

Robust, algebraic, and scalable Schwarz preconditioners with extension-based coarse spaces

Alexander Heinlein

27th International Domain Decomposition Conference, Prague, Czech Republic, July 25-29, 2022

Delft University of Technology

Linear & Nonlinear Preconditioning

Let us consider the nonlinear problem arising from the discretization of a partial differential equation

$$F(u) = 0.$$

We solve the problem using a **Newton-Krylov approach**, i.e., we solve a sequence of linearized problems using a Krylov subspace method:

$$m{DF}\left(m{u}^{(k)}
ight)\Deltam{u}^{(k+1)} = m{F}\left(m{u}^{(k)}
ight).$$

Linear preconditioning

In linear preconditioning, we improve the convergence speed of the linear solver by constructing a linear operator ${\cal M}^{-1}$ and solve linear systems

$$\mathbf{M}^{-1}\mathbf{DF}\left(\mathbf{u}^{(k)}\right)\Delta\mathbf{u}^{(k+1)} = \mathbf{M}^{-1}\mathbf{F}(\mathbf{u}^{(k)}).$$

Goal:

$$\begin{split} & \quad \quad \kappa \left(\mathbf{M}^{-1} \mathbf{D} \mathbf{F} \left(\mathbf{u}^{(k)} \right) \right) \approx 1. \\ & \quad \Rightarrow \quad \mathbf{M}^{-1} \mathbf{D} \mathbf{F} \left(\mathbf{u}^{(k)} \right) \approx \mathbf{I}. \end{split}$$

Nonlinear preconditioning

In nonlinear preconditioning, we **improve the convergence speed of the nonlinear solver** by constructing a **nonlinear operator** *G* and solve the nonlinear system

$$(\boldsymbol{G} \circ \boldsymbol{F})(\boldsymbol{u}) = 0.$$

Goals:

- **G** ∘ **F** almost linear.
- Additionally: $\kappa (D(G \circ F)(u)) \approx 1$.

Linear & Nonlinear Preconditioning

Let us consider the nonlinear problem arising from the discretization of a partial differential equation

$$F(u) = 0.$$

We solve the problem using a **Newton-Krylov approach**, i.e., we solve a sequence of linearized problems using a Krylov subspace method:

$$m{DF}\left(m{u}^{(k)}
ight)\Deltam{u}^{(k+1)} = m{F}\left(m{u}^{(k)}
ight).$$

Linear preconditioning

In linear preconditioning, we improve the convergence speed of the linear solver by constructing a linear operator ${\cal M}^{-1}$ and solve linear systems

$$\mathbf{M}^{-1}\mathbf{DF}\left(\mathbf{u}^{(k)}\right)\Delta\mathbf{u}^{(k+1)} = \mathbf{M}^{-1}\mathbf{F}(\mathbf{u}^{(k)}).$$

Goal:

•
$$\kappa\left(\mathbf{M}^{-1}\mathbf{DF}\left(\mathbf{u}^{(k)}\right)\right) \approx 1.$$

$$\Rightarrow M^{-1}DF(u^{(k)}) \approx I.$$

Nonlinear preconditioning

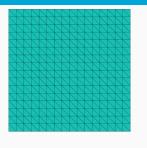
In nonlinear preconditioning, we **improve the convergence speed of the nonlinear solver** by constructing a **nonlinear operator** *G* and solve the nonlinear system

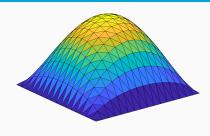
$$(\boldsymbol{G} \circ \boldsymbol{F})(\boldsymbol{u}) = 0.$$

Goals:

- **G** ∘ **F** almost linear.
- Additionally: $\kappa \left(\mathbf{D} \left(\mathbf{G} \circ \mathbf{F} \right) \left(\mathbf{u} \right) \right) \approx 1$.

Simple Model Problem





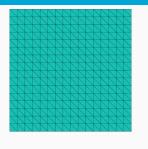
Consider a homogeneous diffusion model problem:

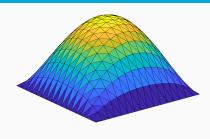
$$-\Delta u = f$$
 in $\Omega = [0, 1]^2$,
 $u = 0$ on $\partial \Omega$.

Discretization using finite elements yields the linear equation system

$$Ku = f$$
.

Simple Model Problem





Consider a homogeneous diffusion model problem:

$$-\Delta u = f \quad \text{in } \Omega = [0, 1]^2,$$

$$u = 0 \quad \text{on } \partial \Omega.$$

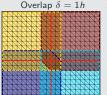
Discretization using finite elements yields the linear equation system

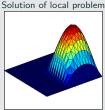
$$Ku = f$$
.

⇒ Construct a preconditioner using **overlapping Schwarz domain decomposition methods**.

Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner





Based on an overlapping domain decomposition, we define a one-level Schwarz operator

$$\mathbf{M}_{\mathrm{OS-1}}^{-1}\mathbf{K} = \sum_{i=1}^{N} \mathbf{R}_{i}^{\mathsf{T}}\mathbf{K}_{i}^{-1}\mathbf{R}_{i}\mathbf{K},$$

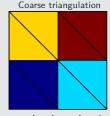
where \mathbf{R}_i and \mathbf{R}_i^T are restriction and prolongation operators corresponding to Ω_i' , and $\mathbf{K}_i := \mathbf{R}_i \mathbf{K} \mathbf{R}_i^T$.

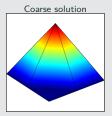
Condition number estimate:

$$\kappa\left(\mathbf{\textit{M}}_{\text{OS-1}}^{-1}\mathbf{\textit{K}}\right) \leq C\left(1+\frac{\mathbf{1}}{\mathbf{\textit{H}}\delta}\right)$$

with subdomain size H and overlap width δ .

Adding a Lagrangian coarse space





The two-level overlapping Schwarz operator reads

$$\mathbf{M}_{\text{OS-2}}^{-1}\mathbf{K} = \underbrace{\Phi \mathbf{K}_{0}^{-1}\Phi^{T}\mathbf{K}}_{\text{coarse level - global}} + \underbrace{\sum_{i=1}^{N} \mathbf{R}_{i}^{T}\mathbf{K}_{i}^{-1}\mathbf{R}_{i}\mathbf{K}}_{\text{first level - local}},$$

where Φ contains the coarse basis functions and $K_0 := \Phi^T K \Phi$; cf., e.g., Toselli, Widlund (2005).

The construction of a Lagrangian coarse basis requires a coarse triangulation.

Condition number estimate:

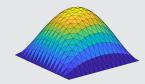
$$\kappa\left(oldsymbol{\mathcal{M}}_{\mathsf{OS-2}}^{-1}oldsymbol{\mathcal{K}}
ight) \leq C\left(1+rac{oldsymbol{\mathcal{H}}}{\delta}
ight)$$

Strengths and Weaknesses of Classical Two-Level Schwarz Preconditioners

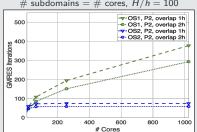
Numerical scalability

Diffusion with **heterogeneous coefficient**:

$$-\Delta u = f$$
 in $\Omega = [0, 1]^2$,
 $u = 0$ on $\partial \Omega$.

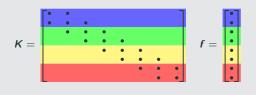


subdomains = # cores, H/h = 100

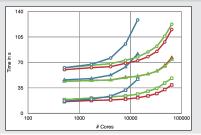


Algebraic construction

Requires coarse triangulation (geometric information). No construction based on:



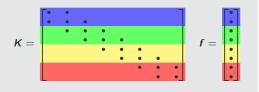
Parallel scalability



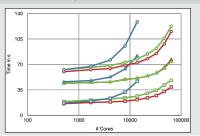
Strengths and Weaknesses of Classical Two-Level Schwarz Preconditioners

Algebraic construction

Requires coarse triangulation (geometric information). No construction based on:



Parallel scalability



Robustness

Diffusion with **heterogeneous coefficient**:

$$-\nabla \cdot (\alpha(x)\nabla u(x)) = f(x) \quad \text{in } \Omega = [0, 1]^2,$$

$$u = 0 \quad \text{on } \partial\Omega.$$

dark blue: $\alpha = 10^8$ light blue: $\alpha = 1$

10 imes 10 subdomains with H/h=10 and overlap 1h

Prec.	its.	κ
_	>2 000	$4.51 \cdot 10^8$
$M_{\text{OS-1}}^{-1}$	>2 000	$4.51 \cdot 10^8$
M_{OS-2}^{-1}	586	$5.56 \cdot 10^5$

Outline

1 Extension-Based Coarse Spaces

2 Parallel Implementation in FROSch

Based on joint work with Christian Hochmuth, Axel Klawonn (University of Cologne), Oliver Rheinbach, Friederike Röver (TU Bergakademie Freiberg), Mauro Perego, Siva Rajamanickam, Ichitaro Yamazaki (Sandia), Olof Widlund (New York University)

3 Adaptive Extension-Based Coarse Spaces

Based on joint work with Axel Klawonn, Jascha Knepper (University of Cologne), Oliver Rheinbach (TU Bergakademie Freiberg), Olof Widlund (New York University), Kathrin Smetana (Stevens Institute of Technology)

4 Extension-Based Coarse Spaces in Nonlinear Schwarz Preconditioning

Based on joint work with Axel Klawonn, Martin Lanser (University of Cologne)

Extension-Based Coarse Spaces

Energy-Minimizing Extensions

The energy-minimizing extension $v_i = E_{\partial\Omega_i \to \Omega_i}(v_{\partial\Omega_i})$ solves

$$v_i = \underset{v|_{\partial\Omega} = v_{\partial\Omega}}{\text{arg min }} a_{\Omega}(v, v) \Leftrightarrow \begin{array}{ccc} a_{\Omega_i}(v_i, w_i) & = & 0 & \forall w_i \in V_{\Omega_i}^0, \\ v_i & = & v_{\partial\Omega_i} & \text{on } \partial\Omega_i. \end{array}$$

ightarrow Energy-minimizing extensions and functions with homogeneous Dirichlet boundary conditions are a-orthogonal.

In matrix form, this corresponds to

$$\mathbf{v} = \begin{pmatrix} -\mathbf{K}_{II}^{-1}\mathbf{K}_{I\Gamma} \\ \mathbf{I}_{\Gamma} \end{pmatrix} \mathbf{v}_{\Gamma},$$

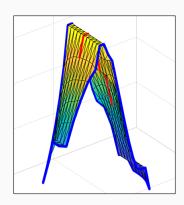
where we make use of the splitting of the rows and columns corresponding to interior (I) and interface (Γ) nodes

$$K = \begin{pmatrix} K_{II} & K_{I\Gamma} \\ K_{\Gamma I} & K_{\Gamma \Gamma} \end{pmatrix}$$

See, e.g., Section 4.4 in the book Toselli, Wildund (2005).

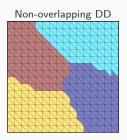
Diffusion model problem

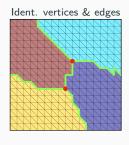
$$a_{\Omega}(u,v) = \int_{\Omega} \alpha(x) \nabla u \cdot \nabla v \, dx$$



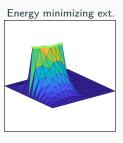
Two-Level Schwarz Preconditioners – GDSW Coarse Space

The following construction will lead to the GDSW (Generalized–Dryja–Smith–Widlund) coarse space introduced in Dohrmann, Klawonn, Widlund (2008).





Restr. of the null space



The coarse interpolation is exact in the vertices, and the **energy of the edge functions** can be bounded as follows:

$$\|\theta_{\mathcal{E}}\|_{H^1(\Omega_i)}^2 \leq C\left(1 + \log\left(\frac{H}{h}\right)\right);$$

in three dimensions, face basis functions are added to the coarse space.

The condition number of the GDSW two-level Schwarz operator is bounded by

$$\kappa\left(\mathbf{M}_{\mathrm{GDSW}}^{-1}\mathbf{K}\right) \leq C\left(1 + \frac{H}{\delta}\right)\left(1 + \log\left(\frac{H}{h}\right)\right)^{2};$$

cf. Dohrmann, Klawonn, Widlund (2008), Dohrmann, Widlund (2009, 2010, 2012).

Partition of Unity

The energy-minimizing extension $v_i = H_{\partial\Omega_i \to \Omega_i}(1)$ solves

$$-\Delta v_i = 0 \text{ in } \Omega_i,$$

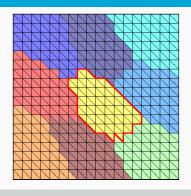
 $v_i = 1 \text{ on } \partial \Omega_i.$

Hence,

$$v_i = E_{\partial\Omega_i \to \Omega_i} (\mathbb{1}_{\partial\Omega_i}) = \mathbb{1}.$$

Therefore, for any partition of unity $\{\varphi_i\}_i$ on $\partial\Omega_i$, due to linearity of the extension operator, we have

$$\sum\nolimits_{i}\varphi_{i}=\mathbb{1}_{\partial\Omega_{i}}\Rightarrow\sum\nolimits_{i}E_{\partial\Omega_{i}\rightarrow\Omega_{i}}\left(\varphi_{i}\right)=\mathbb{1}_{\Omega_{i}}$$

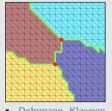


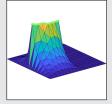
Null space property

Any extension-based coarse space built from a partition of unity on the domain decomposition interface satisfies the **null space property necessary for numerical scalability**:

Examples of Extension-Based Coarse Spaces

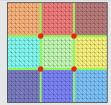
GDSW (Generalized Dryja–Smith–Widlund)





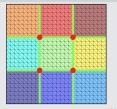
- Dohrmann, Klawonn, Widlund (2008)
- Dohrmann, Widlund (2009, 2010, 2012)

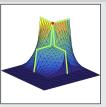
MsFEM (Multiscale Finite Element Method)



- Hou (1997), Efendiev and Hou (2009)
- Buck, Iliev, and Andrä (2013)
- H., Klawonn, Knepper, Rheinbach (2018)

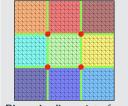
RGDSW (Reduced dimension GDSW)

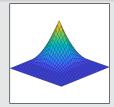




- Dohrmann, Widlund (2017)
- H., Klawonn, Knepper, Rheinbach, Widlund (2022)

Q1 Lagrangian / piecewise bilinear





Piecewise linear interface partition of unity functions and a **structured domain decomposition**.

Parallel Implementation in FROSch

FROSch (Fast and Robust Overlapping Schwarz) Framework in Trilinos

Software

- Object-oriented C++ domain decomposition solver framework with MPI-based distributed memory parallelization
- Part of Trilinos with support for both parallel linear algebra packages
 Epetra and Tpetra
- Node-level parallelization and performance portability on CPU and GPU architectures through Kokkos
- Accessible through unified Trilinos solver interface Stratimikos

Methodology

- Parallel scalable multi-level Schwarz domain decomposition preconditioners
- Algebraic construction based on the parallel distributed system matrix
- Extension-based coarse spaces

Team (active)

- Alexander Heinlein (TU Delft)
- Siva Rajamanickam (Sandia)
- Friederike Röver (TUBAF)

- Axel Klawonn (Uni Cologne)
- Oliver Rheinbach (TUBAF)
- Ichitaro Yamazaki (Sandia)

FROSch (Fast and Robust Overlapping Schwarz) Framework in Trilinos

Software

- Object-oriented C++ domain decomposition solver framework with MPI-based distributed memory parallelization
- Part of Trilinos with support for both parallel linear algebra packages
 Epetra and Tpetra
- Node-level parallelization and performance portability on CPU and GPU architectures through Kokkos
- Accessible through unified Trilinos solver interface Stratimikos

Methodology

- Parallel scalable multi-level Schwarz domain decomposition preconditioners
- Algebraic construction based on the parallel distributed system matrix
- Extension-based coarse spaces

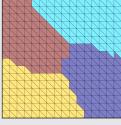
Team (active)

- Alexander Heinlein (TU Delft)
- Siva Rajamanickam (Sandia)
- Friederike Röver (TUBAF)

- Axel Klawonn (Uni Cologne)
- Oliver Rheinbach (TUBAF)
- Ichitaro Yamazaki (Sandia)

Overlapping domain decomposition

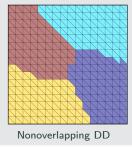
In FROSch, the overlapping subdomains $\Omega'_1,...,\Omega'_N$ are constructed by **recursively adding** layers of elements to the nonoverlapping subdomains; this can be performed based on the sparsity pattern of K.

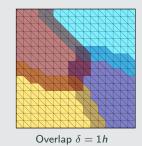


Nonoverlapping DD

Overlapping domain decomposition

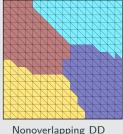
In FROSch, the overlapping subdomains $\Omega'_1,...,\Omega'_N$ are constructed by **recursively adding** layers of elements to the nonoverlapping subdomains; this can be performed based on the sparsity pattern of K.



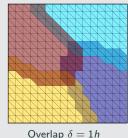


Overlapping domain decomposition

In FROSch, the overlapping subdomains $\Omega'_1, ..., \Omega'_N$ are constructed by **recursively adding** layers of elements to the nonoverlapping subdomains; this can be performed based on the sparsity pattern of K.



Nonoverlapping DD



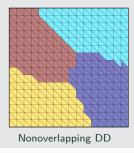
Overlap $\delta = 1h$

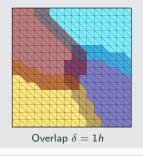


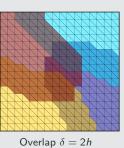
Overlap $\delta = 2h$

Overlapping domain decomposition

In FROSch, the overlapping subdomains $\Omega'_1,...,\Omega'_N$ are constructed by **recursively adding** layers of elements to the nonoverlapping subdomains; this can be performed based on the sparsity pattern of K.







Computation of the overlapping matrices

The overlapping matrices

$$\mathbf{K}_i = \mathbf{R}_i \mathbf{K} \mathbf{R}_i^T$$

can easily be extracted from K since R_i is just a **global-to-local index mapping**.

FROSch preconditioners use algebraic coarse spaces that are constructed in four algorithmic steps:

- 1. Identification of the domain decomposition interface
- 2. Construction of a partition of unity (POU) on the interface
- 3. Computation of a coarse basis on the interface
- 4. Harmonic extensions into the interior to obtain a coarse basis on the whole domain

FROSch preconditioners use algebraic coarse spaces that are constructed in four algorithmic steps:

- 1. Identification of the domain decomposition interface
- Construction of a partition of unity (POU) on the interface
- Computation of a coarse basis on the interface
- 4 Harmonic extensions into the interior to obtain a coarse basis on the whole domain

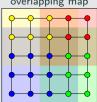
Identification of the domain decomposition interface

If not provided by the user, FROSch will construct a **repeated map** where the interface (Γ) nodes are shared between processes from the parallel distribution of the matrix rows (distributed map).

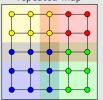
Then, FROSch automatically identifies vertices, edges, and (in 3D) faces, by the multiplicities of the nodes.

distributed map

overlapping map

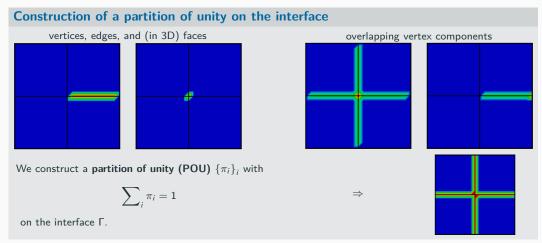


repeated map



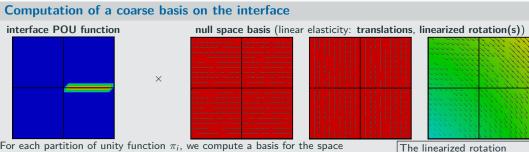
FROSch preconditioners use algebraic coarse spaces that are constructed in four algorithmic steps:

- 1. Identification of the domain decomposition interface
- 2. Construction of a partition of unity (POU) on the interface
- 3. Computation of a coarse basis on the interface
- 4. Harmonic extensions into the interior to obtain a coarse basis on the whole domain



FROSch preconditioners use algebraic coarse spaces that are constructed in four algorithmic steps:

- 1. Identification of the domain decomposition interface
- 2. Construction of a partition of unity (POU) on the interface
- 3. Computation of a coarse basis on the interface
- 4. Harmonic extensions into the interior to obtain a coarse basis on the whole domain



For each partition of unity function π_i , we compute a basis for the space

span
$$\{\pi_i \times z_j\}_i$$
,

where $\{z_i\}_i$ is a null space basis. In case of linear dependencies, we perform a local QR factorization to construct a basis.

This yields an interface coarse basis Φ_{Γ} .

depends on coordinates (geometric information).

FROSch preconditioners use algebraic coarse spaces that are constructed in four algorithmic steps:

- 1. Identification of the domain decomposition interface
- 2. Construction of a partition of unity (POU) on the interface
- 3. Computation of a coarse basis on the interface
- 4. Harmonic extensions into the interior to obtain a coarse basis on the whole domain

edge coarse basis functions vertex component basis functions

For each interface coarse basis function, we compute the interior values Φ_I by computing harmonic / energy-minimizing extensions:

$$\Phi = \begin{bmatrix} -\boldsymbol{\mathcal{K}}_{II}^{-1}\boldsymbol{\mathcal{K}}_{\Gamma I}^{T}\Phi_{\Gamma} \\ \Phi_{\Gamma} \end{bmatrix} = \begin{bmatrix} \Phi_{I} \\ \Phi_{\Gamma} \end{bmatrix}.$$

Algebraic FROSch Preconditioners for Elasticity

$$\begin{split} \operatorname{div} \sigma &= (0, -100, 0)^T & \text{ in } \Omega := [0, 1]^3, \\ \boldsymbol{u} &= 0 & \text{ on } \partial \Omega_D := \{0\} \times [0, 1]^2, \\ \boldsymbol{\sigma} \cdot \boldsymbol{n} &= 0 & \text{ on } \partial \Omega_N := \partial \Omega \setminus \partial \Omega_D \end{split}$$

St. Venant Kirchhoff material, P2 finite elements, H/h = 9; implementation in FEDDLib.

(timings: setup + solve = total)

prec.	type	#cores	64	512	4 096
rotations	#its.	16.3	17.3	19.3	
	rotations	time	40.1 + 5.9 = 46.0	55.0 + 8.5 = 63.5	223.3 + 24.4 = 247.7
GDSW no rotations	#its.	24.5	29.3	32.3	
GDSW	GDSW no rotations	time	32.5 + 8.4 = 40.9	38.4 + 11.8 = 46.7	102.2 + 20.0 = 122.2
	fully algebraic	#its.	57.5	74.8	78.0
	Tully algebraic	time	42.0 + 20.5 = 62.5	46.0 + 29.9 = 75.9	124.8 + 50.5 = 175.3
	rotations	#its.	18.8	21.3	19.8
		time	27.8 + 6.4 = 34.2	31.1 + 8.0 = 39.1	41.3 + 8.9 = 50.2
RCDSW/	RGDSW no rotations	#its.	29.0	32.8	35.5
KGD3W		time	26.2 + 9.4 = 35.6	27.3 + 11.8 = 39.1	31.1 + 14.3 = 45.4
	fully algebraic	#its.	60.7	78.5	83.0
Tully alge	Tully algebraic	time	27.9 + 19.9 = 47.8	28.7 + 27.9 = 56.6	34.1 + 33.1 = 67.2

 $[\]textbf{4 Newton iterations} \text{ (with backtracking) were necessary for convergence (relative residual reduction of } 10^{-8}\text{) for all configurations.}$

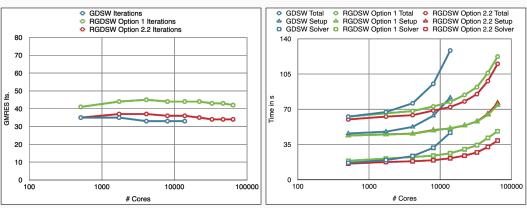
Computations on magnitUDE (University Duisburg-Essen).

Heinlein, Hochmuth, and Klawonn (2021)

Weak Scalability up to 64 k MPI Ranks / 1.7 b Unknowns (3D Poisson; Juqueen)

Model problem: Poisson equation in 3D Coarse solver: MUMPS (direct)

Largest problem: 374 805 361 / 1732 323 601 unknowns

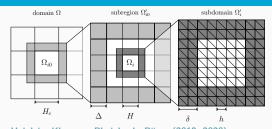


Cf. Heinlein, Klawonn, Rheinbach, Widlund (2017); computations performed on Juqueen, JSC, Germany.

 \Rightarrow Using the reduced dimension coarse space, we can improve parallel scalability.

To extend the scalability even further, we consider multi-level Schwarz preconditioners.

Three-Level GDSW Preconditioner



Heinlein, Klawonn, Rheinbach, Röver (2019, 2020), Heinlein, Rheinbach, Röver (accepted 2022)

Recursive approach

Instead of solving the coarse problem exactly, we apply another GDSW preconditioner on the coarse level \Rightarrow recursive application of the GDSW preconditioner.

Therefore, we introduce coarse subdomains on the coarse level, denoted as subregions.

The three-level GDSW preconditioner is defined as

$$\boldsymbol{M}_{3GDSW}^{-1} = \boldsymbol{\Phi} \left(\boldsymbol{\Phi}_{0} \boldsymbol{K}_{00}^{-1} \boldsymbol{\Phi}_{0}^{T} + \sum_{i=1}^{N_{0}} \boldsymbol{R}_{i0}^{T} \boldsymbol{K}_{i0}^{-1} \boldsymbol{R}_{i0} \right) \boldsymbol{\Phi}^{T} + \sum_{j=1}^{N} \boldsymbol{R}_{j}^{T} \boldsymbol{K}_{j}^{-1} \boldsymbol{R}_{j},$$
coarse levels

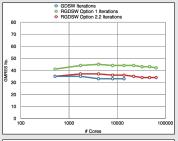
where $K_{00}=\Phi_0^{\mathsf{T}}K_0\Phi_0$ and $K_{i0}=R_{i0}K_0R_{i0}^{\mathsf{T}}$ for $i=1,\cdots,N_0$.

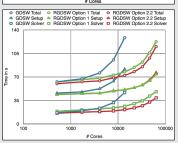
Here, let $R_{i0}: V^0 \to V_i^0 := V^0(\Omega'_{i0})$ for $i = 1, ..., N_0$ be restriction operators on the subregion level and Φ_0 contain to corresponding coarse basis functions. Our approach is related to other three-level DD methods; cf., e.g., three-level BDDC by Tu (2007).

Weak Scalability up to 64 k MPI Ranks / 1.7 b Unknowns (3D Poisson; Juqueen)

GDSW vs RGDSW (reduced dimension)

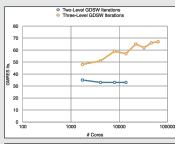
Heinlein, Klawonn, Rheinbach, Widlund (2019).

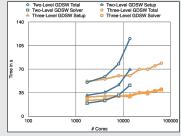




Two-level vs three-level GDSW

Heinlein, Klawonn, Rheinbach, Röver (2019, 2020).





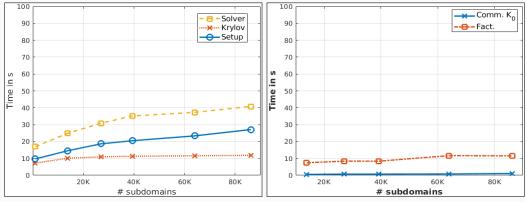
Weak Scalability of the Three-Level RGDSW Preconditioner for Linear Elasticity

In Heinlein, Rheinbach, Röver (accepted 2022), it has been shown that the null space can be transferred algebraically to higher levels.

Model problem: Linear elasticity in 3D

Largest problem: 2040000 unknowns

Coarse solver level 3: MUMPS (direct)



Cf. Heinlein, Rheinbach, Röver (accepted 2022); computations performed on SuperMUC-NG, LRZ, Germany.

Monolithic (R)GDSW Preconditioners for CFD Simulations

Monolithic GDSW preconditioner

Consider the discrete saddle point problem

$$\mathcal{A} \times = \begin{bmatrix} \mathbf{K} & \mathbf{B}^T \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} \mathbf{f} \\ \mathbf{0} \end{bmatrix} = \mathbf{6}.$$

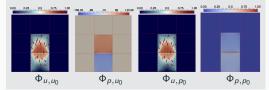
We construct a monolithic GDSW Preconditioner

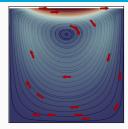
$$m_{\text{GDSW}}^{-1} = \phi \mathcal{A}_0^{-1} \phi^T + \sum_{i=1}^N \mathcal{R}_i^T \mathcal{A}_i^{-1} \mathcal{R}_i,$$

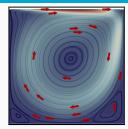
with block matrices $\mathcal{A}_0 = \phi^T \mathcal{A} \phi$, $\mathcal{A}_i = \mathcal{R}_i \mathcal{A} \mathcal{R}_i^T$, and

$$\mathcal{R}_i = \begin{bmatrix} \mathcal{R}_{u,i} & \mathbf{0} \\ \mathbf{0} & \mathcal{R}_{p,i} \end{bmatrix} \quad \text{and} \quad \phi = \begin{bmatrix} \Phi_{u,u_0} & \Phi_{u,p_0} \\ \Phi_{p,u_0} & \Phi_{p,p_0} \end{bmatrix}.$$

Using \mathcal{A} to compute extensions: $\phi_I = -\mathcal{A}_{II}^{-1}\mathcal{A}_{I\Gamma}\phi_{\Gamma}$; cf. Heinlein, Hochmuth, Klawonn (2019, 2020).







Stokes flow

Navier-Stokes flow

Related work:

- Original work on monolithic Schwarz preconditioners: Klawonn and Pavarino (1998, 2000)
- Other publications on monolithic Schwarz preconditioners: e.g., Hwang and Cai (2006),
 Barker and Cai (2010), Wu and Cai (2014), and the presentation Dohrmann (2010) at the Workshop on Adaptive Finite Elements and Domain Decomposition Methods in Milan.

Monolithic (R)GDSW Preconditioners for CFD Simulations

Monolithic GDSW preconditioner

Consider the discrete saddle point problem

$$\mathcal{A} \times = \begin{bmatrix} \mathbf{K} & \mathbf{B}^T \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} \mathbf{f} \\ \mathbf{0} \end{bmatrix} = \mathbf{6}.$$

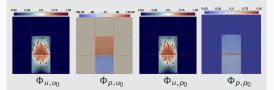
We construct a monolithic GDSW Preconditioner

$$m_{\text{GDSW}}^{-1} = \phi \mathcal{A}_0^{-1} \phi^{\mathsf{T}} + \sum_{i=1}^{N} \mathcal{R}_i^{\mathsf{T}} \mathcal{A}_i^{-1} \mathcal{R}_i,$$

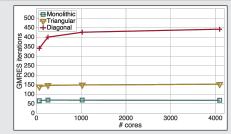
with block matrices $\mathcal{A}_0 = \phi^T \mathcal{A} \phi$, $\mathcal{A}_i = \mathcal{R}_i \mathcal{A} \mathcal{R}_i^T$, and

$$\mathcal{R}_i = \begin{bmatrix} \mathcal{R}_{u,i} & \mathbf{0} \\ \mathbf{0} & \mathcal{R}_{p,i} \end{bmatrix} \quad \text{and} \quad \phi = \begin{bmatrix} \Phi_{u,u_0} & \Phi_{u,p_0} \\ \Phi_{p,u_0} & \Phi_{p,p_0} \end{bmatrix}.$$

Using \mathcal{A} to compute extensions: $\phi_I = -\mathcal{A}_{II}^{-1}\mathcal{A}_{I\Gamma}\phi_{\Gamma}$; cf. Heinlein, Hochmuth, Klawonn (2019, 2020).



Monolithic vs block preconditioners



prec.	MPI	64	256	1024	4 096
	ranks	04			
monolithic	time	154.7 s	170.0 s	175.8 s	188.7 s
	effic.	100 %	91 %	88 %	82 %
triangular	time	309.4 s	329.1 s	359.8 s	396.7 s
	effic.	50 %	47 %	43 %	39 %
diagonal	time	736.7 s	859.4 s	966.9 s	1105.0s
	effic.	21 %	18 %	16 %	14 %

Computations performed on magnitUDE, University Duisburg-Essen.

Monolithic (R)GDSW Preconditioners for CFD Simulations

Monolithic GDSW preconditioner

Consider the discrete saddle point problem

$$\mathcal{A} \times = \begin{bmatrix} \mathbf{K} & \mathbf{B}^T \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} \mathbf{f} \\ \mathbf{0} \end{bmatrix} = \mathbf{6}.$$

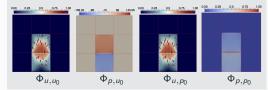
We construct a monolithic GDSW Preconditioner

$$M_{\text{GDSW}}^{-1} = \phi \mathcal{A}_0^{-1} \phi^T + \sum_{i=1}^N \mathcal{R}_i^T \mathcal{A}_i^{-1} \mathcal{R}_i,$$

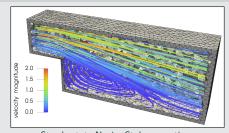
with block matrices $\mathcal{A}_0 = \phi^T \mathcal{A} \phi$, $\mathcal{A}_i = \mathcal{R}_i \mathcal{A} \mathcal{R}_i^T$, and

$$\mathcal{R}_i = \begin{bmatrix} \mathcal{R}_{u,i} & \mathbf{0} \\ \mathbf{0} & \mathcal{R}_{p,i} \end{bmatrix} \quad \text{and} \quad \phi = \begin{bmatrix} \Phi_{u,u_0} & \Phi_{u,p_0} \\ \Phi_{p,u_0} & \Phi_{p,p_0} \end{bmatrix}.$$

Using $\mathcal A$ to compute extensions: $\phi_I = -\mathcal I_{II}^{-1}\mathcal I_{I\Gamma}\phi_\Gamma;$ cf. Heinlein, Hochmuth, Klawonn (2019, 2020).



Monolithic vs SIMPLE preconditioner



Steady-state Navier-Stokes equations

prec.	MPI	243	1 125	15 562	
prec.	ranks	243	1123	13 302	
Monolithic	setup	39.6 s	57.9 s	95.5 s	
RGDSW	solve	57.6 s	69.2 s	74.9 s	
(FROSch)	total	97.2 s	127.7 s	170.4 s	
SIMPLE	setup	39.2 s	38.2 s	68.6 s	
RGDSW (Teko	solve	86.2 s	106.6 s	127.4 s	
& FROSch)	total	125.4 s	144.8 s	196.0 s	

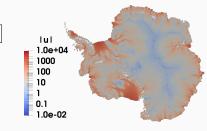
Computations on Piz Daint (CSCS). Implementation in the finite element software FEDDLib.

FROSch Preconditioners for Land Ice Simulations

https://github.com/SNLComputation/Albany

The velocity of the ice sheet in Antarctica and Greenland is modeled by a **first-order-accurate Stokes approximation model**,

$$-\nabla \cdot (2\mu \dot{\epsilon}_1) + \rho g \frac{\partial s}{\partial x} = 0, \quad -\nabla \cdot (2\mu \dot{\epsilon}_2) + \rho g \frac{\partial s}{\partial y} = 0,$$



with a nonlinear viscosity model (Glen's law); cf., e.g., Blatter (1995) and Pattyn (2003).

	Antarctica (velocity)			Greenland (multiphysics vel. & temperature)		
	4 km resolution, 20 layers, 35 m dofs			1-10 km resolution, 20 layers, 69 m dofs		
MPI ranks	avg. its	avg. setup	avg. solve	avg. its	avg. setup	avg. solve
512	41.9 (11)	25.10 s	12.29 s	41.3 (36)	18.78s	4.99 s
1 024	43.3 (11)	9.18 s	5.85 s	53.0 (29)	8.68 s	4.22 s
2 048	41.4 (11)	4.15 s	2.63 s	62.2 (86)	4.47 s	4.23 s
4 096	41.2 (11)	1.66 s	1.49 s	68.9 (40)	2.52 s	2.86 s
8 192	40.2 (11)	1.26 s	1.06 s	-	-	-

Computations on Cori (NERSC).

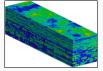
Heinlein, Perego, Rajamanickam (2022)

Adaptive Extension-Based Coarse

Spaces

Highly Heterogeneous Multiscale Problems

Highly heterogeneous multiscale problems appear in most areas of modern science and engineering, e.g., composite materials, porous media, and turbulent transport in high Reynolds number flow.



Micro section of a Groundwater flow dual-phase steel. Courtesy of J. Schröder.

(SPE10); cf. Christie and Blunt (2001).

Composition of arterial walls: taken from O'Connell et al. (2008).

 \rightarrow The solution of such problems requires a **high spatial** and temporal resolution but also poses challenges to the solvers.

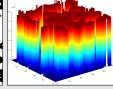
Heterogeneous model problem

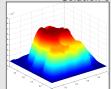
Consider the **heterogeneous diffusion** boundary value problem:

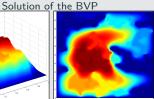
$$-\nabla \cdot (\alpha(x)\nabla u(x)) = f(x) \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial\Omega.$$

Binary coefficient function







Observations for Heterogeneous Problems

 10×10 subdomains with H/h = 10 and overlap 1h

dark blue: $\alpha = 10^8$

light blue: $\alpha = 1$

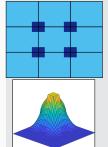
Heterogeneities inside subdomains

Prec.	its.	κ
-	>2000	$7.99 \cdot 10^{8}$
$M_{\mathrm{OS-1}}^{-1}$	64	133.16
$M_{\rm OS-2}^{-1}$	78	139.15

General cases

Prec.	its.	κ
_	>2000	$4.51\cdot 10^8$
$M_{\rm OS-1}^{-1}$	>2 000	$4.51\cdot10^8$
M_{OS-2}^{-1}	586	$5.56\cdot10^5$

Vertex inclusions



Prec.	its.	κ
-	874	$1.35\cdot 10^9$
$M_{\mathrm{OS-1}}^{-1}$	163	$4.06\cdot 10^7$
$M_{\text{OS-2}}^{-1}$	138	$1.07\cdot 10^6$
M_{MsFEM}^{-1}	24	8.05

1 = 1 = 1

Prec.	its.	κ
-	1708	$1.16\cdot 10^9$
$M_{\mathrm{OS-1}}^{-1}$	447	$4.17\cdot 10^7$
$M_{\mathrm{OS-2}}^{-1}$	268	$1.10\cdot 10^6$
M_{MsFEM}^{-1}	117	$4.34\cdot 10^5$

Idea of Adptive Coarse Spaces

Assumption 1: Stable Decomposition

There exists a constant C_0 , s.t. for every $u \in V$, there exists a decomposition $u = \sum_{i=0}^N R_i^T u_i$, $u_i \in V_i$, with $\sum_{i=0}^N a_i(u_i, u_i) \le C_0^2 a(u, u).$

Assumption 2: Strengthened Cauchy– Schwarz Inequality

There exist constants $0 \le \epsilon_{ij} \le 1$, $1 \le i, j \le N$, s.t.

$$\left| a(\boldsymbol{R}_{i}^{T}\boldsymbol{u}_{i}, \boldsymbol{R}_{j}^{T}\boldsymbol{u}_{j}) \right| \leq \epsilon_{ij} \quad \left(a(\boldsymbol{R}_{i}^{T}\boldsymbol{u}_{i}, \boldsymbol{R}_{i}^{T}\boldsymbol{u}_{i}) \right)^{1/2}$$
$$\left(a(\boldsymbol{R}_{j}^{T}\boldsymbol{u}_{j}, \boldsymbol{R}_{j}^{T}\boldsymbol{u}_{j}) \right)^{1/2}$$

for $u_i \in V_i$ and $u_j \in V_j$. (Consider $\mathcal{E} = (\varepsilon_{ij})$ and $\rho(\mathcal{E})$ its spectral radius)

Assumption 3: Local Stability

There exists $\omega <$ 0, such that, for 0 \leq $\emph{\textbf{u}} \neq$ \emph{N} ,

$$a(\mathbf{R}_i^T \mathbf{u}_i, \mathbf{R}_i^T \mathbf{u}_i) \leq \omega a_i(\mathbf{u}_i, \mathbf{u}_i), \quad \mathbf{u}_i \in \text{range}(\tilde{P}_i).$$

Idea of Adptive Coarse Spaces

Assumption 1: Stable Decomposition

There exists a constant C_0 , s.t. for every $u \in V$, there exists a decomposition $u = \sum_{i=0}^N R_i^T u_i$, $u_i \in V_i$, with $\sum_{i=0}^N a_i(u_i, u_i) \le C_0^2 a(u, u).$

Assumption 2: Strengthened Cauchy–Schwarz Inequality

There exist constants $0 \le \epsilon_{ij} \le 1$, $1 \le i, j \le N$, s.t.

$$\begin{aligned} \left| a(\boldsymbol{R}_i^T \boldsymbol{u}_i, \boldsymbol{R}_j^T \boldsymbol{u}_j) \right| &\leq \epsilon_{ij} & \left(a(\boldsymbol{R}_i^T \boldsymbol{u}_i, \boldsymbol{R}_i^T \boldsymbol{u}_i) \right)^{1/2} \\ & \left(a(\boldsymbol{R}_j^T \boldsymbol{u}_j, \boldsymbol{R}_j^T \boldsymbol{u}_j) \right)^{1/2} \end{aligned}$$

for $u_i \in V_i$ and $u_j \in V_j$. (Consider $\mathcal{E} = (\varepsilon_{ij})$ and $\rho(\mathcal{E})$ its spectral radius)

Assumption 3: Local Stability

There exists $\omega < 0$, such that, for $0 \le \boldsymbol{u} \ne N$,

$$a(\mathbf{R}_i^T \mathbf{u}_i, \mathbf{R}_i^T \mathbf{u}_i) \leq \omega a_i(\mathbf{u}_i, \mathbf{u}_i), \quad \mathbf{u}_i \in \mathsf{range}\left(\tilde{P}_i\right).$$

Idea of adaptive coarse spaces

Ensure

$$a(\mathbf{u}_0, \mathbf{u}_0) < C_0^2 a(u, u)$$

by introducing two bilinear forms $c(\cdot,\cdot)$ and $d(\cdot,\cdot)$

$$a(\mathbfit{u}_0, \mathbfit{u}_0) \leq C_1 d(\mathbfit{u}_0, \mathbfit{u}_0)$$
 (high energy)

and

$$c(\mathbf{u}_0, \mathbf{u}_0) \le C_2 a(\mathbf{u}, \mathbf{u}),$$
 (low energy)

where C_1C_2 is independent of the contrast of the coefficient function and $u_0 := l_0u$ is a suitable coarse function.

We enhance the coarse space by all eigenvectors with eigenvalues below a tolerance tol of $d(\mathbf{v},\mathbf{w}) = \lambda \, c(\mathbf{v},\mathbf{w})$

and directly obtain $a(u_0, u_0) \leq C_1 d(u_0, u_0) \leq C_1 \operatorname{tol} c(u_0, u_0)$

$$< C_1 C_2 \text{ tol a}(\mathbf{u}, \mathbf{u})$$

In practice, eigenvalue problem is partitioned into many local eigenvalue problems → parallelization!

Adaptive Coarse Spaces in Domain Decomposition Methods – Literature Overview

This list is not exhaustive:

- FETI & Neumann-Neumann: Bjørstad and Krzyzanowski (2002); Bjørstad, Koster, and Krzyzanowski (2001); Rixen and Spillane (2013); Spillane (2015, 2016)
- BDDC & FETI-DP: Mandel and Sousedík (2007); Sousedík (2010); Sístek, Mandel, and Sousedík (2012); Dohrmann and Pechstein (2013, 2016); Klawonn, Radtke, and Rheinbach (2014, 2015, 2016); Klawonn, Kühn, and Rheinbach (2015, 2016, 2017); Kim and Chung (2015); Kim, Chung, and Wang (2017); Beirão da Veiga, Pavarino, Scacchi, Widlund, and Zampini (2017); Calvo and Widlund (2016);
- Oh, Widlund, Zampini, and Dohrmann (2017); Klawonn, Lanser, and Wasiak (preprint 2021)
 Overlapping Schwarz: Galvis and Efendiev (2010, 2011); Nataf, Xiang, Dolean, and Spillane (2011); Spillane, Dolean, Hauret, Nataf, Pechstein, and Scheichl (2011); Gander, Loneland, and Rahman (preprint 2015); Eikeland, Marcinkowski, and Rahman (preprint 2016); Heinlein, Klawonn, Knepper, Rheinbach (2018); Marcinkowski and Rahman (2018); Al Daas, Grigori, Jolivet, Tournier (2021); Bastian, Scheichl, Seelinger, and Strehlow (2022); Spillane (preprint 2021, preprint 2021); Bootland,
- Approaches for overlapping Schwarz methods in this talk:
 - AGDSW: Heinlein, Klawonn, Knepper, Rheinbach (2019, 2019), Heinlein, Klawonn, Knepper, Rheinbach, and Widlund (2022)
 - Fully Algebraic Coarse Space: Heinlein and Smetana (Preprint: arXiv:2207.05559)

Dolean, Graham, Ma, Scheichl (preprint 2021); Al Daas and Jolivet (preprint 2021)

There is also related work on multigrid methods, such as AMGe by Brezina, Cleary, Falgout, Henson, Jones, Manteuffel, McCormick, Ruge (2000).

AGDSW – An Adaptive GDSW Coarse Space

The adaptive GDSW (AGDSW) coarse space is a related approach, which also depends on a partition of the domain decomposition interface into edges and vertices. We use

- the GDSW vertex basis functions and
- edge functions computed from a generalized edge eigenvalue problem.

As a result, the AGDSW coarse space

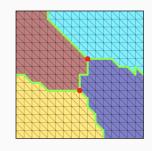
always contains the classical GDSW coarse space.

Cf. Heinlein, Klawonn, Knepper, Rheinbach (2019, 2019).

AGDSW vertex basis function

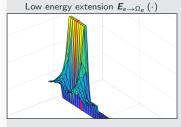
The interior values are then obtained by extending 1 by zero onto the remainder of the interface followed by an energy minimizing extension into the interior:

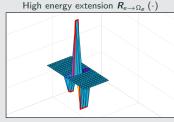
$$\varphi_{v} = \textit{E}_{\Gamma \to \Omega} \left(\textit{R}_{v \to \Gamma} \left(\mathbb{1}_{v} \right) \right)$$

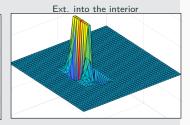


AGDSW - An Adaptive GDSW Coarse Space

AGDSW edge basis functions







First, we solve the following eigenvalue problem (in a-harmonic space) for each edge $e \in \mathcal{E}$:

$$\mathsf{a}_{\Omega_{e}}\left(\mathsf{E}_{e \to \Omega_{e}}\left(\tau_{e,*}\right), \mathsf{E}_{e \to \Omega_{e}}\left(\theta\right)\right) = \lambda_{e,*} \mathsf{a}_{\Omega_{e}}\left(\mathsf{R}_{e \to \Omega_{e}}\left(\tau_{e,*}\right), \mathsf{R}_{e \to \Omega_{e}}\left(\theta\right)\right) \quad \forall \theta \in V_{e}$$

Then, we select eigenfunctions using the threshold TOL and extend the edge values to Ω :

$$\varphi_{e,*} = E_{\Gamma o \Omega} \left(R_{e o \Gamma} \left(au_{e,*} \right) \right)$$

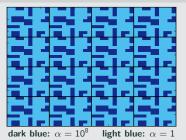
Condition number bound

Using the coarse space $V_{\mathsf{AGDSW}} = \{ \varphi_{\mathsf{v}} \} \cup \{ \varphi_{\mathsf{e}} \}$ in the two-level Schwarz preconditioner, we obtain

$$\kappa\left(\mathbf{M}_{\mathsf{AGDSW}}^{-1}\mathbf{K}\right) \leq C\left(1/TOL\right),$$

where C is independent of H, h, and the contrast of the coefficient function α .

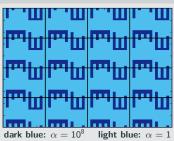
Numerical Results of Adaptive Coarse Spaces (2D)



 4×4 subdomains, H/h = 30, $\delta = 2h$

V_0	tol	it.	κ	$\dim V_0$
V_{MsFEM}	-	199	$7.8\cdot10^5$	9
V _{OS-ACMS}	10^{-2}	23	5.1	69
V_{SHEM}	10^{-3}	20	4.3	69
V_{AGDSW}	10^{-2}	29	7.2	93

Example 2



 4×4 subdomains, H/h = 30, $\delta = 2h$

V ₀	tol	it.	κ	$\operatorname{dim} V_0$
V_{MsFEM}	-	282	$3.8 \cdot 10^7$	9
V _{OS-ACMS}	10^{-2}	41	13.2	33
V _{SHEM}	10^{-3}	29	6.4	93
V_{AGDSW}	10^{-2}	42	16.5	45

SHEM by Gander, Loneland, Rahman (TR 2015), OS-ACMS from H., Klawonn, Knepper, Rheinbach (2018), AGDSW from H., Klawonn, Knepper, Rheinbach (2019)

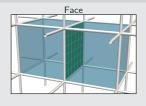
Extensions of the AGDSW Approach

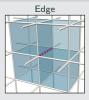
Reducing the coarse space dimension

As in the reduced dimension GDSW (RGDSW) approach, we partition the interface into interface components centered around the vertices. On these interface components, we solve (slightly modified) eigenvalue problems.

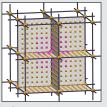
Cf. Heinlein, Klawonn, Knepper, Rheinbach (2021) and Heinlein, Klawonn, Knepper, Rheinbach, Widlund (2022).

Extension to three dimensions



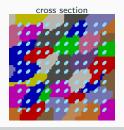


- In AGDSW, we have to solve face and edge eigenvalue problems
- In RAGDSW, only the definition of the interface components changes



RGDSW interface component

Reduced Dimension (Adaptive) GDSW – 3D Numerical Example





Heterogeneous linear elasticity problem

- Ω : cube; Dirichlet boundary condition on $\partial\Omega$.
- Structured tetrahedral mesh; 132 651 nodes (397 953 DOFs); unstructured domain decomposition (METIS); 125 subdomains.
- Poisson ration $\nu = 0.4$.
- Young modulus: elements with $E(T) = 10^6$ in light blue (beams); remainder set to E(T) = 1.
- Right hand side $f \equiv 1$.
- Overlap: two layers of finite elements.

V_0	tol	iter	κ	$\dim V_0$	$\frac{\dim V_0}{\dim V^h}$
GDSW	_	>2000	$3.1 \cdot 10^5$	9 996	2.51%
RGDSW	_	>2000	$3.9 \cdot 10^5$	3 358	0.84%
AGDSW	0.100	71	41.1	14 439	3.63%
AGDSW	0.050	90	59.5	13 945	3.50%
AGDSW	0.010	132	161.1	13 763	3.46%

RAGDSW	0.100	67	34.6	8 249	2.07%
RAGDSW	0.050	88	61.3	7 683	1.93%
RAGDSW	0.010	114	117.4	7 501	1.88%

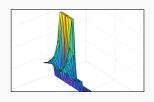
- RAGDSW: 45% reduction of coarse space dimension compared to AGDSW (highlighted line).
- RAGDSW: smaller coarse space dimension compared to GDSW and still robust!

Neumann Matrices and Algebraicity

The low energy property

$$c(u_0,u_0) \leq C_2 a(u,u)$$

of the bilinear form in tge **left hand side of the eigenvalue problems** of AGDSW method is satisfied due to the use of **Neumann boundary conditions**:



$$a_{\Omega_{e}}\left(E_{e\rightarrow\Omega_{e}}\left(\tau_{e,*}\right),E_{e\rightarrow\Omega_{e}}\left(\theta\right)\right)=\lambda_{e,*}a_{\Omega_{e}}\left(R_{e\rightarrow\Omega_{e}}\left(\tau_{e,*}\right),R_{e\rightarrow\Omega_{e}}\left(\theta\right)\right)\quad\forall\theta\in\boldsymbol{V}_{e}^{0}$$

The right hand side matrix just corresponds to the submatrix K_{ee} of K corresponding to the edge e, whereas the Neumann matrices on the left hand sides cannot be extracted from the fully assembled matrix K. \rightarrow not algebraic

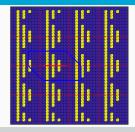
Fully Algebraic Adaptive Coarse Space

We can make use of the a-orthogonal decomposition

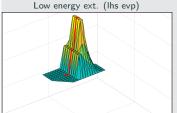
$$V_{\Omega_e} = V_{\Omega_e}^0 \oplus \underbrace{\left\{E_{\partial\Omega_e o \Omega_e}\left(v
ight): v \in V_{\partial\Omega_e}
ight\}}_{=:V_{\Omega_e, ext{harm}}}$$

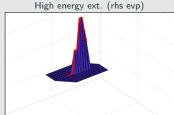
to "split the AGDSW eigenvalue problem" into two:

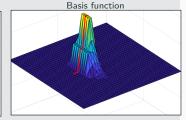
- Dirichlet eigenvalue problem on $V_{\Omega_e}^0$
- Transfer eigenvalue problem on $V_{\Omega_e, harm}$; cf. Smetana, Patera (2016)



Dirichlet eigenvalue problem





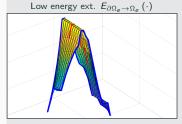


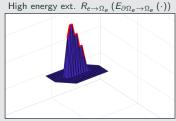
We solve the eigenvalue problem, choose $\lambda_{e,*} < TOL_1$, and extend the basis functions to Ω as before:

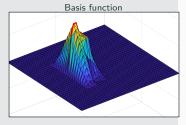
$$\mathsf{a}_{\Omega_{e}}\left(E_{e\to\Omega_{e}}^{\partial\Omega_{e}}\left(\tau_{e,*}\right),E_{e\to\Omega_{e}}^{\partial\Omega_{e}}\left(\theta\right)\right)=\lambda_{e,*}\mathsf{a}_{\Omega_{e}}\left(R_{e\to\Omega_{e}}\left(\tau_{e,*}\right),R_{e\to\Omega_{e}}\left(\theta\right)\right)\quad\forall\theta\in V_{e}^{0}$$

Fully Algebraic Adaptive Coarse Space – Transfer Eigenvalue Problem

Transfer eigenvalue problem







The transfer eigenvalue problem is based on Smetana, Patera (2016). Different from all the eigenvalue problems before, it is solved on the boundary of Ω_e :

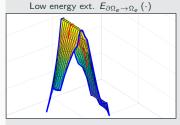
$$\mathsf{a}_{\Omega_{e}}\left(\mathsf{E}_{\partial\Omega_{e}\to\Omega_{e}}\left(\eta_{e,*}\right),\mathsf{E}_{\partial\Omega_{e}\to\Omega_{e}}\left(\theta\right)\right)=\lambda_{e,*}\mathsf{a}_{\Omega_{e}}\left(\mathsf{R}_{e\to\Omega_{e}}\left(\mathsf{E}_{\partial\Omega_{e}\to\Omega_{e}}\left(\tau_{e,*}\right)\right),\mathsf{R}_{e\to\Omega_{e}}\left(\mathsf{E}_{\partial\Omega_{e}\to\Omega_{e}}\left(\theta\right)\right)\right)\quad\forall\theta\in\mathsf{V}_{\partial\Omega_{e}}^{0}$$

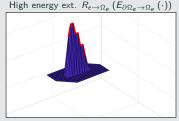
We select all eigenfunctions $\eta_{e,*}$ with $\lambda_{e,*}$ above a second user-chosen threshold TOL_2 . Then, we first compute the edge values $\tau_{e,*} = E_{\partial\Omega_e \to \Omega_e} \left(\eta_{e,*} \right)|_e$ and then extend them into the interior

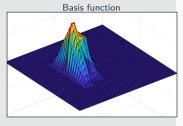
$$arphi_{e,*} = E_{\Gamma o \Omega} \left(R_{e o \Gamma} \left(au_{e,*}
ight)
ight)$$

Fully Algebraic Adaptive Coarse Space - Transfer Eigenvalue Problem

Transfer eigenvalue problem







The transfer eigenvalue problem is based on Smetana, Patera (2016). Different from all the eigenvalue problems before, it is solved on the boundary of Ω_e :

$$\mathsf{a}_{\Omega_{e}}\left(\mathsf{E}_{\partial\Omega_{e}\to\Omega_{e}}\left(\eta_{e,*}\right),\mathsf{E}_{\partial\Omega_{e}\to\Omega_{e}}\left(\theta\right)\right)=\lambda_{e,*}\mathsf{a}_{\Omega_{e}}\left(\mathsf{R}_{e\to\Omega_{e}}\left(\mathsf{E}_{\partial\Omega_{e}\to\Omega_{e}}\left(\tau_{e,*}\right)\right),\mathsf{R}_{e\to\Omega_{e}}\left(\mathsf{E}_{\partial\Omega_{e}\to\Omega_{e}}\left(\theta\right)\right)\right)\quad\forall\theta\in\mathsf{V}^{0}_{\partial\Omega_{e}}$$

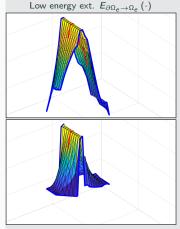
We select all eigenfunctions $\eta_{e,*}$ with $\lambda_{e,*}$ above a second user-chosen threshold TOL_2 . Then, we first compute the edge values $\tau_{e,*} = E_{\partial\Omega_e \to \Omega_e} \left(\eta_{e,*} \right)|_e$ and then extend them into the interior

$$arphi_{e,*} = extstyle{E}_{\Gamma o \Omega} \left(extstyle{R}_{e o \Gamma} \left(au_{e,*}
ight)
ight)$$

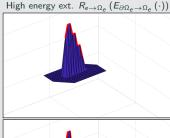
ightarrow Even though no Neumann matrices are needed to compute $E_{\partial\Omega_e\to\Omega_e}\left(\theta\right)$, Neumann matrices are needed to evaluate $a_{\Omega_e}\left(\cdot,\cdot\right)$ for functions with nonnegative trace on $\partial\Omega_e$

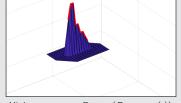
Fully Algebraic Adaptive Coarse Space – Transfer Eigenvalue Problem

Algebraic transfer eigenvalue problem

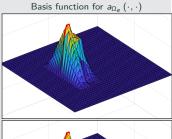


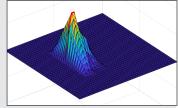
Low energy ext. $E_{\partial\Omega_e \to \Omega_e}$ (·)





High energy ext. $R_{e \to \Omega_e} (E_{\partial \Omega_e \to \Omega_e} (\cdot))$





Basis function for $(\cdot,\cdot)_{l_2(\partial\Omega_e)}$

In order to obtain an algebraic transfer eigenvalue problem, we replace $a_{\Omega_e}\left(\cdot,\cdot\right)$ by $\left(\cdot,\cdot\right)_{\underline{b}\left(\partial\Omega_e\right)}$:

$$\left(E_{\partial\Omega_{e}\to\Omega_{e}}\left(\tau_{e,*}\right),E_{\partial\Omega_{e}\to\Omega_{e}}\left(\theta\right)\right)_{l_{2}\left(\partial\Omega_{e}\right)}=\lambda_{e,*}\mathsf{a}_{\Omega_{e}}\left(R_{e\to\Omega_{e}}\left(E_{\partial\Omega_{e}\to\Omega_{e}}\left(\tau_{e,*}\right)\right),R_{e\to\Omega_{e}}\left(E_{\partial\Omega_{e}\to\Omega_{e}}\left(\theta\right)\right)\right)\quad\forall\theta\in V_{\partial\Omega_{e}}^{0}$$

Fully Algebraic Adaptive Coarse Space - Condition Number Bound

Condition number estimate (non-algebraic variant)

Using the non-algebraic eigenvalue problem (transfer eigenvalue problem with $a_{\Omega_e}(\cdot,\cdot)$), we obtain a condition number of the form:

$$\kappa\left(\mathbf{\textit{M}}_{\mathsf{DIR\&TR}}^{-1}\mathbf{\textit{K}}\right) \leq \textit{C} \max\left(\frac{1}{\textit{TOL}_1}, \textit{TOL}_2\right),$$

where C is independent of H, h, and the contrast of the coefficient function α .

Condition number estimate (algebraic variant)

Using the algebraic eigenvalue problem (transfer eigenvalue problem with $(\cdot,\cdot)_{l_2(\partial\Omega_e)}$), we obtain a condition number of the form:

$$\kappa\left(\mathbf{M}_{\mathsf{DIR\&TR}}^{-1}\mathbf{K}\right) \leq C \max\left\{\frac{1}{TOL_1}, \frac{TOL_2}{\alpha_{\mathsf{min}}}\right\},$$

where C is independent of H, h, and the contrast of the coefficient function α .

Cf. Heinlein and Smetana (Preprint: arXiv:2207.05559).

Fully Algebraic Adaptive Coarse Space – Condition Number Bound

Condition number estimate (non-algebraic variant)

Using the non-algebraic eigenvalue problem (transfer eigenvalue problem with $a_{\Omega_e}(\cdot,\cdot)$), we obtain a condition number of the form:

$$\kappa\left(\mathbf{M}_{\mathsf{DIR\&TR}}^{-1}\mathbf{K}\right) \leq C \max\left(\frac{1}{TOL_1}, TOL_2\right),$$

where C is independent of H, h, and the contrast of the coefficient function α .

Condition number estimate (algebraic variant)

Using the algebraic eigenvalue problem (transfer eigenvalue problem with $(\cdot, \cdot)_{l_2(\partial\Omega_e)}$), we obtain a condition number of the form:

$$\kappa\left(\mathbf{\textit{M}}_{\mathsf{DIR\&TR}}^{-1}\mathbf{\textit{K}}\right) \leq \textit{C} \max\left\{ \frac{1}{\mathit{TOL}_1}, \frac{\mathit{TOL}_2}{lpha_{\mathsf{min}}}
ight\},$$

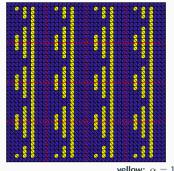
where C is independent of H, h, and the contrast of the coefficient function α .

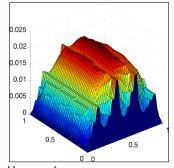
 \rightarrow The α_{\min} arises from the fact that

$$\frac{h}{N_{\partial\Omega_{-}}}\alpha_{min}\|\theta\|_{l_{2}(\partial\Omega_{e})}^{2}\equiv\left|E_{\partial\Omega_{e}\to\Omega_{e}}\left(\theta\right)\right|_{a,\Omega_{e}}^{2}\quad\forall\theta\in V_{\partial\Omega_{e}}.$$

Cf. Heinlein and Smetana (Preprint: arXiv:2207.05559).

Numerical Results - Channel Coefficient Function





yellow: $\alpha = 10^6$

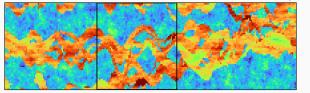
blue: $\alpha = 1$

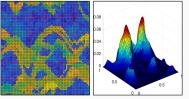
V_0	variant	TOLDIR TOLTR TOLPO	DD	$\dim V_0$	κ	# its.
V_{GDSW}	-		-	33	$2.7\cdot 10^5$	118
V_{AGDSW}	-	$1.0 \cdot 10^{-2}$		57	7.4	24
$V_{DIR\&TR}$	$a_{\Omega_e}\left(\cdot,\cdot ight)$	$1.0 \cdot 10^{-3}$ $1.0 \cdot 10^{1}$ $1.0 \cdot 10^{1}$		57	7.2	24
$V_{DIR\&TR}$	$(\cdot,\cdot)_{b(\partial\Omega_e)}$	$1.0 \cdot 10^{-3}$ $1.0 \cdot 10^{1}$ $1.0 \cdot 10^{1}$	-5	57	7.2	24

 \rightarrow In order to get rid of potential **linear dependencies** between the V_{DIR} and V_{TR} spaces, apply a **proper orthogonal decomposition (POD)** with threshold TOL_{POD} for each edge.

Numerical Results - Model 2, SPE10 Benchmark

Layer 70 from model 2 of the SPE10 benchmark; cf. Christie and Blunt (2001)





V_0	variant	TOL _{DIR} T	OL_{TR}	TOLPOD	$\dim V_0$	κ	# its.
V_{GDSW}	-	-	-	-	85	$2.0 \cdot 10^5$	57
V_{AGDSW}	-	1.0	$\cdot 10^{-2}$		93	19.3	38
$V_{DIR\&TR}$	$a_{\Omega_e}\left(\cdot,\cdot ight)$	$1.0 \cdot 10^{-3}$ 1.0			90	19.4	39
$V_{DIR\&TR}$	$(\cdot,\cdot)_{l_2(\partial\Omega_e)}$	$1.0 \cdot 10^{-3}$ 1.0	· 10 ⁵	$1.0 \cdot 10^{-5}$	147	9.6	31
Original coefficient $lpha_{\sf max} pprox 10^4, lpha_{\sf min} pprox 10^{-2}$ (without thresholding)							
V_{GDSW}	-	-	-	-	85	20.6	42

Preconditioning

Nonlinear Schwarz

Extension-Based Coarse Spaces in

Linear & Nonlinear Preconditioning

Let us consider the nonlinear problem arising from the discretization of a partial differential equation

$$F(u) = 0.$$

We solve the problem using a **Newton-Krylov approach**, i.e., we solve a sequence of linearized problems using a Krylov subspace method:

$$m{DF}\left(m{u}^{(k)}
ight)\Deltam{u}^{(k+1)} = m{F}\left(m{u}^{(k)}
ight).$$

Linear preconditioning

In linear preconditioning, we **improve the convergence speed of the linear solver** by constructing a **linear operator** M^{-1} and solve linear systems

$$\mathbf{M}^{-1}\mathbf{DF}\left(\mathbf{u}^{(k)}\right)\Delta\mathbf{u}^{(k+1)} = \mathbf{M}^{-1}\mathbf{F}(\mathbf{u}^{(k)}).$$

Goal:

$$\bullet \quad \kappa \left(\mathbf{M}^{-1} \mathbf{D} \mathbf{F} \left(\mathbf{u}^{(k)} \right) \right) \approx 1.$$

$$\Rightarrow \quad \mathbf{M}^{-1} \mathbf{D} \mathbf{F} \left(\mathbf{u}^{(k)} \right) \approx \mathbf{I}.$$

Nonlinear preconditioning

In nonlinear preconditioning, we **improve the convergence speed of the nonlinear solver** by constructing a **nonlinear operator** *G* and solve the nonlinear system

$$(\boldsymbol{G} \circ \boldsymbol{F})(\boldsymbol{u}) = 0.$$

Goals:

- **G** ∘ **F** almost linear.
- Additionally: $\kappa \left(\mathbf{D} \left(\mathbf{G} \circ \mathbf{F} \right) \left(\mathbf{u} \right) \right) \approx 1$.

Nonlinear Domain Decomposition Methods

Additive nonlinear left preconditioners (based on Schwarz methods)

ASPIN/ASPEN: Cai, Keyes 2002; Cai, Keyes, Marcinkowski (2002); Hwang, Cai (2005, 2007); Groß, Krause (2010, 2013)

RASPEN: Dolean, Gander, Kherijii, Kwok, Masson (2016)

MSPIN: Keyes, Liu, (2015, 2016, 2021); Liu, Wei, Keyes (2017)

Two-Level nonlinear Schwarz: Heinlein, Lanser (2020); Heinlein, Lanser, Klawonn (accepted 2022)

Nonlinear right preconditioners (based on either FETI or BDDC)

Nonlinear FETI-DP/BDDC: Klawonn, Lanser, Rheinbach (2012, 2013, 2014, 2015, 2016, 2018);

Klawonn, Lanser, Rheinbach, Uran (2017, 2018)

Nonlinear Elimination: Hwang, Lin, Cai (2010); Cai, Li (2011); Wang, Su, Cai (2015); Hwang,

Su, Cai (2016); Gong, Cai (2018); Luo, Shiu, Chen, Cai (2019); Gong, Cai (2019) Nonlinear Neumann-Neumann: Bordeu, Boucard, Gosselet (2009)

Nonlinear FETI-1: Pebrel, Rey, Gosselet (2008); Negrello, Gosselet, Rey (2021)

Other DD work reversing linearization and decomposition: Ganis, Juntunen, Pencheva, Wheeler, Yotov (2014); Ganis, Kumar, Pencheva, Wheeler, Yotov (2014) Early nonlinear DD work: Cai, Dryja (1994); Dryja, Hackbusch (1997)

Nonlinear One-Level Schwarz Preconditioners

ASPEN & ASPIN

Our approach is based on the nonlinear one-level Schwarz methods ASPEN (Additive Schwarz Preconditioned Exact Newton) and ASPIN (Additive Schwarz Preconditioned Inexact Newton) introduced in Cai and Keyes (2002). The nonlinear finite element problem

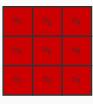
$$\textbf{\textit{F}}(\textbf{\textit{u}}) = 0$$
 with $\textbf{\textit{F}}: V \rightarrow V$

is reformulated to

$$\mathcal{F}(\boldsymbol{u}) = \boldsymbol{G}(\boldsymbol{F}(\boldsymbol{u})) = 0.$$

The nonlinear left-preconditioner G is only given implicitly by solving the nonlinear problem locally on each of the (overlapping) subdomains. Roughly,

$$F_i(\mathbf{u} - \underbrace{C_i(\mathbf{u})}_{\text{local correction}}), i = 1, ..., N.$$



$$F(u)=0$$

$$F_i(\boldsymbol{u}-\boldsymbol{C}_i(\boldsymbol{u}))=0$$

$$\mathcal{F}(\mathbf{u}) = 0$$

Nonlinear One-Level Schwarz Preconditioners

RASPEN (Dolean et al. (2016))

Local corrections $T_i(u)$:

$$m{R}_im{F}(m{u}-m{P}_im{T}_i(m{u}))=0,\;i=1,...,N,\; ext{with}$$
 restrictions $m{R}_i:V o V_i,$ prolongations $m{P}_i,\widetilde{P}_i:V_i o V.$

Nonlinear RASPEN problem:

$$\mathcal{G}_{RA}(\boldsymbol{u}) := \sum_{i=1}^{N} \widetilde{\boldsymbol{P}}_{i} \boldsymbol{T}_{i}(\boldsymbol{u}) = 0$$

We solve $\mathcal{G}_{RA}(u) = 0$ using Newton's method with $u_i = u - P_i T_i(u)$. The Jacobian writes

$$D\mathcal{F}_{RA}(u) = \sum_{i=1}^{N} \underbrace{\widetilde{P}_{i} (R_{i}DF(u_{i})P_{i})^{-1} R_{i} DF(u_{i})}_{\text{local Schwarz operators}}$$

- $\sum_{i=1}^{N} \widetilde{\mathbf{P}}_{i} \mathbf{R}_{i} = \mathbf{I}$
- Reduced communication & (often) better conv.

Results

p-Laplacian model problem

$$-\alpha \Delta_p u = 1 \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial \Omega.$$

with $\alpha \Delta_p u := \operatorname{div}(\alpha |\nabla u|^{p-2} \nabla u)$.

$p=4;\ H/h=16;\ { m overlap}\ \delta=1$						
		noı	ılin.	lin.		
N	solver	outer	inner	GMRES		
14	iv solver	it.	it.	it.		
			(avg.)	(sum)		
9	NK-RAS	18	-	272		
9	RASPEN	5	25.2	89		
25	NK-RAS	19	-	488		
25	RASPEN	6	28.3	172		
49	NK-RAS	20	-	691		
49	RASPEN	6	27.3	232		

⇒ Improved nonlinear convergence, but no scalability in the linear iterations.

Nonlinear Two-Level Schwarz Preconditioners

Two-level (R)ASPEN (Heinlein & Lanser (2020))

Local/Coarse corrections $T_i(u)$:

$$R_i F(u - P_i T_i(u)) = 0, \ i = 0, 1, ..., N,$$
 with restrictions $R_i : V \to V_i,$ prolongations $P_i : V_i \to V.$

Nonlinear two-level ASPEN problem:

$$\mathcal{F}_A(\boldsymbol{u}) := \boldsymbol{P}_0 \boldsymbol{T}_0(\boldsymbol{u}) + \sum_{i=1}^N \boldsymbol{P}_i \boldsymbol{T}_i(\boldsymbol{u}) = 0$$

We solve $\mathcal{F}_A(\mathbf{u}) = 0$ using Newton's method with $\mathbf{u}_i = \mathbf{u} - \mathbf{P}_i T_i(\mathbf{u})$. The Jacobian writes

$$D\mathcal{G}_{RA}(\boldsymbol{u}) = P_0 (\boldsymbol{R}_0 \boldsymbol{DF}(\boldsymbol{u}_0) \boldsymbol{P}_0)^{-1} R_0 DF(\boldsymbol{u}_0) + \sum_{i=1}^{N} P_i (\boldsymbol{R}_i \boldsymbol{DF}(\boldsymbol{u}_i) \boldsymbol{P}_i)^{-1} R_i DF(\boldsymbol{u}_i)$$

local Schwarz operators

Results for *p*-Laplace

1-IvI One-level RASPEN
2-IvI A Two-level RASPEN with additively coupled coarse level
2-IvI M Two-level RASPEN with multi-

2-IvI M Two-level RASPEN with multiplicatively coupled coarse level

	$p=4;H/h=16; ext{overlap}\delta=1$							
			nonlin. li					
N	RASPEN	outer	inner	coarse	GMRES			
I I V	solver	it.	it.	it.	it.			
			(avg.)		(sum)			
	1-lvl	5	25.2	-	89			
9	2-IvI A	6	33.4	27	93			
	2-IvI M	4	17.1	29	52			
	1-lvl	6	27.3	-	232			
49	2-IvI A	6	29.2	28	137			
	2-IvI M	4	12.6	29	80			

⇒ Improved nonlinear convergence and scalability.

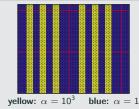
Numerical Results - Nonlinear Schwarz Methods with AGDSW Coarse Spaces

Problem configuration (Heinlein, Klawonn, Lanser (accepted 2022))

p-Laplacian problem with p=4 and a binary coefficient $\alpha\text{:}$ find u such that

$$\begin{array}{rcl} -\alpha \Delta_{\mathsf{p}} u & = & 1 & & \text{in } \Omega, \\ u & = & 0 & & \text{on } \partial \Omega. \end{array}$$

Domain decomposition into 6×6 subdomains with H/h=32 and overlap 1h.



no globalization						
size			outer	local	coarse	GMRES
ср	method	coarse space	it.	it. (avg.)	it.	it. (sum)
145	H1-RASPEN	AGDSW	5	27.0	35	77
25	H1-RASPEN	MsFEM-D	>20	-	-	-
25	H1-RASPEN	MsFEM-E	>20	-	-	-
145	NK-RAS	AGDSW	>20	-	-	-
inexact Newton backtracking (INB); cf. Eisenstat and Walker (1994)						
145	H1-RASPEN	AGDSW	5	24.8	21	77
25	H1-RASPEN	MsFEM-D	15	75.8	62	645
25	H1-RASPEN	MsFEM-E	18	83.9	75	852
145	NK-RAS	AGDSW	13	-	-	207

Numerical Results – Nonlinear Schwarz Methods with AGDSW Coarse Spaces

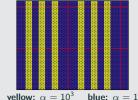
Problem configuration (Heinlein, Klawonn, Lanser (accepted 2022))

p-Laplacian problem with p=4 and a binary coefficient α : find u such that

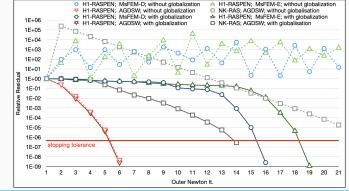
$$-\alpha \Delta_{\rho} u = 1 \qquad \text{in } \Omega,$$

$$u = 0 \qquad \text{on } \partial \Omega.$$

Domain decomposition into 6×6 subdomains with H/h = 32and overlap 1h.



yellow: $\alpha = 10^3$



Thank you for your attention!

Summary

- Extension-based coarse spaces are a powerful framework for robust and scalable
 - algebraic,
 - multilevel,
 - adaptive, and
 - nonlinear

Schwarz domain decomposition methods.

Acknowledgements

- Financial support: DFG (KL2094/3-1, RH122/4-1)
- Computing ressources: Cori (NERSC), JUQUEEN (JSC), magnitUDE (UDE), Piz Daint (CSCS)

Related Talks

Alexander Heinlein

Robust Coarse Spaces for Nonlinear Schwarz Methods

MS16, Wednesday, July 27, 10.45-11.15, HALL 4 (C219)

Jascha Knepper

Low-dimensional adaptive coarse spaces for Schwarz methods and multiscale elliptic problems

MS4, Thursday, July 28, 16.30-17.00, HALL 5 (C221)

Kathrin Smetana

A fully algebraic and robust two-level overlapping Schwarz method based on optimal local approximation spaces

MS04, Thursday, July 28, 11.30–12.00, HALL 5 (C221)

► Olof Widlund

Adaptive overlapping Schwarz algorithms for linear elasticity

MS11, Tuesday, July 26, 10.30–11.00, HALL 6 (C223)