
Parallel Schwarz domain decomposition preconditioning and
an introduction to FROSch

Alexander Heinlein
ECCOMAS Congress 2022, Oslo, Norway, June 5-9, 2022

TU Delft

• Classical Schwarz algorithms

• Extending the ideas to linear preconditioning
Nonlinear Schwarz algorithms (as in David’s talk) are inspired by these linear methods,
however, nonlinear Schwarz methods will not be covered here

• A parallel Schwarz domain decomposition solver package: FROSch (Fast and Robust
Overlapping Schwarz)

• Exercises
You can finish those at home

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 1/48

Part I – Classical Schwarz domain decomposition
methods

1 Literature on Domain Decomposition Methods

2 The Alternating Schwarz Algorithm

3 The Parallel Schwarz Algorithm

4 Comparison of the two Methods

5 Effect of the Size of the Overlap

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 1/48

1 Literature on Domain Decomposition Methods

Alfio Quarteroni and Alberto Valli
Domain decomposition methods for partial differential equations
Oxford University Press, 1999

Barry Smith, Petter Bjorstad, and William Gropp
Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential
Equations
Cambridge University Press, 2004

Andrea Toselli, and Olof Widlund
Domain decomposition methods-algorithms and theory.
Springer Science & Business Media, 2006

Victorita Dolean, Pierre Jolivet, Frédéric Nataf
An Introduction to Domain Decomposition Methods: Algorithms, Theory, and
Parallel Implementation
Society for Industrial and Applied Mathematics, 2016

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 2/48

2 The Alternating Schwarz Algorithm

Historical remarks: The alternating Schwarz method is the earliest domain decomposition
method (DDM), which has been invented by H. A. Schwarz and published in 1870:

• Schwarz used the algorithm to establish the existence of harmonic functions with
prescribed boundary values on regions with nonsmooth boundaries.

• The regions are constructed recursively by forming unions of pairs of regions starting
with “simple” regions for which existence can be established by more elementary means.

• At the core of Schwarz’s work is a proof that this iterative method converges in the
maximum norm at a geometric rate.

Ω

Classical “doorknob” geometry

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 3/48

We solve
−∆u = f in Ω,

u = 0 on ∂Ω.

Ω

Γ2

Γ1
Ω′

1

∂Ω′
1

Ω′
2

∂Ω′
2

We decompose Ω into two overlapping subdomains Ω′
1, Ω′

2 ⊂ Ω with

Ω = Ω′
1 ∪ Ω′

2,

Γ1 = ∂Ω′
1 \ ∂Ω, and

Γ2 := ∂Ω′
2 \ ∂Ω.

The region Ω′
1 ∩ Ω′

2 is denoted as the overlapping region of the overlapping domain
decomposition. This region is essential for the convergence of the following Schwarz algorithms.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 4/48

The alternating Schwarz algorithm:

Given an initial guess u0 which satisfies the boundary condition

u0 = 0 on ∂Ω.

We perform the following fixed point iteration, solving alternatingly two Dirichlet problems:

(D1)

−∆un+1/2 = f in Ω′

1,

un+1/2 = un on ∂Ω′
1

un+1/2 = un on Ω2 := Ω′
2 \ Ω′

1

(D2)

−∆un+1 = f in Ω′

2,

un+1 = un+1/2 on ∂Ω′
2

un+1 = un+1/2 on Ω1 := Ω′
1 \ Ω′

2

We obtain continuous iterates which satisfy the PDE within the overlapping subdomains Ω′
1

and Ω′
2.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 5/48

Let us consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform an alternating Schwarz iteration:

Figure 1: Iterate (left) and error (right) in iteration 0.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 6/48

Let us consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform an alternating Schwarz iteration:

Figure 1: Iterate (left) and error (right) in iteration 1.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 6/48

Let us consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform an alternating Schwarz iteration:

Figure 1: Iterate (left) and error (right) in iteration 2.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 6/48

Let us consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform an alternating Schwarz iteration:

Figure 1: Iterate (left) and error (right) in iteration 3.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 6/48

Let us consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform an alternating Schwarz iteration:

Figure 1: Iterate (left) and error (right) in iteration 4.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 6/48

Let us consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform an alternating Schwarz iteration:

Figure 1: Iterate (left) and error (right) in iteration 5.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 6/48

The alternating Schwarz algorithm is sequential because each local boundary value problem
depends on the solution of the previous Dirichlet problem:

(D1)

−∆un+1/2 = f in Ω′

1,

un+1/2 = un on ∂Ω′
1

un+1/2 = un on Ω2 := Ω′
2 \ Ω′

1

(D2)

−∆un+1 = f in Ω2,

un+1 = un+1/2 on ∂Ω′
2

un+1 = un+1/2 on Ω1 := Ω′
1 \ Ω′

2

Idea: For all red terms, we use the values from the previous iteration. Then, the both
Dirichlet problem can be solved at the same time.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 7/48

The alternating Schwarz algorithm is sequential because each local boundary value problem
depends on the solution of the previous Dirichlet problem:

(D1)

−∆un+1/2 = f in Ω′

1,

un+1/2 = un on ∂Ω′
1

un+1/2 = un on Ω2 := Ω′
2 \ Ω′

1

(D2)

−∆un+1 = f in Ω2,

un+1 = un+1/2 on ∂Ω′
2

un+1 = un+1/2 on Ω1 := Ω′
1 \ Ω′

2

Idea: For all red terms, we use the values from the previous iteration. Then, the both
Dirichlet problem can be solved at the same time.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 7/48

3 The Parallel Schwarz Algorithm

The parallel Schwarz algorithm has been introduced by Lions (1988). Therefore, given an
initial guess u0 =: u0

1 := u0
2 which satisfies the boundary condition u = 0 on ∂Ω. Then, we

perform the following fixed-point iteration, solving, again, two Dirichlet problems:

(D1)
{

−∆un+1
1 = f in Ω′

1,

un+1
1 = un

2 on ∂Ω′
1

(D2)
{

−∆un+1
2 = f in Ω2,

un+1
2 = un

1 on ∂Ω′
2

(3.1)

Since un
1 and un

2 are both computed in the previous iteration, the problems can be solved
independent of each other.

Note: The cost for a single iteration is the same as in the alternating case. However, in
parallel computing, we could solve both problems at the same time.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 8/48

Let us again consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform a parallel Schwarz iteration:

Figure 2: Iterate (left) and error (right) in iteration 0.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 9/48

Let us again consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform a parallel Schwarz iteration:

Figure 2: Iterate (left) and error (right) in iteration 1.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 9/48

Let us again consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform a parallel Schwarz iteration:

Figure 2: Iterate (left) and error (right) in iteration 2.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 9/48

Let us again consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform a parallel Schwarz iteration:

Figure 2: Iterate (left) and error (right) in iteration 3.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 9/48

Let us again consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform a parallel Schwarz iteration:

Figure 2: Iterate (left) and error (right) in iteration 4.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 9/48

Let us again consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform a parallel Schwarz iteration:

Figure 2: Iterate (left) and error (right) in iteration 5.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 9/48

4 Comparison of the two Methods

Figure 3: Error in iterations 1 and 2 of the alternating Schwarz iteration (left) and error in iterations
3 and 4 of the parallel Schwarz iteration (right).

We can see that the alternating Schwarz method convergence twice as fast as the parallel
Schwarz method. However, the solutions on the two subdomains have to computed sequentially.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 10/48

5 Effect of the Size of the Overlap
Let us again consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

Figure 4: Error with an overlap of 0.05 (left) and an overlap of 0.1 (right) in iteration 0 of the
alternating Schwarz iteration.

⇒ A larger overlap leads to faster convergence.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 11/48

5 Effect of the Size of the Overlap
Let us again consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

Figure 4: Error with an overlap of 0.05 (left) and an overlap of 0.1 (right) in iteration 1 of the
alternating Schwarz iteration.

⇒ A larger overlap leads to faster convergence.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 11/48

5 Effect of the Size of the Overlap
Let us again consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

Figure 4: Error with an overlap of 0.05 (left) and an overlap of 0.1 (right) in iteration 2 of the
alternating Schwarz iteration.

⇒ A larger overlap leads to faster convergence.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 11/48

5 Effect of the Size of the Overlap
Let us again consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

Figure 4: Error with an overlap of 0.05 (left) and an overlap of 0.1 (right) in iteration 3 of the
alternating Schwarz iteration.

⇒ A larger overlap leads to faster convergence.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 11/48

5 Effect of the Size of the Overlap
Let us again consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

Figure 4: Error with an overlap of 0.05 (left) and an overlap of 0.1 (right) in iteration 4 of the
alternating Schwarz iteration.

⇒ A larger overlap leads to faster convergence.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 11/48

5 Effect of the Size of the Overlap
Let us again consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

Figure 4: Error with an overlap of 0.05 (left) and an overlap of 0.1 (right) in iteration 5 of the
alternating Schwarz iteration.

⇒ A larger overlap leads to faster convergence.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 11/48

5 Effect of the Size of the Overlap
Let us again consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

Figure 4: Error with an overlap of 0.05 (left) and an overlap of 0.1 (right) in iteration 5 of the
alternating Schwarz iteration.

⇒ A larger overlap leads to faster convergence.
Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 11/48

There are also nonoverlapping domain decomposition methods, based on Dirichlet–Neumann,
Neumann–Neumann (BDD), and Dirichlet–Dirichlet (FETI) methods, but they will not be
covered here.

Let us now apply this concept to construct (parallel) domain decomposition preconditioners.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 12/48

Part II – Schwarz domain decomposition
preconditioners

6 Model Problem

7 Preconditioned Conjugate Gradient (PCG) Method

8 One-Level Overlapping Schwarz Preconditioners

9 Two-Level Overlapping Schwarz Preconditioners

10 A Brief Overview Over the Theoretical Framework

11 Some Comments on Constructing Schwarz Preconditioners

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 12/48

6 Model Problem

Let us consider the simple diffusion model problem (α(x) = 1):

−∆u = f in Ω = [0, 1]2,

u = 0 on ∂Ω.

Discretization using finite elements yields the linear equation system

Ku = f .

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 13/48

Ω

ϕi(xi) = 1

ϕi(xj) = 0

• Due to the local support of the finite element basis functions, the resulting system is sparse.

• However, due to the superlinear complexity and memory cost, the use of direct solvers
becomes infeasible for fine meshes, that is, for the resulting large sparse equation
systems.

→ We will employ iterative solvers:
For our elliptic model problem, the system matrix is symmetric positive definite, such that
we can use the preconditioned gradient descent (PCG) method.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 14/48

7 Preconditioned Conjugate Gradient (PCG) Method

Algorithm 1: Preconditioned conjugate gradient method
Result: Approximate solution of the linear equation system Ax = b
Given: Initial guess x (0) ∈ Rn and tolerance ε > 0
r (0) := b − Ax (0)

p(0) := y (0) := M−1r (0)

while
∥∥r (k)∥∥ ≥ ε

∥∥r (0)∥∥ do
αk := (p(k),r (k))

(Ap(k),p(k))
x (k+1) := x (k) + αky (k)

r (k+1) := r (k) − αkAp(k)

y (k+1) := M−1r (k+1)

βk := (y (k+1),Ap(k))
(p(k),Ap(k))

p(k+1) := r (k+1) − βkp(k)

end

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 15/48

Theorem 1
Let A ∈ Rn×n be symmetric positive definite. Then, for any x (0) ∈ Rn, the (P)CG method
converges to the solution x of the linear system Ax = b in at most n steps.

The PCG methods solves the preconditioned system

M−1Ax = M−1b M−1 inv.⇔ Ax = b,

with the preconditioner M−1. If M−1 ≈ A−1, this system is easier to solve.

Theorem 2
Let A ∈ Rn×n be symmetric positive definite. Then the PCG method converges and the
following error estimate holds:

∥∥∥e(k)
∥∥∥

A
≤ 2

(√
κ (M−1A) − 1√
κ (M−1A) + 1

)k ∥∥∥e(0)
∥∥∥

A
,

where κ
(
M−1A

)
= λmax(M−1/2AM−1/2)

λmin(M−1/2AM−1/2) .

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 16/48

Theorem 1
Let A ∈ Rn×n be symmetric positive definite. Then, for any x (0) ∈ Rn, the (P)CG method
converges to the solution x of the linear system Ax = b in at most n steps.

The PCG methods solves the preconditioned system

M−1Ax = M−1b M−1 inv.⇔ Ax = b,

with the preconditioner M−1. If M−1 ≈ A−1, this system is easier to solve.

Theorem 2
Let A ∈ Rn×n be symmetric positive definite. Then the PCG method converges and the
following error estimate holds:

∥∥∥e(k)
∥∥∥

A
≤ 2

(√
κ (M−1A) − 1√
κ (M−1A) + 1

)k ∥∥∥e(0)
∥∥∥

A
,

where κ
(
M−1A

)
= λmax(M−1/2AM−1/2)

λmin(M−1/2AM−1/2) .

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 16/48

Theorem 1
Let A ∈ Rn×n be symmetric positive definite. Then, for any x (0) ∈ Rn, the (P)CG method
converges to the solution x of the linear system Ax = b in at most n steps.

The PCG methods solves the preconditioned system

M−1Ax = M−1b M−1 inv.⇔ Ax = b,

with the preconditioner M−1. If M−1 ≈ A−1, this system is easier to solve.

Theorem 2
Let A ∈ Rn×n be symmetric positive definite. Then the PCG method converges and the
following error estimate holds:

∥∥∥e(k)
∥∥∥

A
≤ 2

(√
κ (M−1A) − 1√
κ (M−1A) + 1

)k ∥∥∥e(0)
∥∥∥

A
,

where κ
(
M−1A

)
= λmax(M−1/2AM−1/2)

λmin(M−1/2AM−1/2) .

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 16/48

Do we need a preconditioner?

Theorem 3 (Condition number of the mass matrix)
There exists a constant c > 0, independent of h, such that

κ (M) ≤ c hd

(minT∈τh hT)d ,

where M =
(

(φi , φj)L2(Ω)

)
i,j

is the so-called mass matrix and κ (M) the spectral condition
number of M.

Note: The mass matrix M is generally not related to the preconditioner M−1.
Theorem 4 (Condition number of the stiffness matrix)
Let K be the stiffness matrix and M be the mass matrix for the model problem. Then there
exists a constant c > 0, independent of h, such that for the spectral condition number holds:

1. κ
(
M−1K

)
≤ c (minT∈τh hT)−2

2. κ (K) ≤ c (minT∈τh hT)−2
κ (M)

⇒ Convergence of the PCG method will deteriorate when refining the mesh.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 17/48

Do we need a preconditioner?
Theorem 3 (Condition number of the mass matrix)
There exists a constant c > 0, independent of h, such that

κ (M) ≤ c hd

(minT∈τh hT)d ,

where M =
(

(φi , φj)L2(Ω)

)
i,j

is the so-called mass matrix and κ (M) the spectral condition
number of M.

Note: The mass matrix M is generally not related to the preconditioner M−1.

Theorem 4 (Condition number of the stiffness matrix)
Let K be the stiffness matrix and M be the mass matrix for the model problem. Then there
exists a constant c > 0, independent of h, such that for the spectral condition number holds:

1. κ
(
M−1K

)
≤ c (minT∈τh hT)−2

2. κ (K) ≤ c (minT∈τh hT)−2
κ (M)

⇒ Convergence of the PCG method will deteriorate when refining the mesh.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 17/48

Do we need a preconditioner?
Theorem 3 (Condition number of the mass matrix)
There exists a constant c > 0, independent of h, such that

κ (M) ≤ c hd

(minT∈τh hT)d ,

where M =
(

(φi , φj)L2(Ω)

)
i,j

is the so-called mass matrix and κ (M) the spectral condition
number of M.

Note: The mass matrix M is generally not related to the preconditioner M−1.
Theorem 4 (Condition number of the stiffness matrix)
Let K be the stiffness matrix and M be the mass matrix for the model problem. Then there
exists a constant c > 0, independent of h, such that for the spectral condition number holds:

1. κ
(
M−1K

)
≤ c (minT∈τh hT)−2

2. κ (K) ≤ c (minT∈τh hT)−2
κ (M)

⇒ Convergence of the PCG method will deteriorate when refining the mesh.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 17/48

Do we need a preconditioner?
Theorem 3 (Condition number of the mass matrix)
There exists a constant c > 0, independent of h, such that

κ (M) ≤ c hd

(minT∈τh hT)d ,

where M =
(

(φi , φj)L2(Ω)

)
i,j

is the so-called mass matrix and κ (M) the spectral condition
number of M.

Note: The mass matrix M is generally not related to the preconditioner M−1.
Theorem 4 (Condition number of the stiffness matrix)
Let K be the stiffness matrix and M be the mass matrix for the model problem. Then there
exists a constant c > 0, independent of h, such that for the spectral condition number holds:

1. κ
(
M−1K

)
≤ c (minT∈τh hT)−2

2. κ (K) ≤ c (minT∈τh hT)−2
κ (M)

⇒ Convergence of the PCG method will deteriorate when refining the mesh.
Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 17/48

Goal – Numerical & Parallel (Weak) Scalability
Increase the problem size while keeping

degrees of freedom
processors

fixed.

degrees of freedom | # processors

#
ite

ra
tio

ns
|t

im
e

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 18/48

8 One-Level Overlapping Schwarz Preconditioners
Overlapping domain decomposition
As the classical alternating and parallel Schwarz method (overlapping) Schwarz
preconditioners are based on overlapping decompositions of the computational domain

Ω =
N⋃

i=1
Ω′

i .

Nonoverlap. DD Overlap δ = 1h Overlap δ = 2h

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 19/48

Overlap δ = 1h Function on Ω Restriction Ri to Ω′
i

Based on an overlapping domain decomposition, we define an additive one-level Schwarz
preconditioner

M−1
OS-1 =

∑N

i=1
RT

i K−1
i Ri ,

where Ri and RT
i are restriction and prolongation operators corresponding to Ω′

i , and
Ki := RiKRT

i . The Ki correspond to local Dirichlet problems on the overlapping subdomains.

Condition number bound:
κ
(
M−1

OS-1K
)

≤ C
(

1 + 1
Hδ

)
where the constant C is independent of the subdomain size H and the width of the
overlap δ.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 20/48

Overlap δ = 1h Function on Ω Restriction Ri to Ω′
i

Based on an overlapping domain decomposition, we define an additive one-level Schwarz
preconditioner

M−1
OS-1 =

∑N

i=1
RT

i K−1
i Ri ,

where Ri and RT
i are restriction and prolongation operators corresponding to Ω′

i , and
Ki := RiKRT

i . The Ki correspond to local Dirichlet problems on the overlapping subdomains.

Condition number bound:
κ
(
M−1

OS-1K
)

≤ C
(

1 + 1
Hδ

)
where the constant C is independent of the subdomain size H and the width of the
overlap δ.

Numerical scalability

subdomains = 1/Hd

#
ite

ra
tio

ns

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 20/48

Solving a local subdomain problem
Overlap δ = 2h Solution on Ω2 Corresponding residual

→ Zero residual only inside this subdomain but particularly large residual inside the
overlap.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 21/48

Convergence of the PCG method with a one-level Schwarz preconditioner
Initial guess 5 PCG iterations Converged (13 its)

→ Fast convergence of the preconditioned gradient decent (PCG) method (low number of
subdomains).

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 22/48

9 Two-Level Overlapping Schwarz Preconditioners
Coarse triangulation Nodal bilinear basis function

The additive two-level Schwarz preconditioner reads

M−1
OS-2 = ΦK−1

0 ΦT︸ ︷︷ ︸
coarse level – global

+
∑N

i=1
RT

i K−1
i Ri︸ ︷︷ ︸

first level – local

,

where Φ contains the coarse basis functions and K0 := ΦT KΦ.

Condition number bound:
κ
(
M−1

OS-2K
)

≤ C
(

1 + H
δ

)
where the constant C is independent of h, δ, and H; cf., e.g., Toselli, Widlund (2005).

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 23/48

9 Two-Level Overlapping Schwarz Preconditioners
Coarse triangulation Nodal bilinear basis function

The additive two-level Schwarz preconditioner reads

M−1
OS-2 = ΦK−1

0 ΦT︸ ︷︷ ︸
coarse level – global

+
∑N

i=1
RT

i K−1
i Ri︸ ︷︷ ︸

first level – local

,

where Φ contains the coarse basis functions and K0 := ΦT KΦ.

Condition number bound:
κ
(
M−1

OS-2K
)

≤ C
(

1 + H
δ

)
where the constant C is independent of h, δ, and H; cf., e.g., Toselli, Widlund (2005).

Numerical scalability

subdomains = 1/Hd

#
ite

ra
tio

ns

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 23/48

One- Vs Two-Level Schwarz Preconditioners

Diffusion model problem in two dimensions, # subdomains = # cores, H/h = 100

→ We only obtain numerical scalability if a coarse level is used.

→ Convergence is faster for larger overlaps.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 24/48

One- Vs Two-Level Schwarz Preconditioners

Diffusion model problem in two dimensions, # subdomains = # cores, H/h = 100

→ We only obtain numerical scalability if a coarse level is used.

→ Convergence is faster for larger overlaps.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 24/48

One- Vs Two-Level Schwarz Preconditioners

Diffusion model problem in two dimensions, # subdomains = # cores, H/h = 100

→ We only obtain numerical scalability if a coarse level is used.

→ Convergence is faster for larger overlaps.
Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 24/48

10 A Brief Overview Over the Theoretical Framework

In order to establish a condition number bound for κ
(

M−1
ad K

)
based on the abstract Schwarz framework, we

have to verify the following three assumptions:

Assumption 1: Stable Decomposition
There exists a constant C0 such that, for every u ∈ V , there exists a decomposition u =

∑N
i=0 RT

i ui , ui ∈ Vi ,
with ∑N

i=0
ai (ui , ui) ≤ C2

0 a(u, u).

Assumption 2: Strengthened Cauchy-Schwarz Inequality
There exist constants 0 ≤ ϵij ≤ 1, 1 ≤ i , j ≤ N, such that∣∣a(RT

i ui , RT
j uj)

∣∣ ≤ ϵij
(

a(RT
i ui , RT

i ui)
)1/2 (a(RT

j uj , RT
j uj)

)1/2

for ui ∈ Vi and uj ∈ Vj . (Consider E = (εij) and ρ (E) its spectral radius)

Assumption 3: Local Stability
There exists ω < 0, such that

a(RT
i ui , RT

i ui) ≤ ωai (ui , ui), ui ∈ range
(

P̃i
)

, 0 ≤ i ≤ N.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 25/48

General Condition Number Bound
With Assumption 1–3, we have

κ
(

M−1
ad K

)
≤ C2

0 ω (ρ (E) + 1)
for

M−1
ad =

∑N

i=0/1
RT

i K−1
i Ri ;

see, e.g., Toselli, Wildund (2005).

To obtain a condition number bound for a specific
additive Schwarz preconditioner, we have to
bound ω, ρ (E), and C2

0 .

The constants ω and ρ (E) can often easily be
bounded.

Exact Solvers
If we choose the local bilinear forms as

ai (ui , ui) := a(RT
i ui , RT

i ui),
we obtain Ki = Ri KRT

i and ω = 1.

→ For exact exact local and coarse solvers, ω

does not depend on the coefficient.

Coloring Constant

The spectral radius ρ (E) is bounded by the number of
colors Nc of the domain decomposition.

→ Nc depends only on the domain decomposition but not
on the coefficient function.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 26/48

Assumption 3 is typically proved by constructing functions ui ∈ Vi , i = 0, . . . , N, such that

u =
N∑

i=0

RT
i ui and

N∑
i=0

ai (ui , ui) ≤ C2
0 a(u, u)

for any given function u ∈ V . Let us sketch the difference between the one- and two-level preconditioners.

One-level Schwarz preconditioner
During the proof of the condition number, we have to
use an L2-norm using Friedrich’s inequality globally
on Ω:∑N

i=1
∥u∥2

L2(Ωi) = ∥u∥2
L2(Ω) ≤ C |u|2H1(Ω) ,

This results in
N∑

i=1

ai (ui , ui) ≤ C
(

1 + H
δ

)
a (u, u) + C

1
Hδ

a (u, u)

Since H
δ

≤ 1
Hδ

, we obtain∑N

i=1
ai (ui , ui) ≤ C

(
1 + 1

Hδ

)
a (u, u) .

Two-level Schwarz preconditioner
In contrast to the one-level method, we can estimate
the L2-norm locally since we instead have the term
u − u0∑N

i=1
∥u − u0∥2

L2(Ω′
i)

≤
N∑

i=1

CH2 |u|2
H1
(

ωΩi

) .

Different from the one-level preconditioner, we
obtain an H2 term in the final estimate:
N∑

i=1

ai (ui , ui) ≤ C
(

1 + H
δ

)
a (u, u) + C

1
Hδ

H2a (u, u)

≤ C
(

1 + H
δ

)
a (u, u)

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 27/48

11 Some Comments on Constructing Schwarz Preconditioners
Combining Schwarz operators
Given Schwarz operators P0, ..., PN (e.g, for one-level or two-level Schwarz preconditioners),

Pi = RT
i K−1

i Ri K ,

can be combined in several ways, e.g.:

Additive (parallel):
Pad =

N∑
i=0

Pi =
N∑

i=0

RT
i K−1

i Ri K

Multiplicative (sequential):
Pmu = I − (I − PN)(I − PN−1) · · · (I − P0)

Pmu−sym = I − (I − P0) · · · (I − PN−1)(I − PN)(I − PN−1) · · · (I − P0)

Hybrid (parallel & sequential):

Phy−1 = I − (I − P0)

(
I −

N∑
i=0

Pi

)
(I − P0)

Phy−2 = αP0 + I − (I − PN) · · · (I − P1);

cf. Toselli and Widlund (2005).

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 28/48

Restricted Schwarz Preconditioner (Cai and Sarkis (1999))
Replace the prolongation RT

i by R̃T
i ,

M−1
OS-1 =

∑N

i=1
R̃T

i K−1
i Ri ,

where ∑N

i=1
R̃T

i = I.

Therefore, we can just introduce a diagonal scaling matrix D, such that

R̃T
i = DRT

i ,

for example based on a nonoverlapping domain decomposition or an
inverse multiplicity scaling.

This often improves the convergence, however, the preconditioner
becomes unsymmetric.

Ri

R̃T
i

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 29/48

Changing the local and coarse solvers
For solving

K−1
i , i = 0, . . . , N,

we can employ inexact solvers instead of direct solvers, such as

• iterative solvers

• preconditioners

to speedup the computing times. Of course, convergence might slow down a bit a the
same time.

Choose another coarse basis
As it turns out, the choice of a suitable coarse
basis is one of the more important ingredients
for a scalable and robust domain
decomposition solver.

We will discuss this again in a few slides.

16 Examples of FROSch Coarse Spaces

GDSW (Generalized Dryja–Smith–Widlund)

• Dohrmann, Klawonn, Widlund (2008)
• Dohrmann, Widlund (2009, 2010, 2012)

RGDSW (Reduced dimension GDSW)

• Dohrmann, Widlund (2017)
• Heinlein, Klawonn, Knepper, Rheinbach (2022)

MsFEM (Multiscale Finite Element Method)

• Hou (1997), Efendiev and Hou (2009)
• Heinlein, Klawonn, Knepper, Rheinbach (2018)

Q1 Lagrangian / piecewise bilinear

Piecewise linear interface partition of unity functions
and a structured domain decomposition.

Alexander Heinlein (TU Delft) June 8, 2022 35/46

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 30/48

Part III – Schwarz domain decomposition
preconditioners in FROSch

12 Wishlist for a Parallel Schwarz Preconditioning Package

13 FROSch (Fast and Robust Overlapping Schwarz) Framework in Trilinos

14 Algorithmic Framework for FROSch Coarse Spaces

15 Examples of FROSch Coarse Spaces

16 Some Numerical Results

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 30/48

12 Wishlist for a Parallel Schwarz Preconditioning Package
Parallel distributed system

Ax = b

with

A =

• •
• • •

• • •
• • •

• • •
• • •

• • •
• •

 b =

•
•
•
•
•
•
•
•

Wishlist:

• Parallel scalability (includes numerical scalability)

• Usability → algebraicity

• Generality

• Robustness

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 31/48

13 FROSch (Fast and Robust Overlapping Schwarz) Framework in Trilinos

Software
• Object-oriented C++ domain decomposition solver framework with

MPI-based distributed memory parallelization
• Part of Trilinos with support for both parallel linear algebra packages

Epetra and Tpetra
• Node-level parallelization and performance portability on CPU and GPU

architectures through Kokkos
• Accessible through unified Trilinos solver interface Stratimikos

Methoddology
• Parallel scalable multi-level Schwarz domain decomposition preconditioners
• Algebraic construction based on the parallel distributed system matrix
• Extension-based coarse spaces

Team (Active)
• Alexander Heinlein (TU Delft)
• Siva Rajamanickam (Sandia)
• Friederike Röver (TUBAF)

• Axel Klawonn (Uni Cologne)
• Oliver Rheinbach (TUBAF)
• Ichitaro Yamazaki (Sandia)

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 32/48

Trilinos Overview

From the report

M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B.
Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, and A. G. Salinger
An overview of the Trilinos project.
ACM Transactions on Mathematical Software (TOMS) 31.3 (2005): 397-423.

“The Trilinos Project is an effort to facilitate the design, development, integration, and
ongoing support of mathematical software libraries within an object-oriented framework for the
solution of large-scale, complex multiphysics engineering and scientific problems.”

Trilinos is a collection of more than 50 software packages:
• Each Trilinos package is a self-contained, independent piece of software with its own set

of requirements, its own development team1 and group of users.
• However, there are often certain dependencies between different Trilinos packages. Some

Trilinos packages also depend on third party libraries.
• Generally, a certain degree of interoperability of the different Trilinos packages is

provided.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 33/48

Why using Trilinos?

Wide range of functionality
Data services Vectors, matrices, graphs and similar data containers, and related operations
Linear and eigen-
problem solvers

For large, distributed systems of equations

Nonlinear solvers
and analysis tools

Includes basic nonlinear approaches, continuation methods and similar

Discretizations Tools for the discretization of integral and differential equations
Framework Tools for building, testing, and integrating Trilinos capabilities

Portable parallelism
Trilinos is targeted for all major parallel architectures, including
• distributed-memory using the Message Passing Interface (MPI),
• multicore using a variety of common approaches,
• accelerators using common and emerging approaches, and
• vectorization.

“ . . . as long as a given algorithm and problem size contain enough latent parallelism, the same Trilinos
source code can be compiled and execution on any reasonable combination of distributed,
multicore, accelerator and vectorizing computing devices.” — Trilinos Website

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 34/48

https://trilinos.github.io

Trilinos Packages

MPI (Epetra-based) MPI+X (Tpetra-based)
Linear algebra Epetra & EpetraExt Tpetra
Direct sparse solvers Amesos Amesos2
Iterative solvers AztecOO Belos
Preconditioners:
• One-level (incomplete) factorization IFPACK Ifpack2
• Multigrid ML MueLu
• Domain decomposition ShyLU
Eigenproblem solvers Anasazi
Nonlinear solvers NOX & LOCA
Partitioning Isorropia & Zoltan Zoltan2
Example problems Galeri
Performance portability Kokkos & KokkosKernels
Interoperability Stratimikos & Thyra
Tools Teuchos
...

...
...

More details on https://trilinos.github.io.
Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 35/48

https://trilinos.github.io

Algorithmic Framework for FROSch Overlapping Domain Decompositions
Overlapping domain decomposition
In FROSch, the overlapping subdomains Ω′

1, ..., Ω′
N are constructed by recursively adding

layers of elements to the nonoverlapping subdomains; this can be performed based on the
sparsity pattern of K .

Nonoverlapping DD

Overlap δ = 1h Overlap δ = 2h

Computation of the overlapping matrices
The overlapping matrices

Ki = RiKRT
i

can easily be extracted from K since Ri is just a global-to-local index mapping.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 36/48

Algorithmic Framework for FROSch Overlapping Domain Decompositions
Overlapping domain decomposition
In FROSch, the overlapping subdomains Ω′

1, ..., Ω′
N are constructed by recursively adding

layers of elements to the nonoverlapping subdomains; this can be performed based on the
sparsity pattern of K .

Nonoverlapping DD Overlap δ = 1h

Overlap δ = 2h

Computation of the overlapping matrices
The overlapping matrices

Ki = RiKRT
i

can easily be extracted from K since Ri is just a global-to-local index mapping.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 36/48

Algorithmic Framework for FROSch Overlapping Domain Decompositions
Overlapping domain decomposition
In FROSch, the overlapping subdomains Ω′

1, ..., Ω′
N are constructed by recursively adding

layers of elements to the nonoverlapping subdomains; this can be performed based on the
sparsity pattern of K .

Nonoverlapping DD Overlap δ = 1h Overlap δ = 2h

Computation of the overlapping matrices
The overlapping matrices

Ki = RiKRT
i

can easily be extracted from K since Ri is just a global-to-local index mapping.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 36/48

Algorithmic Framework for FROSch Overlapping Domain Decompositions
Overlapping domain decomposition
In FROSch, the overlapping subdomains Ω′

1, ..., Ω′
N are constructed by recursively adding

layers of elements to the nonoverlapping subdomains; this can be performed based on the
sparsity pattern of K .

Nonoverlapping DD Overlap δ = 1h Overlap δ = 2h

Computation of the overlapping matrices
The overlapping matrices

Ki = RiKRT
i

can easily be extracted from K since Ri is just a global-to-local index mapping.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 36/48

14 Algorithmic Framework for FROSch Coarse Spaces

FROSch preconditioners use algebraic coarse spaces that are constructed in four algorithmic steps:

1. Identification of the domain decomposition interface
2. Construction of a partition of unity (POU) on the interface
3. Computation of a coarse basis on the interface
4. Harmonic extensions into the interior to obtain a coarse basis on the whole domain

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 37/48

14 Algorithmic Framework for FROSch Coarse Spaces

FROSch preconditioners use algebraic coarse spaces that are constructed in four algorithmic steps:
1. Identification of the domain decomposition interface

2. Construction of a partition of unity (POU) on the interface
3. Computation of a coarse basis on the interface
4. Harmonic extensions into the interior to obtain a coarse basis on the whole domain

Identification of the domain decomposition interface
If not provided by the user, FROSch will construct a
repeated map where the interface (Γ) nodes are
shared between processes from the parallel distribution
of the matrix rows (distributed map).
Then, FROSch automatically identifies vertices, edges,
and (in 3D) faces, by the multiplicities of the nodes.

A =

• •
• • •

• • •
• • •

• • •
• • •

• • •
• •

 b =

•
•
•
•
•
•
•
•

distributed map overlapping map repeated map

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 37/48

14 Algorithmic Framework for FROSch Coarse Spaces

FROSch preconditioners use algebraic coarse spaces that are constructed in four algorithmic steps:
1. Identification of the domain decomposition interface
2. Construction of a partition of unity (POU) on the interface

3. Computation of a coarse basis on the interface
4. Harmonic extensions into the interior to obtain a coarse basis on the whole domain

Construction of a partition of unity on the interface
vertices, edges, and (in 3D) faces overlapping vertex components

We construct a partition of unity (POU) {πi }i with∑
i
πi = 1

on the interface Γ.

⇒

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 37/48

14 Algorithmic Framework for FROSch Coarse Spaces

FROSch preconditioners use algebraic coarse spaces that are constructed in four algorithmic steps:
1. Identification of the domain decomposition interface
2. Construction of a partition of unity (POU) on the interface
3. Computation of a coarse basis on the interface

4. Harmonic extensions into the interior to obtain a coarse basis on the whole domain

Computation of a coarse basis on the interface
interface POU function

×

null space basis (linear elasticity: translations, linearized rotation(s))

For each partition of unity function πi , we compute a basis for the space

span {πi × zj }j ,

where {zj }j is a null space basis. In case of linear dependencies, we perform a
local QR factorization to construct a basis.
This yields an interface coarse basis ΦΓ.

The linearized rotation[
y

−x

]
depends on coordinates

(geometric information).

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 37/48

14 Algorithmic Framework for FROSch Coarse Spaces

FROSch preconditioners use algebraic coarse spaces that are constructed in four algorithmic steps:
1. Identification of the domain decomposition interface
2. Construction of a partition of unity (POU) on the interface
3. Computation of a coarse basis on the interface
4. Harmonic extensions into the interior to obtain a coarse basis on the whole domain

Harmonic extensions into the interior
edge coarse basis functions vertex component basis functions

For each interface coarse basis function, we compute the interior values ΦI by computing harmonic /
energy-minimizing extensions:

Φ =
[

−K−1
II KT

ΓI ΦΓ
ΦΓ

]
=
[

ΦI
ΦΓ

]
.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 37/48

15 Examples of FROSch Coarse Spaces

GDSW (Generalized Dryja–Smith–Widlund)

• Dohrmann, Klawonn, Widlund (2008)
• Dohrmann, Widlund (2009, 2010, 2012)

RGDSW (Reduced dimension GDSW)

• Dohrmann, Widlund (2017)
• Heinlein, Klawonn, Knepper, Rheinbach (2022)

MsFEM (Multiscale Finite Element Method)

• Hou (1997), Efendiev and Hou (2009)
• Heinlein, Klawonn, Knepper, Rheinbach (2018)

Q1 Lagrangian / piecewise bilinear

Piecewise linear interface partition of unity functions
and a structured domain decomposition.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 38/48

Weak Scalability up to 64 k MPI Ranks / 1.7 b Unknowns (3D Poisson; Juqueen)
GDSW vs RGDSW (reduced dimension)
Heinlein, Klawonn, Rheinbach, Widlund (2019).

Two-level vs three-level GDSW
Heinlein, Klawonn, Rheinbach, Röver (2019, 2020).

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 39/48

Weak Scalability up to 64 k MPI Ranks / 1.7 b Unknowns (3D Poisson; Juqueen)
GDSW vs RGDSW (reduced dimension)
Heinlein, Klawonn, Rheinbach, Widlund (2019).

Two-level vs three-level GDSW
Heinlein, Klawonn, Rheinbach, Röver (2019, 2020).

subdomains (=#cores) 1 728 4 096 8 000 13 824 21 952 32 768 46 656 64 000

GDSW Size of K0 10 439 25 695 51 319 89 999 - - - -
Size of K00 98 279 604 1 115 1 854 2 863 4 184 5 589

RGDSW Size of K0 1 331 3 375 6 859 12 167 19 683 29 791 42 875 59 319
Size of K00 8 27 64 125 216 343 512 729

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 39/48

Algebraic FROSch Preconditioners for Elasticity
div σ = (0, −100, 0)T in Ω := [0, 1]3,

u = 0 on ∂ΩD := {0} × [0, 1]2,

σ · n = 0 on ∂ΩN := ∂Ω \ ∂ΩD

St. Venant Kirchhoff material, P2 finite elements, H/h = 9; implementation in FEDDLib. (timings: setup + solve = total)
prec. type #cores 64 512 4 096

GDSW

rotations #its. 16.3 17.3 19.3
time 40.1 + 5.9 = 46.0 55.0 + 8.5 = 63.5 223.3 + 24.4 = 247.7

no rotations #its. 24.5 29.3 32.3
time 32.5 + 8.4 = 40.9 38.4 + 11.8 = 46.7 102.2 + 20.0 = 122.2

fully algebraic #its. 57.5 74.8 78.0
time 42.0 + 20.5 = 62.5 46.0 + 29.9 = 75.9 124.8 + 50.5 = 175.3

RGDSW

rotations #its. 18.8 21.3 19.8
time 27.8 + 6.4 = 34.2 31.1 + 8.0 = 39.1 41.3 + 8.9 = 50.2

no rotations #its. 29.0 32.8 35.5
time 26.2 + 9.4 = 35.6 27.3 + 11.8 = 39.1 31.1 + 14.3 = 45.4

fully algebraic #its. 60.7 78.5 83.0
time 27.9 + 19.9 = 47.8 28.7 + 27.9 = 56.6 34.1 + 33.1 = 67.2

4 Newton iterations (with backtracking) were necessary for convergence (relative residual reduction of 10−8) for all configurations.

Computations on magnitUDE (University Duisburg-Essen). Heinlein, Hochmuth, and Klawonn (2021)

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 40/48

Monolithic (R)GDSW Preconditioners for CFD Simulations

Monolithic GDSW preconditioner
Consider the discrete saddle point problem

Ax =
[

A BT

B 0

][
u
p

]
=
[

f
0

]
= b.

We construct a monolithic GDSW preconditioner
M−1

GDSW = ϕA−1
0 ϕT +

∑N

i=1
RT

i A−1
i Ri ,

with block matrices A0 = ϕTAϕ, Ai = RiART
i , and

Ri =
[
Ru,i 0

0 Rp,i

]
and ϕ =

[
Φu,u0 Φu,p0
Φp,u0 Φp,p0

]
.

Using A to compute extensions: ϕI = −A−1
II AIΓϕΓ;

cf. Heinlein, Hochmuth, Klawonn (2019, 2020).

Φu,u0 Φp,u0 Φu,p0 Φp,p0

Stokes flow Navier–Stokes flow

Related work:
• Original work on monolithic Schwarz

preconditioners: Klawonn and Pavarino (1998,
2000)

• Other publications on monolithic Schwarz
preconditioners: e.g., Hwang and Cai (2006),
Barker and Cai (2010), Wu and Cai (2014), and
the presentation Dohrmann (2010) at the
Workshop on Adaptive Finite Elements and
Domain Decomposition Methods in Milan.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 41/48

Monolithic (R)GDSW Preconditioners for CFD Simulations

Monolithic GDSW preconditioner
Consider the discrete saddle point problem

Ax =
[

A BT

B 0

][
u
p

]
=
[

f
0

]
= b.

We construct a monolithic GDSW preconditioner
M−1

GDSW = ϕA−1
0 ϕT +

∑N

i=1
RT

i A−1
i Ri ,

with block matrices A0 = ϕTAϕ, Ai = RiART
i , and

Ri =
[
Ru,i 0

0 Rp,i

]
and ϕ =

[
Φu,u0 Φu,p0
Φp,u0 Φp,p0

]
.

Using A to compute extensions: ϕI = −A−1
II AIΓϕΓ;

cf. Heinlein, Hochmuth, Klawonn (2019, 2020).

Φu,u0 Φp,u0 Φu,p0 Φp,p0

Monolithic vs Block Preconditioners

prec. MPI
ranks 64 256 1 024 4 096

monolithic time 154.7s 170.0s 175.8s 188.7s
effic. 100% 91% 88% 82%

triangular time 309.4s 329.1s 359.8s 396.7s
effic. 50% 47% 43% 39%

diagonal time 736.7s 859.4s 966.9s 1105.0s
effic. 21% 18% 16% 14%

Computations performed on magnitUDE, University
Duisburg-Essen.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 41/48

Monolithic (R)GDSW Preconditioners for CFD Simulations

Monolithic GDSW preconditioner
Consider the discrete saddle point problem

Ax =
[

A BT

B 0

][
u
p

]
=
[

f
0

]
= b.

We construct a monolithic GDSW preconditioner
M−1

GDSW = ϕA−1
0 ϕT +

∑N

i=1
RT

i A−1
i Ri ,

with block matrices A0 = ϕTAϕ, Ai = RiART
i , and

Ri =
[
Ru,i 0

0 Rp,i

]
and ϕ =

[
Φu,u0 Φu,p0
Φp,u0 Φp,p0

]
.

Using A to compute extensions: ϕI = −A−1
II AIΓϕΓ;

cf. Heinlein, Hochmuth, Klawonn (2019, 2020).

Φu,u0 Φp,u0 Φu,p0 Φp,p0

Monolithic vs SIMPLE

Steady-state Navier-Stokes equations

prec. MPI
ranks 243 1 125 15 562

Monolithic
RGDSW
(FROSch)

setup 39.6 s 57.9 s 95.5 s
solve 57.6 s 69.2 s 74.9 s
total 97.2 s 127.7 s 170.4 s

SIMPLE
RGDSW (Teko
& FROSch)

setup 39.2 s 38.2 s 68.6 s
solve 86.2 s 106.6 s 127.4 s
total 125.4 s 144.8 s 196.0 s

Computations on Piz Daint (CSCS). Implementation in the
finite element software FEDDLib.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 41/48

FROSch Preconditioners for Land Ice Simulations

https://github.com/SNLComputation/Albany

The velocity of the ice sheet in Antarctica and Greenland is modeled
by a first-order-accurate Stokes approximation model,

−∇ · (2µϵ̇1) + ρg ∂s
∂x = 0, −∇ · (2µϵ̇2) + ρg ∂s

∂y = 0,

with a nonlinear viscosity model (Glen’s law); cf., e.g., Blatter (1995) and Pattyn (2003).

Antarctica (velocity) Greenland (multiphysics vel. & temperature)
4 km resolution, 20 layers, 35 m dofs 1-10 km resolution, 20 layers, 69 m dofs

MPI ranks avg. its avg. setup avg. solve avg. its avg. setup avg. solve
512 41.9 (11) 25.10 s 12.29 s 41.3 (36) 18.78 s 4.99 s
1 024 43.3 (11) 9.18 s 5.85 s 53.0 (29) 8.68 s 4.22 s
2 048 41.4 (11) 4.15 s 2.63 s 62.2 (86) 4.47 s 4.23 s
4 096 41.2 (11) 1.66 s 1.49 s 68.9 (40) 2.52 s 2.86 s
8 192 40.2 (11) 1.26 s 1.06 s - - -

Computations on Cori (NERSC). Heinlein, Perego, Rajamanickam (2022)

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 42/48

https://github.com/SNLComputation/Albany

Inexact Subdomain Solvers in FROSch
3D Laplacian; 512 MPI ranks = 512 (= 8 × 8 × 8) subdomains; H/δ = 10; RGDSW coarse space.

subdomain solver
direct ILU(k) symm. Gauß–Seidel Chebyshev polyn.
solver k = 2 k = 3 5 sweeps 10 sweeps p = 6 p = 8

H/h = 20,
≈ 14 k dofs
per rank

iter 26 33 30 31 28 34 31
setup time 1.89 s 0.97 s 1.01 s 0.89 s 0.91 s 0.73 s 0.71 s
apply time 0.39 s 0.27 s 0.31 s 0.31 s 0.35 s 0.30 s 0.30 s
prec. time 2.28 s 1.24 s 1.32 s 1.20 s 1.26 s 1.03 s 1.01 s

H/h = 40,
≈ 105 k dofs
per rank

iter 30 55 46 52 41 59 51
setup time 12.09 s 6.14 s 6.26 s 5.74 s 5.89 s 5.55 s 5.64 s
apply time 4.21 s 1.84 s 1.96 s 2.66 s 3.28 s 2.52 s 2.47 s
prec. time 16.30 s 7.98 s 8.22 s 8.40 s 9.18 s 8.16 s 8.11 s

H/h = 60,
≈ 350 k dofs
per rank

iter OOM 81 64 76 56 88 74
setup time - 47.29 s 47.87 s 45.14 s 45.08 s 45.44 s 45.49 s
apply time - 10.79 s 9.98 s 13.00 s 16.16 s 11.95 s 12.09 s
prec. time - 58.08 s 57.85 s 58.15 s 61.25 s 57.39 s 57.59 s

Intel MKL PARDISO; ILU / symmetric Gauß–Seidel / Chebyshev polynomials from Ifpack2.

Parallel computations on dual-socket Intel Xeon Platinum machine at Sandia National Laboratories (Blake).

⇒ The use of inexact subdomain solvers may significantly improve the time to solution, in particular, for large
subdomain problems.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 43/48

Inexact Subdomain Solvers in FROSch
3D Laplacian; 512 MPI ranks = 512 (= 8 × 8 × 8) subdomains; H/δ = 10; RGDSW coarse space.

subdomain solver
direct ILU(k) symm. Gauß–Seidel Chebyshev polyn.
solver k = 2 k = 3 5 sweeps 10 sweeps p = 6 p = 8

H/h = 20,
≈ 14 k dofs
per rank

iter 26 33 30 31 28 34 31
setup time 1.89 s 0.97 s 1.01 s 0.89 s 0.91 s 0.73 s 0.71 s
apply time 0.39 s 0.27 s 0.31 s 0.31 s 0.35 s 0.30 s 0.30 s
prec. time 2.28 s 1.24 s 1.32 s 1.20 s 1.26 s 1.03 s 1.01 s

H/h = 40,
≈ 105 k dofs
per rank

iter 30 55 46 52 41 59 51
setup time 12.09 s 6.14 s 6.26 s 5.74 s 5.89 s 5.55 s 5.64 s
apply time 4.21 s 1.84 s 1.96 s 2.66 s 3.28 s 2.52 s 2.47 s
prec. time 16.30 s 7.98 s 8.22 s 8.40 s 9.18 s 8.16 s 8.11 s

H/h = 60,
≈ 350 k dofs
per rank

iter OOM 81 64 76 56 88 74
setup time - 47.29 s 47.87 s 45.14 s 45.08 s 45.44 s 45.49 s
apply time - 10.79 s 9.98 s 13.00 s 16.16 s 11.95 s 12.09 s
prec. time - 58.08 s 57.85 s 58.15 s 61.25 s 57.39 s 57.59 s

Intel MKL PARDISO; ILU / symmetric Gauß–Seidel / Chebyshev polynomials from Ifpack2.

Parallel computations on dual-socket Intel Xeon Platinum machine at Sandia National Laboratories (Blake).

⇒ The use of inexact subdomain solvers may significantly improve the time to solution, in particular, for large
subdomain problems.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 43/48

Inexact Extension Solvers in FROSch

3D Laplacian; 512 MPI ranks = 512 (= 8 × 8 × 8) subdomains; H/δ = 10; RGDSW coarse space.

extension solver direct
solver

preconditioned GMRES (rel. tol. = 10−4)
(10 Gauss–Seidel sweeps for ILU(k) symm. Gauß–Seidel Chebyshev polyn.

the subdomain solver) k = 2 k = 3 5 sweeps 10 sweeps p = 6 p = 8

H/h = 20,
≈ 14 k dofs
per rank

iter 28 28 28 28 28 28 28
setup time 0.89 s 0.93 s 0.89 s 0.78 s 0.83 s 0.79 s 0.84 s
apply time 0.35 s 0.35 s 0.34 s 0.36 s 0.34 s 0.35 s 0.34 s
prec. time 1.23 s 1.28 s 1.23 s 1.14 s 1.17 s 1.14 s 1.18 s

H/h = 40,
≈ 105 k dofs
per rank

iter 41 41 41 41 41 41 41
setup time 5.72 s 4.16 s 4.61 s 4.26 s 4.64 s 4.27 s 4.33 s
apply time 3.33 s 3.33 s 3.30 s 3.33 s 3.30 s 3.28 s 3.29 s
prec. time 9.04 s 7.49 s 7.92 s 7.59 s 7.95 s 7.55 s 7.62 s

H/h = 60,
≈ 350 k dofs
per rank

iter 56 56 56 56 56 56 56
setup time 45.16 s 17.75 s 18.16 s 17.98 s 19.34 s 17.93 s 18.04 s
apply time 15.83 s 18.04 s 17.08 s 16.26 s 15.81 s 16.19 s 16.44 s
prec. time 60.99 s 35.79 s 35.25 s 34.24 s 35.15 s 34.12 s 34.49 s

Intel MKL PARDISO; ILU / symmetric Gauß–Seidel / Chebyshev polynomials from Ifpack2.

Parallel computations on dual-socket Intel Xeon Platinum machine at Sandia National Laboratories (Blake).

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 44/48

Inexact Extension Solvers in FROSch

3D Laplacian; 512 MPI ranks = 512 (= 8 × 8 × 8) subdomains; H/δ = 10; RGDSW coarse space.

extension solver direct
solver

preconditioned GMRES (rel. tol. = 10−4)
(10 Gauss–Seidel sweeps for ILU(k) symm. Gauß–Seidel Chebyshev polyn.

the subdomain solver) k = 2 k = 3 5 sweeps 10 sweeps p = 6 p = 8

H/h = 20,
≈ 14 k dofs
per rank

iter 28 28 28 28 28 28 28
setup time 0.89 s 0.93 s 0.89 s 0.78 s 0.83 s 0.79 s 0.84 s
apply time 0.35 s 0.35 s 0.34 s 0.36 s 0.34 s 0.35 s 0.34 s
prec. time 1.23 s 1.28 s 1.23 s 1.14 s 1.17 s 1.14 s 1.18 s

H/h = 40,
≈ 105 k dofs
per rank

iter 41 41 41 41 41 41 41
setup time 5.72 s 4.16 s 4.61 s 4.26 s 4.64 s 4.27 s 4.33 s
apply time 3.33 s 3.33 s 3.30 s 3.33 s 3.30 s 3.28 s 3.29 s
prec. time 9.04 s 7.49 s 7.92 s 7.59 s 7.95 s 7.55 s 7.62 s

H/h = 60,
≈ 350 k dofs
per rank

iter 56 56 56 56 56 56 56
setup time 45.16 s 17.75 s 18.16 s 17.98 s 19.34 s 17.93 s 18.04 s
apply time 15.83 s 18.04 s 17.08 s 16.26 s 15.81 s 16.19 s 16.44 s
prec. time 60.99 s 35.79 s 35.25 s 34.24 s 35.15 s 34.12 s 34.49 s

Intel MKL PARDISO; ILU / symmetric Gauß–Seidel / Chebyshev polynomials from Ifpack2.

Parallel computations on dual-socket Intel Xeon Platinum machine at Sandia National Laboratories (Blake).

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 44/48

Inexact Extension Solvers in FROSch
3D Laplacian; 512 MPI ranks = 512 (= 8 × 8 × 8) subdomains; H/δ = 10; RGDSW coarse space.

extension solver direct
solver

preconditioned GMRES (rel. tol. = 10−4)
(10 Gauss–Seidel sweeps for ILU(k) symm. Gauß–Seidel Chebyshev polyn.

the subdomain solver) k = 2 k = 3 5 sweeps 10 sweeps p = 6 p = 8

H/h = 20,
≈ 14 k dofs
per rank

iter 28 28 28 28 28 28 28
setup time 0.89 s 0.93 s 0.89 s 0.78 s 0.83 s 0.79 s 0.84 s
apply time 0.35 s 0.35 s 0.34 s 0.36 s 0.34 s 0.35 s 0.34 s
prec. time 1.23 s 1.28 s 1.23 s 1.14 s 1.17 s 1.14 s 1.18 s

H/h = 40,
≈ 105 k dofs
per rank

iter 41 41 41 41 41 41 41
setup time 5.72 s 4.16 s 4.61 s 4.26 s 4.64 s 4.27 s 4.33 s
apply time 3.33 s 3.33 s 3.30 s 3.33 s 3.30 s 3.28 s 3.29 s
prec. time 9.04 s 7.49 s 7.92 s 7.59 s 7.95 s 7.55 s 7.62 s

H/h = 60,
≈ 350 k dofs
per rank

iter 56 56 56 56 56 56 56
setup time 45.16 s 17.75 s 18.16 s 17.98 s 19.34 s 17.93 s 18.04 s
apply time 15.83 s 18.04 s 17.08 s 16.26 s 15.81 s 16.19 s 16.44 s
prec. time 60.99 s 35.79 s 35.25 s 34.24 s 35.15 s 34.12 s 34.49 s

Intel MKL PARDISO; ILU / symmetric Gauß–Seidel / Chebyshev polynomials from Ifpack2.

Parallel computations on dual-socket Intel Xeon Platinum machine at Sandia National Laboratories (Blake).
⇒ The use of inexact subdomain solvers may significantly improve the time to solution, in particular, for large
subdomain problems.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 44/48

Part IV – Exercises – Parallel Preconditioning with
FROSch

17 Software Environment

18 Working on the Exercises

19 Remainder of the Session

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 44/48

17 Software Environment
All the material for the exercises can be found in the GitHub repository

https://github.com/searhein/frosch-demo

It contains:

• A dockerfile for automatically installing the software environment

• Three exercises:
• Exercise 1 – Implementing a Krylov Solver Using Belos

• Exercise 2 – Implementing a One-Level Schwarz Preconditioner Using FROSch

• Exercise 3 – Implementing a GDSW Preconditioner Using FROSch

• A code that includes the solution for all three exercises.

The GitHub repository also contains detailed step-by-step instructions for installing the
software environment, compiling the exercises, and testing the software.

You should have received the link to the GitHub repository on Monday and installed the
software by now. Otherwise, there will not be enough time to set up the software now and
still work on the exercises.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 45/48

https://github.com/searhein/frosch-demo

18 Working on the Exercises

Each exercise has two parts:

1. Implement the missing code; step-by-step explanations can be found in the README.md
files.

2. Perform numerical experiments to investigate the behavior of the methods.

Parallelization
The code assumes a one-to-one correspondence of MPI ranks and subdomains. In order
to run with larger numbers of subdomains, you have to increase the number of MPI ranks. For
instance, for 4 MPI ranks / subdomains: mpirun −n 4 ./EXECUTABLE
Depending on your hardware (and the number of available processors), you can also study
computing times of the computations.

The solution code
• can serve as a reference for solving the implementation part of the exercises.

• can be used to directly work on the numerical experiments and skip the
implementation part.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 46/48

19 Remainder of the Session

First, I will

• walk you through the basic structure of the code,

• show you how to run the code, and

• show you how to visualize the solution using Paraview.

Then, you can

• start working on the exercises as described in the README.md files and

• ask questions about the code and the exercises.

Please take your time to look into the code and run numerical experiments. I do not
expect you to finish the exercises within the one hour. However, the README.md files should
provide enough information to continue working on the exercises after the session.

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 47/48

Thank you for your attention!

Questions?

Alexander Heinlein (TU Delft) ECCOMAS Congress 2022 48/48

	Classical Schwarz domain decomposition methods
	Schwarz domain decomposition preconditioners
	Schwarz domain decomposition preconditioners in FROSch
	Exercises – Parallel Preconditioning with FROSch

