
Exercise Session 2
Parallel Preconditioning With FROSch

Alexander Heinlein
November 25, 2021

TU Delft



Schwarz domain decomposition
preconditioners in FROSch



Domain Decomposition Methods in Trilinos

By Sandia National
Laboratories

• Teko: Block preconditioners for multi-physics problems
• Ifpack/Ifpack2: One-level overlapping Schwarz preconditioners
→ Algebraic but not scalable

• ShyLU/BDDC: BDDC (Balancing Domain Decomposition by Constraints)
preconditioner
→ Scalable but less algebraic

FROSch (Fast and Robust Overlapping Schwarz)

• Schwarz preconditioners with algebraic coarse spaces based on extension
operators, e.g., GDSW (Generalized–Dryja–Smith–Widlund) coarse spaces
→ Algebraic and scalable

• Part of the package ShyLU:
(Joint work with the Scalable Algorithms group of the Sandia National
Laboratories (SNL), Albuquerque, USA)

• Implementation based on Xpetra
→ Can be used with Epetra and Tpetra (linear algebra packages)

Extension to current architectures, e.g., GPUs, using the Kokkos
programming model

Easy access to FROSch through unified Trilinos solver interface Thyra.
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Simple Model Problem & Overlapping Domain Decomposition

Consider a Poisson model problem on [0, 1]2:

−∆u = f in Ω,

u = 0 on ∂Ω.

Discretize (e.g., using finite elements)

Kx = b.

⇒ Construct a parallel scalable
preconditioner M−1 using overlapping
Schwarz domain decomposition methods.

Overlapping domain decomposition
Overlapping Schwarz methods are based
on overlapping decompositions of the
computational domain Ω.

Overlapping subdomains Ω′1, ..., Ω′N can be
constructed by recursively adding layers of
elements to nonoverlapping subdomains
Ω1, ..., ΩN .

Nonoverlap. DD
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Two-Level Schwarz Preconditioners

One-Level Schwarz preconditioner
Overlap δ = 1h Restriction Ri to Ω′i

Based on an overlapping domain decomposition, we
define a one-level Schwarz operator

M−1OS−1K =
∑N

i=1
RT

i K−1i Ri K ,

where Ri and RT
i are restriction and prolongation

operators corresponding to Ω′i , and Ki := Ri KRT
i .

→ algebraic

Condition number estimate:

κ (POS−1) ≤ C
(
1 +

1
Hδ

)
with subdomain size H and the width of the overlap δ.

Adding a Lagrangian coarse space
Coarse triangulation Q1 basis function

The two-level overlapping Schwarz operator reads

M−1OS−2K = ΦK−10 ΦT K︸ ︷︷ ︸
coarse level – global

+
∑N

i=1
RT

i K−1i Ri K︸ ︷︷ ︸
first level – local

,

where Φ contains the coarse basis functions and
K0 := ΦT KΦ; cf., e.g., Toselli, Widlund (2005).

A Lagrangian coarse basis requires a coarse
triangulation (geometric information) → not algebraic

⇒ κ (POS−2) ≤ C
(
1 +

H
δ

)
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One- Vs Two-Level Schwarz Preconditioners

Laplace model problem in two dimensions, # subdomains = # cores, H/h = 100

→ We only obtain scalability if a coarse level is used.
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Extension-Based GDSW Coarse Spaces
Non-overlapping DD Ident. vertices & edges Restr. of the null space Energy minimizing ext.

In GDSW (Generalized–Dryja–Smith–Widlund)
coarse spaces, the coarse basis functions are chosen
as energy minimizing extensions of functions ΦΓ

that are defined on the interface Γ:

Φ =
[
−K−1II KT

ΓI ΦΓ

ΦΓ

]
=
[

ΦI

ΦΓ

]
The functions ΦΓ are restrictions of the null space
of global Neumann matrix to the edges, vertices,
and, in 3D, faces (partition of unity) of the
non-overlapping decomposition.

The condition number of the GDSW operator
is bounded by

κ
(
M−1GDSWK

)
≤ C

(
1 + H

δ

)(
1 + log

(H
h

))2
;

cf. Dohrmann, Klawonn, Widlund (2008),
Dohrmann, Widlund (2009, 2010, 2012).

→ We only obtain the exponent 2 for very
irregular subdomains.

→ Scalable and algebraic!
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The coarse basis functions were
inspired by FETI-DP and
BDDC methods
⇒ We get the same log term.
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GDSW Coarse Basis Functions
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Reducing the Dimension – RGDSW Coarse Spaces
Non-overlapping DD Ident. vertices & edges RGDSW option 1 RGDSW option 2.2

Reduced dimension GDSW coarse spaces are constructed from nodal interface functions (different
partition of unity compared to GDSW); as in classical GDSW coarse spaces, energy minimizing
extensions define the values in the interior degrees of freedom; cf. Dohrmann, Widlund (2017).

Option 1
We define the interface values based on the
number of adjacent vertices

Φi (n) =
{ 1
|Cn| if Vi ∈ Cn,

0 otherwise.

→ Less communication and global work.

Option 2.2
We define the interface values based on the
distance to adjacent vertices

Φi (n) =

{ 1/‖Vi−n‖∑
Vj∈Cn

1/‖Vj−n‖
if Vi ∈ Cn,

0 otherwise.
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Weak Scalability of FROSch Preconditioners

Model problem: Poisson equation in 3D Coarse solver: MUMPS (direct)
Largest problem: 374 805 361 / 1 732 323 601 unknowns

Cf. Heinlein, Klawonn, Rheinbach, Widlund (2017); computations performed on Juqueen, JSC, Jülich, Germany.
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FROSch Preconditioners for Land Ice Simulations

https://github.com/SNLComputation/Albany

The velocity of the ice sheet in Antarctica and Greenland is modeled
by a first-order-accurate Stokes approximation model,

−∇ · (2µε̇1) + ρg ∂s
∂x = 0, −∇ · (2µε̇2) + ρg ∂s

∂y = 0,

with a nonlinear viscosity model (Glen’s law); cf., e.g., Blatter (1995) and Pattyn (2003).

Antarctica (velocity) Greenland (multiphysics vel. & temperature)
4 km resolution, 20 layers, 35m dofs 1-10 km resolution, 20 layers, 69m dofs

MPI ranks avg. its avg. setup avg. solve avg. its avg. setup avg. solve
512 41.9 (11) 25.10 s 12.29 s 41.3 (36) 18.78 s 4.99 s
1 024 43.3 (11) 9.18 s 5.85 s 53.0 (29) 8.68 s 4.22 s
2 048 41.4 (11) 4.15 s 2.63 s 62.2 (86) 4.47 s 4.23 s
4 096 41.2 (11) 1.66 s 1.49 s 68.9 (40) 2.52 s 2.86 s
8 192 40.2 (11) 1.26 s 1.06 s - - -

Computations on Cori (NERSC). Heinlein, Perego, Rajamanickam (submitted 2021)
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GDSW Type Methods and FROSch

There are several extensions of the classical GDSW coarse space, e.g.,

• Monolithic GDSW coarse spaces for block systems: Heinlein, Hochmuth, Klawonn (SISC 2019,

IJNME 2020), Heinlein, Perego, Rajamanickam (submitted 2021)

• Adaptive GDSW coarse spaces: Heinlein, Klawonn, Knepper, Rheinbach (Springer LNCSE 2019,SISC

2019), Heinlein, Klawonn, Knepper, Rheinbach, Widlund (SISC 2021)

• Multilevel GDSW preconditioners: Heinlein, Klawonn, Rheinbach, Röver (Springer LNCSE 2019, Springer

LNCSE 2020, accepted 2021), Heinlein, Rheinbach, Röver (submitted 2021)

• Nonlinear Schwarz method with GDSW type coarse spaces: Heinlein, Lanser (SISC 2021),

Heinlein, Klawonn, Lanser (submitted 2021)

Already implemented in FROSch
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Announcement: Trilinos User-Developer Group Meeting 2021
Dates
November 30th: Keynote, 20th Anniversary Celebration and Product Areas Presentations
December 1st: Applications Session
December 2nd: Developers Session

Location
Virtual Meeting

Registration
There is no registration fee for attendance; however, registration is required for our reporting
purposes (see attached). Registration may be submitted through November 30, 2021.

More details
https://trilinos.github.io/trilinos_user-developer_group_meeting_2021.html
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Exercises – Parallel
Preconditioning with FROSch
FROSch



Software Environment
All the material for the exercises can be found in the GitHub repository

https://github.com/searhein/frosch-demo

It contains:
• A dockerfile for automatically installing the software environment

• Three exercises:
• Exercise 1 – Implementing a Krylov Solver Using Belos

• Exercise 2 – Implementing a One-Level Schwarz Preconditioner Using FROSch

• Exercise 3 – Implementing a GDSW Preconditioner Using FROSch

• A code that includes the solution for all three exercises.

The GitHub repository also contains detailed step-by-step instructions for installing the
software environment, compiling the exercises, and testing the software.

You should have received the link to the GitHub repository on Monday and installed the
software by now. Otherwise, there will not enough time to set up the software now and
still work on the exercises.
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Working on the Exercises

Each exercise has two parts:
1. Implement the missing code; step-by-step explanations can be found in the README.md

files.
2. Perform numerical experiments to investigate the behavior of the methods.

Parallelization
The code assumes a one-to-one correspondence of MPI ranks and subdomains. In order
to run with larger numbers of subdomains, you have to increase the number of MPI ranks. For
instance, for 4 MPI ranks / subdomains: mpirun −n 4 ./EXECUTABLE
Depending on your hardware (and the number of available processors), you can also study
computing times of the computations.

The solution code

• can serve as a reference for solving the implementation part of the exercises.
• can be used to directly work on the numerical experiments and skip the

implementation part.
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Remainder of the Session

First, I will
• walk you through the basic structure of the code,
• show you how to run the code, and
• show you how to visualize the solution using Paraview.

Then, you can
• start working on the exercises as described in the README.md files and
• ask questions about the code and the exercises.

Please take your time to look into the code and run numerical experiments. I do not
expect you to finish the exercises within the one hour. However, the README.md files should
provide enough information to continue working on the exercises after the session.
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