrm{fr}}}{w_{\mathrm{fr}}^{T} S w_{\mathrm{fr}}}
$$

using the coefficient function ρ, we obtain functions which are close the adaptive coarse space. \Rightarrow Robust and efficient coarse space.

Frugal Coarse Spaces - Parallel Results for Heterogeneous Problems

coefficient jump $1 e+3 ; H / h=24$				
approach	$\#$ c.	cond	it	TtS
frugal	9093	$1.67 \mathrm{e}+2$	$\mathbf{7 6}$	$\mathbf{1 2 3 . 8 s}$
face-avg	5061	$1.19 \mathrm{e}+3$	274	275.6 s
face-avg \& rot	9093	$5.09 \mathrm{e}+2$	179	211.7 s
coefficient jump				
approach	\# c.	cond	$H / h=24$	
frugal	9093	$2.44 \mathrm{e}+4$	$\mathbf{1 7}$	TtS
face-avg	5061	$9.73 \mathrm{e}+5$	>1000	$>893.7 \mathrm{~s}$
face-avg \& rot	9093	$4.70 \mathrm{e}+5$	>1000	$>924.9 \mathrm{~s}$

Dual-phase steel RVE with linear elasticity; 8^{3} subdomains.

Heterogeneous diffusion with coefficient 10^{6}

Parallel simulations on magnitUDE (UDUE) / Theta (ANL); cf. Heinlein, Klawonn, Lanser, Weber (2020).

Robust Coarse Spaces for

Nonlinear Schwarz
Preconditioning

Linear \& Nonlinear Preconditioning

Let us consider the nonlinear problem arising from the discretization of a partial differential equation

$$
\boldsymbol{F}(\boldsymbol{u})=0 .
$$

We solve the problem using a Newton-Krylov approach, i.e., we solve a sequence of linearized problems using a Krylov subspace method:

$$
\boldsymbol{D F}\left(\boldsymbol{u}^{(k)}\right) \Delta \boldsymbol{u}^{(k+1)}=\boldsymbol{F}\left(\boldsymbol{u}^{(k)}\right)
$$

Linear preconditioning

In linear preconditioning, we improve the convergence speed of the linear solver by constructing a linear operator M^{-1} and solve linear systems

$$
\boldsymbol{M}^{-1} \boldsymbol{D F}\left(\boldsymbol{u}^{(k)}\right) \Delta \boldsymbol{u}^{(k+1)}=\boldsymbol{M}^{-1} \boldsymbol{F}\left(\boldsymbol{u}^{(k)}\right)
$$

Goal:

$$
\begin{aligned}
& \text { - } \kappa\left(\boldsymbol{M}^{-1} \boldsymbol{D F}\left(\boldsymbol{u}^{(k)}\right)\right) \approx 1 . \\
& \Rightarrow \boldsymbol{M}^{-1} \boldsymbol{D F}\left(\boldsymbol{u}^{(k)}\right) \approx \boldsymbol{I}
\end{aligned}
$$

Nonlinear preconditioning

In nonlinear preconditioning, we improve the convergence speed of the nonlinear solver by constructing a nonlinear operator G and solve the nonlinear system

$$
(\boldsymbol{G} \circ \boldsymbol{F})(\boldsymbol{u})=0
$$

Goals: - $\boldsymbol{G} \circ \boldsymbol{F}$ almost linear.

- Additionally: $\kappa(\boldsymbol{D}(\boldsymbol{G} \circ \boldsymbol{F})(\boldsymbol{u})) \approx 1$.

Nonlinear Domain Decomposition Methods

Additive nonlinear left preconditioners (based on Schwarz methods)

ASPIN/ASPEN: Cai, Keyes 2002; Cai, Keyes, Marcinkowski (2002); Hwang, Cai $(2005,2007)$; Groß, Krause $(2010,2013)$

RASPEN: Dolean, Gander, Kherijii, Kwok, Masson (2016)
MSPIN: Keyes, Liu, $(2015,2016,2021) ;$ Liu, Wei, Keyes (2017)
Two-Level nonlinear Schwarz: Heinlein, Lanser (2020); Heinlein, Lanser, Klawonn (2022)

Nonlinear right preconditioners

Nonlinear FETI-DP/BDDC: Klawonn, Lanser, Rheinbach (2012, 2013, 2014, 2015, 2016, 2018);
Klawonn, Lanser, Rheinbach, Uran $(2017,2018)$
Nonlinear Elimination: Hwang, Lin, Cai (2010); Cai, Li (2011); Wang, Su, Cai (2015); Hwang, Su, Cai (2016); Gong, Cai (2018); Luo, Shiu, Chen, Cai (2019); Gong, Cai (2019)
Nonlinear Neumann-Neumann: Bordeu, Boucard, Gosselet (2009)
Nonlinear FETI-1: Pebrel, Rey, Gosselet (2008); Negrello, Gosselet, Rey (2021)
Other DD work reversing linearization and decomposition: Ganis, Juntunen, Pencheva, Wheeler,
Yotov (2014); Ganis, Kumar, Pencheva, Wheeler, Yotov (2014)
Early nonlinear DD work: Cai, Dryja (1994); Dryja, Hackbusch (1997)

Nonlinear One-Level Schwarz Preconditioners

ASPEN \& ASPIN

Our approach is based on the nonlinear one-level Schwarz methods ASPEN (Additive Schwarz Preconditioned Exact Newton) and ASPIN (Additive Schwarz
Preconditioned Inexact Newton) introduced in Cai and
Keyes (2002). The nonlinear finite element problem

$$
\boldsymbol{F}(\boldsymbol{u})=0 \quad \text { with } \boldsymbol{F}: V \rightarrow V
$$

is reformulated to

$$
\mathscr{F}(\boldsymbol{u})=\boldsymbol{G}(\boldsymbol{F}(\boldsymbol{u}))=0 .
$$

The nonlinear left-preconditioner \boldsymbol{G} is only given implicitly by solving the nonlinear problem locally on each of the (overlapping) subdomains. Roughly,

$$
\boldsymbol{F}_{i}(\boldsymbol{u}-\underbrace{\boldsymbol{C}_{i}(\boldsymbol{u})}_{\text {local correction }}), i=1, \ldots, N .
$$

$$
F_{i}\left(u-C_{i}(u)\right)=0
$$

Nonlinear One-Level Schwarz Preconditioners

ASPEN

Local corrections $\boldsymbol{T}_{i}(u)$:

$$
\begin{aligned}
& \boldsymbol{R}_{i} \boldsymbol{F}\left(\boldsymbol{u}-\boldsymbol{P}_{i} \boldsymbol{T}_{i}(\boldsymbol{u})\right)=0, i=1, \ldots, N, \text { with } \\
& \text { restrictions } \boldsymbol{R}_{i}: V \rightarrow V_{i}, \\
& \text { prolongations } \boldsymbol{P}_{i}: V_{i} \rightarrow V .
\end{aligned}
$$

Nonlinear ASPEN problem:

$$
\mathscr{F}_{A}(\boldsymbol{u}):=\sum_{i=1}^{N} \boldsymbol{P}_{i} \boldsymbol{T}_{i}(\boldsymbol{u})=0
$$

We solve $\mathscr{F}_{A}(\boldsymbol{u})=0$ using Newton's method with
 $u_{i}=u-\boldsymbol{P}_{i} \boldsymbol{T}_{i}(\boldsymbol{u})$. The Jacobian writes

$$
\boldsymbol{D} \mathscr{F}_{A}(\boldsymbol{u})=\sum_{i=1}^{N} \underbrace{\boldsymbol{P}_{i}\left(\boldsymbol{R}_{i} \boldsymbol{D F}\left(\boldsymbol{u}_{i}\right) P_{i}\right)^{-1} \boldsymbol{R}_{i} \boldsymbol{D F}\left(\boldsymbol{u}_{i}\right)}_{\begin{array}{c}
\text { local Schwarz operators } \\
\text { (preconditioned operators) }
\end{array}}
$$

- $\boldsymbol{F}(\boldsymbol{u})=0 \Leftrightarrow \mathscr{F}_{A}(\boldsymbol{u})=0$ near a given solution
- DF(\boldsymbol{u}_{i}) global but can be assembled locally

Nonlinear One-Level Schwarz Preconditioners

RASPEN (Dolean et al. (2016))

Local corrections $\boldsymbol{T}_{i}(u)$:

$$
\boldsymbol{R}_{i} \boldsymbol{F}\left(\boldsymbol{u}-\boldsymbol{P}_{i} \boldsymbol{T}_{i}(\boldsymbol{u})\right)=0, i=1, \ldots, N, \text { with }
$$

$$
\text { restrictions } \quad \boldsymbol{R}_{i} \quad: V \rightarrow V_{i}
$$

$$
\text { prolongations } \quad \boldsymbol{P}_{i}, \widetilde{P}_{i}: V_{i} \rightarrow V
$$

Nonlinear RASPEN problem:

$$
\mathscr{F}_{R A}(\boldsymbol{u}):=\sum_{i=1}^{N} \widetilde{\boldsymbol{P}}_{i} \boldsymbol{T}_{i}(\boldsymbol{u})=0
$$

We solve $\mathscr{F}_{R A}(\boldsymbol{u})=0$ using Newton's method with $\boldsymbol{u}_{i}=\boldsymbol{u}-\boldsymbol{P}_{i} \boldsymbol{T}_{i}(\boldsymbol{u})$. The Jacobian writes

$$
\boldsymbol{D} \mathscr{F}_{R A}(\boldsymbol{u})=\sum_{i=1}^{N} \underbrace{\widetilde{\boldsymbol{P}}_{i}\left(\boldsymbol{R}_{i} \boldsymbol{D F}\left(\boldsymbol{u}_{i}\right) P_{i}\right)^{-1} \boldsymbol{R}_{i} \boldsymbol{D F}\left(\boldsymbol{u}_{i}\right)}_{\begin{array}{c}
\text { local Schwarz operators } \\
\text { (preconditioned operators) }
\end{array}}
$$

- $\sum_{i=1}^{N} \widetilde{\boldsymbol{P}}_{i} \boldsymbol{R}_{i}=\boldsymbol{I}$
- Reduced communication \& (often) better conv.

Results

p-Laplacian model problem

$$
\begin{aligned}
-\alpha \Delta_{p} u & =1 & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

with $\alpha \Delta_{p} u:=\operatorname{div}\left(\alpha|\nabla u|^{p-2} \nabla u\right)$.

$p=4 ; H / h=16 ;$ overlap $\delta=1$				
\mathbf{N}	solver	nonlin. outer it.	inner it. (avg.)	lin. GMRES it. (sum)
		$\mathbf{1 8}$	-	272
		5	25.2	89
25	NK-RAS	19	-	488
	RASPEN	6	28.3	172
49	NK-RAS	20	-	691
	RASPEN	6	27.3	232

\Rightarrow Improved nonlinear convergence, but no scalability in the linear iterations.

Nonlinear Two-Level Schwarz Preconditioners

Two-level (R)ASPEN (Heinlein \& Lanser (2020))

Local/Coarse corrections $T_{i}(\boldsymbol{u})$:

$$
R_{i} F\left(u-P_{i} T_{i}(\boldsymbol{u})\right)=0, i=0,1, \ldots, N, \text { with }
$$

$$
\text { restrictions } \quad \boldsymbol{R}_{i}: V \rightarrow V_{i}
$$

$$
\text { prolongations } \quad \boldsymbol{P}_{i}: V_{i} \rightarrow V
$$

Nonlinear two-level ASPEN problem:

$$
\mathscr{F}_{A}(\boldsymbol{u}):=\boldsymbol{P}_{0} \boldsymbol{T}_{0}(\boldsymbol{u})+\sum_{i=1}^{N} \boldsymbol{P}_{i} \boldsymbol{T}_{i}(\boldsymbol{u})=0
$$

We solve $\mathscr{F}_{A}(\boldsymbol{u})=0$ using Newton's method with $\boldsymbol{u}_{i}=\boldsymbol{u}-\boldsymbol{P}_{i} \boldsymbol{T}_{i}(\boldsymbol{u})$. The Jacobian writes

$$
\begin{aligned}
D \mathscr{F}_{R A}(\boldsymbol{u})= & \overbrace{P_{0}\left(\boldsymbol{R}_{0} \boldsymbol{D F}\left(\boldsymbol{u}_{0}\right) \boldsymbol{P}_{0}\right)^{-1} R_{0} D F\left(u_{0}\right)}^{\text {coarse Schwarz opertor }} \\
& +\sum_{i=1}^{N} \underbrace{P_{i}\left(\boldsymbol{R}_{i} \boldsymbol{D F}\left(\boldsymbol{u}_{i}\right) \boldsymbol{P}_{i}\right)^{-1} \boldsymbol{R}_{i} \boldsymbol{D F}\left(\boldsymbol{u}_{i}\right)}_{\text {local Schwarz operators }}
\end{aligned}
$$

Results for p-Laplace

1-IvI One-level RASPEN
2-Ivl A Two-level RASPEN with additively coupled coarse level
2-Ivl M Two-level RASPEN with multiplicatively coupled coarse level

$p=4 ; H / h=16 ;$ overlap $\delta=1$					
N	raspen solver	nonlin.			lin.
		outer it.	$\begin{array}{\|r\|} \hline \text { inner } \\ \text { it. } \\ \text { (avg.) } \\ \hline \end{array}$	coarse it.	
	1-Ivl	5	25.2	-	89
9	2-Ivl A	6	33.4	27	93
	2-Ivl M	4	17.1	29	52
	1-Ivl	6	27.3		232
49	2-IvI A	6	29.2	28	137
	2-Ivl M	4	12.6	29	80

\Rightarrow Improved nonlinear convergence and scalability.

Numerical Results - Nonlinear Schwarz Methods with AGDSW Coarse Spaces

Problem configuration (Heinlein, Klawonn, Lanser (2022))

p-Laplacian problem with $p=4$ and a binary coefficient α :
find u such that

$$
\begin{aligned}
-\alpha \Delta_{p} u & =1 & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

Domain decomposition into 6×6 subdomains with $H / h=32$ and overlap $1 h$.

no globalization							
size			outer	$\begin{array}{r}\text { local } \\ \text { cp }\end{array}$	method	coarse space	$\begin{array}{r}\text { GMRES } \\ \text { it. }\end{array}$
it. (avg.)							

Numerical Results - Nonlinear Schwarz Methods with AGDSW Coarse Spaces

Problem configuration (Heinlein, Klawonn, Lanser (2022))

p-Laplacian problem with $p=4$ and a binary coefficient α :
find u such that

$$
\begin{aligned}
-\alpha \Delta_{p} u & =1 & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega .
\end{aligned}
$$

Domain decomposition into 6×6 subdomains with $H / h=32$ and overlap 1 h .

Numerical Results - Nonlinear Adaptive FETI-DP Methods

Problem configuration (Heinlein, Klawonn, Lanser (2022))

p-Laplacian problem and a binary coefficient α : find u such that

$$
\begin{aligned}
-\alpha \Delta_{p} u & =1 & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega .
\end{aligned}
$$

Domain decomposition into 6×6 subdomains with $H / h=32$ and overlap $1 h$.

Thank you for your attention!

Summary

- Robustness of domain decomposition preconditioners for highly heterogeneous problems generally require special treatment. One effective approach is the use of robust coarse spaces, for instance, using local generalized eigenvalue problems.
- Newton convergence for nonlinear problems (as well as the linear convergence in each linearization step) can be significantly improved using nonlinear domain decomposition methods.
- For highly heterogeneous nonlinear problems, (only) the combination of nonlinear preconditioning and robust coarse spaces may ensure a robust solver framework.

Acknowledgements

- Financial support: DFG (KL2094/3-1, RH122/4-1)
- Computing ressources: Theta (ANL), JUQUEEN (JSC), magnitUDE (UDE)

