## A fully algebraic spectral coarse space for overlapping Schwarz methods

Alexander Heinlein
Solvers for frequency-domain wave problems and applications, June 20-24, 2022
TU Defft

Based on joint work with Axel Klawonn, Jascha Knepper, Martin Lanser, Janine Weber (University of Cologne), Oliver Rheinbach (TU Bergakademie Freiberg), Kathrin Smetana (Stevens Institute of Technology), and Olof Widlund (New York University)

## Highly Heterogeneous Multiscale Problems

Highly heterogeneous multiscale problems appear in most areas of modern science and engineering, e.g., composite materials, porous media, and turbulent transport in high Reynolds number flow.


Microsection of a dual-phase steel. (Courtesy of Jörg Schröder, University of Duisburg-Essen, Germany; cooperation with ThyssenKrupp Steel.)


Groundwater flow: model 2 from the Tenth SPE Comparative Solution Project; cf. Christie and Blunt (2001).


Representation of the composition of a small segment of arterial walls; taken from O'Connell et al. (2008).
$\rightarrow$ The solution of such problems requires a high spatial and temporal resolution but also poses challenges to the solvers.

## Highly Heterogeneous Model Problem

Consider the diffusion boundary value problem: find $u$ such that

$$
\begin{aligned}
-\nabla \cdot(\alpha(x) \nabla u(x)) & =f(x) & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega,
\end{aligned}
$$

with a highly varying coefficient function $\alpha$. The corresponding weak formulation is: find $u \in H_{0}^{1}(\Omega)$, such that

$$
a_{\Omega}(u, v)=f(v) \quad \forall v \in H_{0}^{1}(\Omega)
$$

with the bilinear form and linear functional

$$
a_{\Omega}(u, v):=\int_{\Omega} \alpha(x)(\nabla u(x))^{T} \nabla \mathfrak{v}(x) d x \text { and } f(v):=\int_{\Omega} f(x) v(x) d x .
$$

Discretization using finite elements yields the linear system

$$
A u=f
$$

with stiffness matrix $\boldsymbol{A}$, discrete solution $\boldsymbol{u}$, and right hand side $\boldsymbol{f}$.

Original microsection of a dual-phase steel


# Schwarz Domain Decomposition Preconditioners 

## Homogeneous Model Problem \& Overlapping Domain Decomposition



Consider a homogeneous diffusion model problem $(\alpha(x)=1)$ :

$$
\begin{aligned}
-\Delta u=f & \text { in } \Omega=[0,1]^{2}, \\
u=0 & \text { on } \partial \Omega .
\end{aligned}
$$

Discretization using finite elements yields the linear equation system

$$
\boldsymbol{A} \boldsymbol{u}=\boldsymbol{f}
$$

Overlapping Domain Decomposition
Overlapping Schwarz methods are based on overlapping decompositions of the computational domain $\Omega$.

Overlapping subdomains $\Omega_{1}^{\prime}, \ldots, \Omega_{N}^{\prime}$ can be constructed by recursively adding layers of elements to nonoverlapping subdomains $\Omega_{1}, \ldots, \Omega_{N}$.


## Homogeneous Model Problem \& Overlapping Domain Decomposition



Consider a homogeneous diffusion model problem $(\alpha(x)=1)$ :

$$
\begin{aligned}
-\Delta u=f & \text { in } \Omega=[0,1]^{2}, \\
u=0 & \text { on } \partial \Omega .
\end{aligned}
$$

Discretization using finite elements yields the linear equation system

$$
\boldsymbol{A} \boldsymbol{u}=\boldsymbol{f}
$$

Overlapping Domain Decomposition
Overlapping Schwarz methods are based on overlapping decompositions of the computational domain $\Omega$.

Overlapping subdomains $\Omega_{1}^{\prime}, \ldots, \Omega_{N}^{\prime}$ can be constructed by recursively adding layers of elements to nonoverlapping subdomains $\Omega_{1}, \ldots, \Omega_{N}$.


Nonoverlap. DD


Overlap $\delta=1 h$

## Homogeneous Model Problem \& Overlapping Domain Decomposition



Consider a homogeneous diffusion model problem $(\alpha(x)=1)$ :

$$
\begin{aligned}
-\Delta u=f & \text { in } \Omega=[0,1]^{2}, \\
u=0 & \text { on } \partial \Omega .
\end{aligned}
$$

Discretization using finite elements yields the linear equation system

$$
\boldsymbol{A} \boldsymbol{u}=\boldsymbol{f}
$$

Overlapping Domain Decomposition
Overlapping Schwarz methods are based on overlapping decompositions of the computational domain $\Omega$.

Overlapping subdomains $\Omega_{1}^{\prime}, \ldots, \Omega_{N}^{\prime}$ can be constructed by recursively adding layers of elements to nonoverlapping subdomains $\Omega_{1}, \ldots, \Omega_{N}$.


Nonoverlap. DD


Overlap $\delta=1 h$


Overlap $\delta=2 h$

## Two-Level Schwarz Preconditioners

## One-Level Schwarz Preconditioner



Based on an overlapping domain decomposition, we define a one-level Schwarz operator

$$
\boldsymbol{M}_{\mathrm{OS}-1}^{-1} \boldsymbol{A}=\sum_{i=1}^{N} \boldsymbol{R}_{i}^{T} \boldsymbol{A}_{i}^{-1} \boldsymbol{R}_{i} \boldsymbol{A}
$$

where $\boldsymbol{R}_{i}$ and $\boldsymbol{R}_{i}^{T}$ are restriction and prolongation operators corresponding to $\Omega_{i}^{\prime}$, and $\boldsymbol{A}_{i}:=\boldsymbol{R}_{i} \boldsymbol{A} \boldsymbol{R}_{i}^{T}$.

Condition number estimate:

$$
\kappa\left(M_{\mathrm{OS}-1}^{-1} \boldsymbol{A}\right) \leq C\left(1+\frac{1}{H \delta}\right)
$$

with subdomain size $H$ and the width of the overlap $\delta$.

## Adding a Lagrangian Coarse Space



Q1 basis function


The two-level overlapping Schwarz operator reads

$$
\boldsymbol{M}_{\mathrm{OS}-2}^{-1} \boldsymbol{A}=\underbrace{\Phi \boldsymbol{A}_{0}^{-1} \boldsymbol{\Phi}^{T} \boldsymbol{A}}_{\text {coarse level - global }}+\underbrace{\sum_{i=1}^{N} \boldsymbol{R}_{i}^{T} \boldsymbol{A}_{i}^{-1} \boldsymbol{R}_{i} \boldsymbol{A}}_{\text {first level - local }}
$$

where $\Phi$ contains the coarse basis functions and $\boldsymbol{A}_{0}:=\boldsymbol{\Phi}^{\top} \boldsymbol{A} \Phi$; cf., e.g., Toselli, Widlund (2005).

A Lagrangian coarse basis requires a coarse triangulation (geometric information) $\rightarrow$ not algebraic

$$
\Rightarrow \kappa\left(\boldsymbol{M}_{\mathrm{OS}-2} \boldsymbol{A}\right) \leq C\left(1+\frac{H}{\delta}\right)
$$

## Extension-Based GDSW Coarse Spaces



In GDSW (Generalized-Dryja-Smith-Widlund) coarse spaces, the coarse basis functions are chosen as energy minimizing extensions of functions $\Phi_{\Gamma}$ that are defined on the interface $\Gamma$ :

$$
\Phi=\left[\begin{array}{c}
-\boldsymbol{A}_{/ /}^{-1} \boldsymbol{A}_{\Gamma /}^{T} \Phi_{\Gamma} \\
\Phi_{\Gamma}
\end{array}\right]=\left[\begin{array}{l}
\Phi_{I} \\
\Phi_{\Gamma}
\end{array}\right]
$$

The functions $\Phi_{\Gamma}$ are restrictions of the null space of global Neumann matrix to the edges, vertices, and, in 3D, faces (partition of unity) of the non-overlapping decomposition.


The condition number of the GDSW operator is bounded by

$$
\kappa\left(\boldsymbol{M}_{\mathrm{GDSW}}^{-1} \boldsymbol{A}\right) \leq C\left(1+\frac{H}{\delta}\right)\left(1+\log \left(\frac{H}{h}\right)\right)^{2}
$$

cf. Dohrmann, Klawonn, Widlund (2008), Dohrmann, Widlund (2009, 2010, 2012).
$\rightarrow$ We only obtain the exponent 2 for very irregular subdomains.
$\rightarrow$ Scalable and algebraic!

## Weak Scalability up to 64 k MPI Ranks / 1.7 b Unknowns (3D Poisson; Juqueen)

## GDSW vs RGDSW (Reduced Dimension)

Heinlein, Klawonn, Rheinbach, Widlund (2019).



## RGDSW (Reduced Dimension GDSW)



RGDSW option 1


RGDSW option 2.2

Reduced dimension GDSW coarse spaces are constructed from nodal interface functions (different partition of unity); cf. Dohrmann, Widlund (2017).

## FroSch (Fast and Robust Overlapping Schwarz) Framework in Trilinos

## Software

- Object-oriented C++ domain decomposition solver framework with MPI-based distributed memory parallelization
- Part of Trilinos with support for both parallel linear algebra packages Epetra and Tpetra
- Node-level parallelization and performance portability on CPU and GPU architectures through Kokkos
- Accessible through unified Trilinos solver interface Stratimikos


## Methoddology

- Parallel scalable multi-level Schwarz domain decomposition preconditioners
- Algebraic construction based on the parallel distributed system matrix
- Extension-based coarse spaces


## Team (Active)

- Alexander Heinlein (TU Delft) : Axel Klawonn (Uni Cologne)
- Siva Rajamanickam (Sandia) . Oliver Rheinbach (TUBAF)
- Friederike Röver (TUBAF) - Ichitaro Yamazaki (Sandia)


# Observations for Heterogeneous 

Problems

## Heterogeneous Problem - Random Distribution

## Problem Configuration

Diffusion problem with random binary coefficient $\alpha$ : find $u$ such that

$$
\begin{aligned}
-\nabla \cdot(\alpha(x) \nabla u(x)) & =f(x) & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega .
\end{aligned}
$$

Domain decomposition into $10 \times 10$ subdomains with $H / h=10$ and overlap $1 h$.

dark blue: $\alpha=10^{8} \quad$ light blue: $\alpha=1$

| Prec. | its. | $\kappa$ |
| :--- | ---: | :---: |
| - | $>2000$ | $4.51 \cdot 10^{8}$ |
| $M_{\mathrm{OS}-1}^{-1}$ | $>2000$ | $4.51 \cdot 10^{8}$ |
| $\boldsymbol{M}_{\mathrm{OS}-2}^{-1}$ | 586 | $5.56 \cdot 10^{5}$ |

## Observations

$\rightarrow$ For heterogeneous coefficients, the condition number clearly deteriorates. It depends on the contrast of the coefficient function

## Heterogeneous Problem - Random Distribution

## Problem Configuration

Diffusion problem with random binary coefficient $\alpha$ : find $u$ such that

$$
\begin{aligned}
-\nabla \cdot(\alpha(x) \nabla u(x)) & =f(x) & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega .
\end{aligned}
$$

Domain decomposition into $10 \times 10$ subdomains with $H / h=10$ and overlap $1 h$.

| Prec. | its. | $\kappa$ |
| :--- | ---: | :---: |
| - | $>2000$ | $4.51 \cdot 10^{8}$ |
| $M_{\mathrm{OS}-1}^{-1}$ | $>2000$ | $4.51 \cdot 10^{8}$ |
| $\boldsymbol{M}_{\mathrm{OS}-2}^{-1}$ | 586 | $5.56 \cdot 10^{5}$ |

## Observations

$\rightarrow$ For heterogeneous coefficients, the condition number clearly deteriorates. It depends on the contrast of the coefficient function

Let us consider some pathological cases to better understand the behavior of overlapping Schwarz methods for heterogeneous coefficient distributions.

## Heterogeneous Problem - Heterogeneities Only Inside Subdomains

## Problem Configuration

Diffusion problem with random binary coefficient $\alpha$ without high coefficients touching the interface: find $u$ such that

$$
\begin{aligned}
-\nabla \cdot(\alpha(x) \nabla u(x)) & =f(x) & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega .
\end{aligned}
$$

Domain decomposition into $10 \times 10$ subdomains with $H / h=10$ and overlap $1 h$.

dark blue: $\alpha=10^{8} \quad$ light blue: $\alpha=1$

| Prec. | its. | $\kappa$ |
| :--- | ---: | ---: |
| - | $>2000$ | $7.99 \cdot 10^{8}$ |
| $\boldsymbol{M}_{\text {OS-1 }}^{-1}$ | 64 | 133.16 |
| $\boldsymbol{M}_{\text {OS-2 }}^{-1}$ | 78 | 139.15 |

## Observations

$\rightarrow$ In the first level, we solve the subdomain problems exactly $\Rightarrow$ Jumps inside the subdomains are not problematic
$\rightarrow$ Classical one- and two-level methods are robust for jumps within the subdomains

## Heterogeneous Problem - Channels Across the Interface

## Problem Configuration

Diffusion problem with binary coefficient $\alpha$ with high contrast channels: find $u$ such that

$$
\begin{aligned}
-\nabla \cdot(\alpha(x) \nabla u(x)) & =f(x) & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega .
\end{aligned}
$$

Domain decomposition into $10 \times 10$ subdomains with $H / h=10$ and overlap $1 h$.


| Prec. | $\delta$ | its. | $\kappa$ |
| :--- | ---: | ---: | ---: |
| - |  | 987 | $8.03 \cdot 10^{8}$ |
|  | 1 h | 259 | $83.34 \cdot 10^{6}$ |
| $M_{\text {OS-1 }}^{-1}$ | $2 h$ | 216 | $5.56 \cdot 10^{6}$ |
|  | $3 h$ | 37 | 91.97 |
|  | 1 h | 163 | $4.70 \cdot 10^{5}$ |
| $M_{\text {OS-2 }}^{-1}$ | $2 h$ | 128 | $3.24 \cdot 10^{5}$ |
|  | $3 h$ | 44 | 91.94 |

## Observations

$\rightarrow$ In case the channels with high coefficient lie completely within the overlapping subdomains, the method is again robust. Otherwise, the convergence deteriorates.
$\rightarrow$ In general, it is not practical to extend the overlap until each high coefficient component lies completely within one overlapping subdomain.

## Heterogeneous Problem - Inclusions at the Vertices

## Problem Configuration

Diffusion problem with binary coefficient $\alpha$ with high coefficient inclusions at the vertices: find $u$ such that

$$
\begin{aligned}
-\nabla \cdot(\alpha(x) \nabla u(x)) & =f(x) & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega .
\end{aligned}
$$

Domain decomposition into $10 \times 10$ subdomains with $H / h=10$ and overlap $1 h$.


| Prec. | its. | $\kappa$ |
| :--- | ---: | ---: |
| - | 874 | $1.35 \cdot 10^{9}$ |
| $M_{\text {OS-1 }}^{-1}$ | 163 | $4.06 \cdot 10^{7}$ |
| $M_{\text {OS-2 }}^{-1}$ | 138 | $1.07 \cdot 10^{6}$ |
| $M_{\text {MsFEM }}^{-1}$ | 24 | 8.05 |

## Observations

$\rightarrow$ In general, one- or two-level Schwarz methods are not robust for high coefficient inclusions at the vertices
$\rightarrow$ Robustness can be retained by using multiscale finite element method (MsFEM) type functions instead; cf. Hou (1997), Efendiev and Hou (2009)

Lagrangian function


MsFEM function

## Heterogeneous Problem - Channels \& Inclusions

## Problem Configuration

Diffusion problem with binary coefficient $\alpha$ with channels and vertex inclusions: find $u$ such that

$$
\begin{aligned}
-\nabla \cdot(\alpha(x) \nabla u(x)) & =f(x) & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega .
\end{aligned}
$$

Domain decomposition into $10 \times 10$ subdomains with $H / h=10$ and overlap $1 h$.


| Prec. | its. | $\kappa$ |
| :--- | ---: | :---: |
| - | 1708 | $1.16 \cdot 10^{9}$ |
| $M_{\text {OS-1 }}^{-1}$ | 447 | $4.17 \cdot 10^{7}$ |
| $M_{\text {OS-2 }}^{-1}$ | 268 | $1.10 \cdot 10^{6}$ |
| $M_{\text {MsFEM }}^{-1}$ | 117 | $4.34 \cdot 10^{5}$ |

## Observations

$\rightarrow$ All of the aforementioned approaches fail for this example.
$\rightarrow$ Since we were able to deal with the vertex inclusions, the problem has to be related to the edges. How can we construct suitable coarse basis functions to deal with coefficient jumps at the edges?

## Heterogeneous Problem - Channels \& Inclusions

## Problem Configuration

Diffusion problem with binary coefficient $\alpha$ with channels and vertex inclusions: find $u$ such that

$$
\begin{aligned}
-\nabla \cdot(\alpha(x) \nabla u(x)) & =f(x) & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega .
\end{aligned}
$$

Domain decomposition into $10 \times 10$ subdomains with $H / h=10$ and overlap $1 h$.


| Prec. | its. | $\kappa$ |
| :--- | ---: | :---: |
| - | 1708 | $1.16 \cdot 10^{9}$ |
| $M_{\mathrm{OS}-1}^{-1}$ | 447 | $4.17 \cdot 10^{7}$ |
| $M_{\text {OS-2 }}^{-1}$ | 268 | $1.10 \cdot 10^{6}$ |
| $M_{\text {MsFEM }}^{-1}$ | 117 | $4.34 \cdot 10^{5}$ |

## Observations

$\rightarrow$ All of the aforementioned approaches fail for this example.
$\rightarrow$ Since we were able to deal with the vertex inclusions, the problem has to be related to the edges. How can we construct suitable coarse basis functions to deal with coefficient jumps at the edges?

Let us now discuss the Schwarz theory in order to construct a robust coarse space for arbitrary heterogeneous problems.

# Influence of Heterogeneities on the Schwarz Theory 

## Schwarz Theory

In order to establish a condition number bound for $\kappa\left(\boldsymbol{M}_{\mathrm{ad}}^{-1} \boldsymbol{A}\right)$ based on the abstract Schwarz framework, we have to verify the following three assumptions:

## Assumption 1: Stable Decomposition

There exists a constant $C_{0}$ such that, for every $u \in V$, there exists a decomposition $u=\sum_{i=0}^{N} \boldsymbol{R}_{i}^{T} u_{i}, u_{i} \in V_{i}$, with

$$
\sum_{i=0}^{N} a_{i}\left(u_{i}, u_{i}\right) \leq c_{0}^{2} a(u, u)
$$

## Assumption 2: Strengthened Cauchy-Schwarz Inequality

There exist constants $0 \leq \epsilon_{i j} \leq 1,1 \leq i, j \leq N$, such that

$$
\left|a\left(\boldsymbol{R}_{i}^{T} u_{i}, \boldsymbol{R}_{j}^{T} u_{j}\right)\right| \leq \epsilon_{i j}\left(a\left(\boldsymbol{R}_{i}^{T} u_{i}, \boldsymbol{R}_{i}^{T} u_{i}\right)\right)^{1 / 2}\left(a\left(\boldsymbol{R}_{j}^{T} u_{j}, \boldsymbol{R}_{j}^{T} u_{j}\right)\right)^{1 / 2}
$$

for $u_{i} \in V_{i}$ and $u_{j} \in V_{j}$. (Consider $\mathcal{E}=\left(\varepsilon_{i j}\right)$ and $\rho(\mathcal{E})$ its spectral radius)

## Assumption 3: Local Stability

There exists $\omega<0$, such that

$$
a\left(\boldsymbol{R}_{i}^{T} u_{i}, \boldsymbol{R}_{i}^{T} u_{i}\right) \leq \omega a_{i}\left(u_{i}, u_{i}\right), \quad u_{i} \in \operatorname{range}\left(\tilde{P}_{i}\right), \quad 0 \leq i \leq N .
$$

## Schwarz Theory

## General Condition Number Bound

With Assumption 1-3, we have

$$
\kappa\left(\boldsymbol{M}_{\mathrm{ad}}^{-1} \boldsymbol{A}\right) \leq C_{0}^{2} \omega(\rho(\mathcal{E})+1)
$$

for

$$
\boldsymbol{M}_{\mathrm{ad}} \boldsymbol{A}=\sum_{0=1}^{N} \boldsymbol{R}_{i}^{T} \boldsymbol{A}_{i}^{-1} \boldsymbol{R}_{i} \boldsymbol{A} ;
$$

see, e.g., Toselli, Wildund (2005).

To obtain a condition number bound for a specific additive Schwarz preconditioner, we have to estimate $\omega, \rho(\mathcal{E})$, and $C_{0}^{2}$.

The constants $\omega$ and $\rho(\mathcal{E})$ can often easily be bounded.

## Exact Solvers

If we choose the local bilinear forms as

$$
a_{i}\left(u_{i}, u_{i}\right):=a\left(\boldsymbol{R}_{i}^{T} u_{i}, \boldsymbol{R}_{i}^{T} u_{i}\right)
$$

we obtain $\boldsymbol{A}_{i}=\boldsymbol{R}_{i} \boldsymbol{A} \boldsymbol{R}_{i}^{T}$ and $\omega=1$.
$\rightarrow$ For exact exact local and coarse solvers, $\omega$ does not depend on the coefficient.

## Coloring Constant



The spectral radius $\rho(\varepsilon)$ is bounded by the number of colors $N^{C}$ of the domain decomposition.
$\rightarrow N^{c}$ depends only on the domain decomposition but not on the coefficient function.

## Stable Decomposition - GDSW Coarse Space

In order to prove the existence of a stable decomposition

$$
u=\sum_{i=0}^{N} \boldsymbol{R}_{i}^{T} u_{i} \text { and } \sum_{i=0}^{N} a_{i}\left(u_{i}, u_{i}\right) \leq C_{0}^{2} a(u, u)
$$

for a specific coarse space, the most essential estimate is

$$
a_{0}\left(u_{0}, u_{0}\right) \leq C_{0}^{2} a(u, u)
$$

$\Rightarrow C_{0}^{2}$ will arise in the condition number estimate.

## Homogeneous Diffusion

In the case of a diffusion problem with a constant coefficient,

$$
\begin{aligned}
-\Delta u=f & \text { in } \Omega, \\
u & =0
\end{aligned} \quad \text { on } \partial \Omega,
$$

this just corresponds to proving

$$
\left|u_{0}\right|_{H^{1}(\Omega)}^{2} \leq C_{0}^{2}|u|_{H^{1}(\Omega)}^{2} .
$$

## GDSW Coarse Space

In the proof for the GDSW preconditioner, we have

$$
u_{0}(x)=\sum_{V} u(v) \theta_{V}(x)+\sum_{\varepsilon_{\varepsilon}} \bar{u}_{\varepsilon} \theta_{\varepsilon}(x) .
$$

Then, using an inverse inequality for $\theta_{\mathcal{V}}$ and a discrete Sobolev inequality for $u-\bar{u}_{\Omega_{i}}$,

$$
\left|\left(u(V)-\bar{u}_{\Omega_{i}}\right) \theta_{V}\right|_{a, \Omega_{i}}^{2} \leq C(1+\log (H / h))\left\|u-\bar{u}_{\Omega_{i}}\right\|_{H^{1}\left(\Omega_{i}\right)}^{2}
$$

and, similarly (estimating $\theta_{\delta}$ adds another $(1+\log (H / h))$ ),

$$
\left|\left(\bar{u}_{\delta}-\bar{u}_{\Omega_{i}}\right) \theta_{\varepsilon}\right|_{a, \Omega_{i}}^{2} \leq C(1+\log (H / h))^{2}\left\|u-\bar{u}_{\Omega_{i}}\right\|_{H^{1}\left(\Omega_{i}\right)}^{2} .
$$

Using a Poincaré inequality, we then obtain $|u|_{a, \Omega_{i}}^{2}$.


Discrete harmonic GDSW basis functions $\theta_{\mathcal{V}}$ and $\theta_{\mathcal{E}}$.

## Stable Decomposition - GDSW Coarse Space

In order to prove the existence of a stable decomposition

$$
u=\sum_{i=0}^{N} R_{i}^{T} u_{i} \text { and } \sum_{i=0}^{N} a_{i}\left(u_{i}, u_{i}\right) \leq C_{0}^{2} a(u, u)
$$

for a specific coarse space, the most essential estimate is

$$
a_{0}\left(u_{0}, u_{0}\right) \leq C_{0}^{2} a(u, u)
$$

$\Rightarrow C_{0}^{2}$ will arise in the condition number estimate.

## Heterogeneous Diffusion

In the case of a heterogeneous diffusion problem,

$$
\begin{aligned}
-\nabla \cdot(A(x) \cdot \nabla u) & =f & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega,
\end{aligned}
$$

we have $a(u, v)=\int_{\Omega} A(x) \nabla u \cdot \nabla v d x$ and the constants may depend on the contrast $\alpha_{\max } / \alpha_{\min }$.

## GDSW Coarse Space

In the proof for the GDSW preconditioner, we have

$$
u_{0}(x)=\sum_{V} u(v) \theta_{V}(x)+\sum_{\varepsilon_{\varepsilon}} \bar{u}_{\varepsilon} \theta_{\varepsilon}(x) .
$$

Then, using an inverse inequality for $\theta_{\mathcal{V}}$ and a discrete Sobolev inequality for $u-\bar{u}_{\Omega_{i}}$,

$$
\left|\left(u(V)-\bar{u}_{\Omega_{i}}\right) \theta_{V}\right|_{a, \Omega_{i}}^{2} \leq C(1+\log (H / h))\left\|u-\bar{u}_{\Omega_{i}}\right\|_{H^{1}\left(\Omega_{i}\right)}^{2}
$$

and, similarly (estimating $\theta_{\delta}$ adds another $(1+\log (H / h))$ ),

$$
\left|\left(\bar{u}_{\delta}-\bar{u}_{\Omega_{i}}\right) \theta_{\varepsilon}\right|_{a, \Omega_{i}}^{2} \leq C(1+\log (H / h))^{2}\left\|u-\bar{u}_{\Omega_{i}}\right\|_{H^{1}\left(\Omega_{i}\right)}^{2} .
$$

Using a Poincaré inequality, we then obtain $|u|_{a, \Omega_{i}}^{2}$.


Discrete harmonic GDSW basis functions $\theta_{V}$ and $\theta_{\varepsilon}$.

## Stable Decomposition - Adaptive Coarse Spaces

In order to prove the existence of a stable decomposition

$$
u=\sum_{i=0}^{N} \boldsymbol{R}_{i}^{T} u_{i} \text { and } \sum_{i=0}^{N} a_{i}\left(u_{i}, u_{i}\right) \leq C_{0}^{2} a(u, u)
$$

for a specific coarse space, the most essential estimate is

$$
a_{0}\left(u_{0}, u_{0}\right) \leq C_{0}^{2} a(u, u)
$$

$\Rightarrow C_{0}^{2}$ will arise in the condition number estimate.

## Heterogeneous Diffusion

In the case of a heterogeneous diffusion problem,

$$
\begin{aligned}
-\nabla \cdot(A(x) \cdot \nabla u) & =f & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega,
\end{aligned}
$$

we have $a(u, v)=\int_{\Omega} A(x) \nabla u \cdot \nabla v d x$ and the constants may depend on the contrast $\alpha_{\text {max }} / \alpha_{\text {min }} . \Rightarrow$ Remove dependence

## Idea of Adaptive Coarse Spaces

Ensure

$$
a\left(u_{0}, u_{0}\right) \leq C_{0}^{2} a(u, u)
$$

by introducing two bilinear forms $c(\cdot, \cdot)$ and $d(\cdot, \cdot)$ with

$$
a\left(u_{0}, u_{0}\right) \leq C_{1} d\left(u_{0}, u_{0}\right) \quad \text { (high energy) }
$$

and

$$
c\left(u_{0}, u_{0}\right) \leq C_{2} a(u, u), \quad \text { (low energy) }
$$

where $C_{1}$ and $C_{2}$ are independent of the coefficient function and $u_{0}:=I_{0} u$ is a suitable coarse function. Then, we enhance the coarse space by all eigenvectors with eigenvalues below a tolerance tol of the generalized eigenvalue problem

$$
d(v, w)=\lambda c(v, w)
$$

and obtain

$$
a\left(u_{0}, u_{0}\right) \leq C_{1} d\left(u_{0}, u_{0}\right) \leq C_{1} \text { tol } c\left(u_{0}, u_{0}\right) \leq C_{1} C_{2} \text { tol } a(u, u)
$$

without applying a Poincaré inequality. In practice, eigenvalue problem is partitioned into many local eigenvalue problems $\rightarrow$ parallelization!

## Stable Decomposition - Adaptive Coarse Spaces

In order to prove the existence of a stable decomposition

$$
u=\sum_{i=0}^{N} R_{i}^{T} u_{i} \text { and } \sum_{i=0}^{N} a_{i}\left(u_{i}, u_{i}\right) \leq C_{0}^{2} a(u, u)
$$

for a specific coarse space, the most essential estimate is

$$
a_{0}\left(u_{0}, u_{0}\right) \leq C_{0}^{2} a(u, u)
$$

$\Rightarrow C_{0}^{2}$ will arise in the condition number estimate.

## Heterogeneous Diffusion

In the case of a heterogeneous diffusion problem,

$$
\begin{aligned}
-\nabla \cdot(A(x) \cdot \nabla u) & =f & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega,
\end{aligned}
$$

we have $a(u, v)=\int_{\Omega} A(x) \nabla u \cdot \nabla v d x$ and the constants may depend on the contrast
$\alpha_{\text {max }} / \alpha_{\min }$.

## Idea of Adaptive Coarse Spaces

Ensure

$$
a\left(u_{0}, u_{0}\right) \leq C_{0}^{2} a(u, u)
$$

by introducing two bilinear forms $c(\cdot, \cdot)$ and $d(\cdot, \cdot)$ with

$$
a\left(u_{0}, u_{0}\right) \leq C_{1} d\left(u_{0}, u_{0}\right) \quad \text { (high energy) }
$$

and

$$
c\left(u_{0}, u_{0}\right) \leq C_{2} a(u, u), \quad \text { (low energy) }
$$

where $C_{1}$ and $C_{2}$ are independent of the coefficient function and $u_{0}:=I_{0} u$ is a suitable coarse function. Then,
In practice, it is sufficient if $C_{1}$ and $C_{2}$ depend on either

- $\alpha_{\text {min }}$ or
- $\alpha_{\text {max }}$.
$\rightarrow \ln$ the algebraic variant, $C_{2}$ depends only on $\alpha_{\text {min }}$.

$$
a\left(u_{0}, u_{0}\right) \leq C_{1} d\left(u_{0}, u_{0}\right) \leq C_{1} \text { tol } c\left(u_{0}, u_{0}\right) \leq C_{1} C_{2} \text { tol } a(u, u)
$$

without applying a Poincaré inequality. In practice, eigenvalue problem is partitioned into many local eigenvalue problems $\rightarrow$ parallelization!

Adaptive Coarse Spaces -OS-ACMS, AGDSW, and a Fully Algebraic Adaptive Coarse Space

## Adaptive Coarse Spaces in Domain Decomposition Methods - Literature Overview

This list is not exhaustive:

- FETI \& Neumann-Neumann: Bjørstad and Krzyzanowski (2002); Bjørstad, Koster, and Krzyzanowski (2001); Rixen and Spillane $(2013)$; Spillane $(2015,2016)$
- BDDC \& FETI-DP: Mandel and Sousedík (2007); Sousedík (2010); Sístek, Mandel, and Sousedík (2012); Dohrmann and Pechstein (2013, 2016); Klawonn, Radtke, and Rheinbach (2014, 2015, 2016); Klawonn, Kühn, and Rheinbach (2015, 2016, 2017); Kim and Chung (2015); Kim, Chung, and Wang (2017); Beirão da Veiga, Pavarino, Scacchi, Widlund, and Zampini (2017); Calvo and Widlund (2016); Oh, Widlund, Zampini, and Dohrmann (2017)
- Overlapping Schwarz: Galvis and Efendiev (2010, 2011); Nataf, Xiang, Dolean, and Spillane (2011); Spillane, Dolean, Hauret, Nataf, Pechstein, and Scheichl (2011); Gander, Loneland, and Rahman (preprint 2015); Eikeland, Marcinkowski, and Rahman (preprint 2016); Marcinkowski and Rahman (2018); Al Daas, Grigori, Jolivet, Tournier (2021); Bastian, Scheichl, Seelinger, and Strehlow (2022); Spillane (preprint 2021, preprint 2021); Bootland, Dolean, Graham, Ma, Scheichl (preprint 2021)
- Approaches for overlapping Schwarz methods in this talk:
- OS-ACMS: Heinlein, Klawonn, Knepper, Rheinbach (2018)
- AGDSW: Heinlein, Klawonn, Knepper, Rheinbach (2019, 2019), Heinlein, Klawonn, Knepper, Rheinbach Widlund (2022)
- Fully Algebraic Coarse Space: Heinlein and Smetana (Preprint: arXiv:2207.05559)

There is also related work on multigrid methods, such as AMGe by Brezina, Cleary, Falgout, Henson, Jones, Manteuffel, McCormick, Ruge (2000).

## OS-ACMS - An Adaptive Coarse Space Based on the ACMS Discretization

As in the ACMS finite element space, we construct a coarse space composed of MsFEM-type nodal and coupling basis functions. However, in order to obtain a robust coarse space, the construction has to be slightly modified; see Heinlein, Klawonn, Knepper, Rheinbach (2018).

## MsFEM Type Basis Functions

Interface values
red: $\alpha_{\text {max }} \quad$ blue: $\alpha_{\text {min }}$


We define the interface values as follows:

$$
\begin{array}{rlrl}
\varphi_{v}\left(v^{\prime}\right) & =\delta_{v, v^{\prime}} & \forall v^{\prime} \in \mathcal{V} & \\
\text { (Kronecker property) } \\
\left.\varphi_{v}\right|_{e} & =E_{\partial e \rightarrow \Omega_{e}}\left(\left.\varphi_{v}\right|_{\partial e}\right) & \forall e \in \mathcal{E} & \\
\text { (Energy min. ext.) }
\end{array}
$$

The interior values are then obtained by an energy minimizing extension into the interior:

## Energy Minimizing Extensions

The energy minimizing extension $E_{\partial \Omega \rightarrow \Omega}(v)$ of the function $v$ defined on $\partial \Omega$ is given by the solution of the boundary value problem:

$$
\begin{aligned}
a_{\Omega}\left(E_{\partial \Omega \rightarrow \Omega}(v), w\right) & =0 \\
E_{\partial \Omega \rightarrow \Omega}(v) & =v \quad \text { on } \partial \Omega .
\end{aligned}
$$

This is equivalent to solving

$$
E_{\partial \Omega \rightarrow \Omega}(v)=\arg \min _{\substack{w \in V_{\Omega} \\ w \partial \Omega=v}} a_{\Omega}(w, w)
$$

## OS-ACMS - An Adaptive Coarse Space Based on the ACMS Discretization

## OS-ACMS Edge Basis Functions



High energy extension $R_{e \rightarrow \Omega_{e}}(\cdot)$


Ext. into the interior


First, we solve the following eigenvalue problem for each edge $e \in \mathcal{E}$ :

$$
a_{\Omega_{e}}\left(E_{\bar{e} \rightarrow \Omega_{e}}\left(\tau_{e, *}\right), E_{\bar{e} \rightarrow \Omega_{e}}(\theta)\right)=\lambda_{e, *} a_{\Omega_{e}}\left(R_{e \rightarrow \Omega_{e}}\left(\tau_{e, *}\right), R_{e \rightarrow \Omega_{e}}(\theta)\right) \quad \forall \theta \in V_{e}^{0}
$$

Then, we select all eigenfunctions $\tau_{e, *}$ with $\lambda_{e, *}$ below a user-chosen threshold TOL. We then extend $\tau_{e, *}$ by zero onto $\Gamma$ and with minimum energy into $\Omega$ to obtain the corresponding basis functions:

$$
\varphi_{e, *}=E_{\Gamma \rightarrow \Omega}\left(R_{e \rightarrow \Gamma}\left(\tau_{e, *}\right)\right)
$$

## Condition Number Bound

Using the coarse space $V_{\text {OS-ACMS }}=\left\{\varphi_{v}\right\} \cup\left\{\varphi_{e}\right\}$ in the two-level Schwarz preconditioner, we obtain

$$
\kappa\left(\boldsymbol{M}_{\mathrm{OS}-\mathrm{ACMS}}^{-1} \boldsymbol{A}\right) \leq C(1 / T O L)
$$

where $C$ is independent of $H, h$, and the contrast of the coefficient function $\alpha$.

## AGDSW - An Adaptive GDSW Coarse Space

The adaptive GDSW (AGDSW) coarse space is a related approach, which also depends on a partition of the domain decomposition interface into edges and vertices. It differs from OS-ACMS as follows:

- Instead of MsFEM functions, we use the much simpler and cheaper GDSW vertex basis functions
- The edge eigenvalue problem has to be modified accordingly

As a result, the AGDSW coarse space

- always contains the classical GDSW coarse space.

Cf. Heinlein, Klawonn, Knepper, Rheinbach (2019, 2019, 2022).

## AGDSW Vertex Basis Function

The interior values are then obtained by extending 1 be zero onto the remainder of the interface followed by an energy minimizing extension into the interior:

$$
\varphi_{v}=E_{\Gamma \rightarrow \Omega}\left(R_{v \rightarrow \Gamma}\left(\mathbb{1}_{v}\right)\right)
$$



## AGDSW - An Adaptive GDSW Coarse Space

## AGDSW Edge Basis Functions



High energy extension $R_{e \rightarrow \Omega_{e}}(\cdot)$


Ext. into the interior


First, we solve the following eigenvalue problem for each edge $e \in \mathcal{E}$ :

$$
a_{\Omega_{e}}\left(E_{e \rightarrow \Omega_{e}}\left(\tau_{e, *}\right), E_{e \rightarrow \Omega_{e}}(\theta)\right)=\lambda_{e, *} a_{\Omega_{e}}\left(R_{e \rightarrow \Omega_{e}}\left(\tau_{e, *}\right), R_{e \rightarrow \Omega_{e}}(\theta)\right) \quad \forall \theta \in V_{e}
$$

Then, we select eigenfunctions using the threshold TOL and extend the edge values to $\Omega$ :

$$
\varphi_{e, *}=E_{\Gamma \rightarrow \Omega}\left(R_{e \rightarrow \Gamma}\left(\tau_{e, *}\right)\right)
$$

## Condition Number Bound

Using the coarse space $V_{\text {OS-ACMS }}=\left\{\varphi_{v}\right\} \cup\left\{\varphi_{e}\right\}$ in the two-level Schwarz preconditioner, we obtain

$$
\kappa\left(\boldsymbol{M}_{\mathrm{AGDSW}}^{-1} \boldsymbol{A}\right) \leq C(1 / T O L)
$$

where $C$ is independent of $H, h$, and the contrast of the coefficient function $\alpha$.

## Numerical Results of Adaptive Coarse Spaces (2D)

## Example 1


dark blue: $\alpha=10^{8} \quad$ light blue: $\alpha=1$
$4 \times 4$ subdomains, $H / h=30, \delta=2 h$

## Example 2


dark blue: $\alpha=10^{8} \quad$ light blue: $\alpha=1$
$4 \times 4$ subdomains, $H / h=30, \delta=2 h$

| $V_{0}$ | tol | it. | $\kappa$ | $\operatorname{dim} V_{0}$ |
| :--- | ---: | ---: | ---: | ---: |
| $V_{\text {MsFEM }}$ | - | 199 | $7.8 \cdot 10^{5}$ | 9 |
| $V_{\text {OS-ACMS }}$ | $10^{-2}$ | 23 | 5.1 | 69 |
| $V_{\text {SHEM }}$ | $10^{-3}$ | 20 | 4.3 | 69 |
| $V_{\text {AGDSW }}$ | $10^{-2}$ | 29 | 7.2 | 93 |


| $V_{0}$ | tol | it. | $\kappa$ | $\operatorname{dim} V_{0}$ |
| :--- | ---: | ---: | ---: | ---: |
| $V_{\text {MSFEM }}$ | - | 282 | $3.8 \cdot 10^{7}$ | 9 |
| $V_{\text {OS-ACMS }}$ | $10^{-2}$ | 41 | 13.2 | 33 |
| $V_{\text {SHEM }}$ | $10^{-3}$ | 29 | 6.4 | 93 |
| $V_{\text {AGDSW }}$ | $10^{-2}$ | 42 | 16.5 | 45 |

SHEM by Gander, Loneland, Rahman (TR 2015), OS-ACMS from H., Klawonn, Knepper, Rheinbach (2018),
AGDSW from H., Klawonn, Knepper, Rheinbach (2019)

## Extensions of the AGDSW Approach

Reducing the Coarse Space Dimension


As in the reduced dimension GDSW (RGDSW) approach, we partition the interface into interface components centered around the vertices. On these interface components, we solve (slightly modified) eigenvalue problems.

Cf. Heinlein, Klawonn, Knepper, Rheinbach (2021) and Heinlein, Klawonn, Knepper, Rheinbach, Widlund (2022).

## Extension to Three Dimensions



- In AGDSW, we have to solve face and edge eigenvalue problems
- In RAGDSW, only the interface components change


RGDSW interface component

## Reduced Dimension (Adaptive) GDSW - 3D Numerical Example



| $V_{0}$ | tol | iter | $\kappa$ | $\operatorname{dim} V_{0}$ | $\frac{\operatorname{dim} V_{0}}{\operatorname{dim} V^{h}}$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| GDSW | - | $>2000$ | $3.1 \cdot 10^{5}$ | 9996 | $2.51 \%$ |
| RGDSW | - | $>2000$ | $3.9 \cdot 10^{5}$ | 3358 | $0.84 \%$ |
| AGDSW | 0.100 | 71 | 41.1 | 14439 | $3.63 \%$ |
| AGDSW | 0.050 | 90 | 59.5 | 13945 | $3.50 \%$ |
| AGDSW | 0.010 | 132 | 161.1 | 13763 | $3.46 \%$ |
| RAGDSW | 0.100 | 67 | 34.6 | 8249 | $2.07 \%$ |
| RAGDSW | 0.050 | 88 | 61.3 | 7683 | $1.93 \%$ |
| RAGDSW | 0.010 | 114 | 117.4 | 7501 | $1.88 \%$ |

- RAGDSW: $45 \%$ reduction of coarse space dimension compared to AGDSW (highlighted line).
- RAGDSW: smaller coarse space dimension compared to GDSW and even robust!


## Neumann Matrices and Algebraicity

The low energy property

$$
c\left(u_{0}, u_{0}\right) \leq C_{2} a(u, u)
$$

of the left hand side in the eigenvalue problems of the OS-ACMS and AGDSW methods is satisfied due to the use of Neumann boundary conditions:

$$
\begin{align*}
& a_{\Omega_{e}}\left(E_{\bar{e} \rightarrow \Omega_{e}}\left(\tau_{e, *}\right), E_{\bar{e} \rightarrow \Omega_{e}}(\theta)\right)=\lambda_{e, *} a_{\Omega_{e}}\left(R_{e \rightarrow \Omega_{e}}\left(\tau_{e, *}\right), R_{e \rightarrow \Omega_{e}}(\theta)\right) \quad \forall \theta \in V_{e}^{0}  \tag{OS-ACMS}\\
& a_{\Omega_{e}}\left(E_{e \rightarrow \Omega_{e}}\left(\tau_{e, *}\right), E_{e \rightarrow \Omega_{e}}(\theta)\right)=\lambda_{e, *} a_{\Omega_{e}}\left(R_{e \rightarrow \Omega_{e}}\left(\tau_{e, *}\right), R_{e \rightarrow \Omega_{e}}(\theta)\right) \quad \forall \theta \in V_{e}^{0} \tag{AGDSW}
\end{align*}
$$

In both approaches, the right hand side matrix just corresponds to the submatrix $\boldsymbol{A}_{e e}$ of $\boldsymbol{A}$ corresponding to the edge $e$, whereas the Neumann matrices on the left hand sides cannot be extracted from the fully assembled matrix $\boldsymbol{A}$.

## Neumann Matrices and Algebraicity

## The low energy property

$$
c\left(u_{0}, u_{0}\right) \leq C_{2} a(u, u)
$$

of the left hand side in the eigenvalue problems of the OS-ACMS and AGDSW methods is satisfied due to the use of Neumann boundary conditions:

$$
\begin{align*}
& a_{\Omega_{e}}\left(E_{\bar{e} \rightarrow \Omega_{e}}\left(\tau_{e, *}\right), E_{\bar{e} \rightarrow \Omega_{e}}(\theta)\right)=\lambda_{e, *} a_{\Omega_{e}}\left(R_{e \rightarrow \Omega_{e}}\left(\tau_{e, *}\right), R_{e \rightarrow \Omega_{e}}(\theta)\right) \quad \forall \theta \in V_{e}^{0}  \tag{OS-ACMS}\\
& a_{\Omega_{e}}\left(E_{e \rightarrow \Omega_{e}}\left(\tau_{e, *}\right), E_{e \rightarrow \Omega_{e}}(\theta)\right)=\lambda_{e, *} a_{\Omega_{e}}\left(R_{e \rightarrow \Omega_{e}}\left(\tau_{e, *}\right), R_{e \rightarrow \Omega_{e}}(\theta)\right) \quad \forall \theta \in V_{e}^{0}
\end{align*}
$$

(AGDSW)
In both approaches, the right hand side matrix just corresponds to the submatrix $\boldsymbol{A}_{e e}$ of $\boldsymbol{A}$ corresponding to the edge $e$, whereas the Neumann matrices on the left hand sides cannot be extracted from the fully assembled matrix $\boldsymbol{A}$.
$\rightarrow$ Both approaches are not algebraic

## Fully Algebraic Adaptive Coarse Space

We can make use of the a-orthogonal decomposition

$$
V_{\Omega_{e}}=V_{\Omega_{e}}^{0} \oplus \underbrace{\left\{E_{\partial \Omega_{e} \rightarrow \Omega_{e}}(v): v \in V_{\partial \Omega_{e}}\right\}}_{=: V_{\Omega_{e}, \text { harm }}}
$$

to "split the AGDSW eigenvalue problem" into two:

- Dirichlet eigenvalue problem on $V_{\Omega_{e}}^{0}$
- Transfer eigenvalue problem on $V_{\Omega_{e}, \text { harm }}$; cf. Smetana, Patera (2016)



## Dirichlet Eigenvalue Problem



High energy ext. (rhs evp)


Basis function


We solve the eigenvalue problem, choose $\lambda_{e, *}<T O L_{1}$, and extend the basis functions to $\Omega$ as before:

$$
a \Omega_{e}\left(E_{e \rightarrow \Omega_{e}}^{\partial \Omega_{e}}\left(\tau_{e, *}\right), E_{e \rightarrow \Omega_{e}}^{\partial \Omega_{e}}(\theta)\right)=\lambda_{e, *} a_{\Omega_{e}}\left(R_{e \rightarrow \Omega_{e}}\left(\tau_{e, *}\right), R_{e \rightarrow \Omega_{e}}(\theta)\right) \quad \forall \theta \in V_{e}^{0}
$$

## Transfer Operator

## Solution Space of Elliptic PDEs is Locally Low-Dimensional

- Consider $\omega^{\text {out }}=(-2,2) \times(0,1)$
$-\Delta u=0$ in $\omega^{\text {out }}$,
$u_{y}(x, 1)=u_{y}(x, 0)=0$.
- plus arbitrary Dirichlet b.c. on $\partial \omega^{\text {out }}$.

- separation of variables: all local solutions on $\omega^{\text {out }}$ have the form

$$
u(x, y)=a_{0}+b_{0} x+\sum_{n=1}^{\infty} \cos (n \pi y)\left[a_{n} \cosh (n \pi x)+b_{n} \sinh (n \pi x)\right]
$$

- Solution $u\left(x, \frac{2}{3}\right)$ for boundary cond. $-\cos (n \pi y)$ at $x=-2, x=2$ :


A very low-dimensional subspace on will already yield a very good approximation

Cf. Smetana, Patera (2016)

## Transfer Operator

## Constructing Local Reduced Spaces via a Transfer Operator

Introduce transfer operator $\mathfrak{T}$ :

- ... acts on the space of local solutions of the PDE and maps values $\zeta$ on $\partial \omega^{o u t}$ to $\omega^{\text {in }}$
- ... by solving the PDE locally with Dirichlet boundary values $\zeta$

- ... and restricting the local solution to $\omega^{\text {in }}$


Cf. Smetana, Patera (2016)

## Fully Algebraic Adaptive Coarse Space - Transfer Eigenvalue Problem

## Transfer Eigenvalue Problem



Basis function


The transfer eigenvalue problem is based on Smetana, Patera (2016). Different from all the eigenvalue problems before, it is solved on the boundary of $\Omega_{e}$ :
$a_{\Omega_{e}}\left(E_{\partial \Omega_{e} \rightarrow \Omega_{e}}\left(\eta_{e, *}\right), E_{\partial \Omega_{e} \rightarrow \Omega_{e}}(\theta)\right)=\lambda_{e, *} a_{\Omega_{e}}\left(R_{e \rightarrow \Omega_{e}}\left(E_{\partial \Omega_{e} \rightarrow \Omega_{e}}\left(\tau_{e, *}\right)\right), R_{e \rightarrow \Omega_{e}}\left(E_{\partial \Omega_{e} \rightarrow \Omega_{e}}(\theta)\right)\right) \quad \forall \theta \in V_{\partial \Omega_{e}}^{0}$
We select all eigenfunctions $\eta_{e, *}$ with $\lambda_{e, *}$ above a second user-chosen threshold $T O L_{2}$. Then, we first compute the edge values $\tau_{e, *}=\left.E_{\partial \Omega_{e} \rightarrow \Omega_{e}}\left(\eta_{e, *}\right)\right|_{e}$ and then extend them into the interior

$$
\varphi_{e, *}=E_{\Gamma \rightarrow \Omega}\left(R_{e \rightarrow \Gamma}\left(\tau_{e, *}\right)\right)
$$

## Fully Algebraic Adaptive Coarse Space - Transfer Eigenvalue Problem

## Transfer Eigenvalue Problem



Basis function


The transfer eigenvalue problem is based on Smetana, Patera (2016). Different from all the eigenvalue problems before, it is solved on the boundary of $\Omega_{e}$ :

$$
a_{\Omega_{e}}\left(E_{\partial \Omega_{e} \rightarrow \Omega_{e}}\left(\eta_{e, *}\right), E_{\partial \Omega_{e} \rightarrow \Omega_{e}}(\theta)\right)=\lambda_{e, *} a_{\Omega_{e}}\left(R_{e \rightarrow \Omega_{e}}\left(E_{\partial \Omega_{e} \rightarrow \Omega_{e}}\left(\tau_{e, *}\right)\right), R_{e \rightarrow \Omega_{e}}\left(E_{\partial \Omega_{e} \rightarrow \Omega_{e}}(\theta)\right)\right) \quad \forall \theta \in V_{\partial \Omega_{e}}^{0}
$$

We select all eigenfunctions $\eta_{e, *}$ with $\lambda_{e, *}$ above a second user-chosen threshold $T O L_{2}$. Then, we first compute the edge values $\tau_{e, *}=\left.E_{\partial \Omega_{e} \rightarrow \Omega_{e}}\left(\eta_{e, *}\right)\right|_{e}$ and then extend them into the interior

$$
\varphi_{e, *}=E_{\Gamma \rightarrow \Omega}\left(R_{e \rightarrow \Gamma}\left(\tau_{e, *}\right)\right)
$$

$\rightarrow$ Even though no Neumann matrices are needed to compute $E_{\partial \Omega_{e} \rightarrow \Omega_{e}}(\theta)$, Neumann matrices are needed to evaluate $a_{\Omega_{e}}(\cdot, \cdot)$ for functions with nonnegative trace on $\partial \Omega_{e}$

## Fully Algebraic Adaptive Coarse Space - Transfer Eigenvalue Problem

## Algebraic Transfer Eigenvalue Problem



Low energy ext. $E_{\partial \Omega_{e} \rightarrow \Omega_{e}}(\cdot)$


Basis function for $a_{\Omega_{e}}(\cdot, \cdot)$



High energy ext. $R_{e \rightarrow \Omega_{e}}\left(E_{\partial \Omega_{e} \rightarrow \Omega_{e}}(\cdot)\right)$


Basis function for $(\cdot, \cdot)_{I_{2}\left(\partial \Omega_{e}\right)}$

In order to obtain an algebraic transfer eigenvalue problem, we replace $a_{\Omega_{e}}(\cdot, \cdot)$ by $(\cdot, \cdot)_{l_{2}\left(\partial \Omega_{e}\right)}$ : $\left(E_{\partial \Omega_{e} \rightarrow \Omega_{e}}\left(\tau_{e, *}\right), E_{\partial \Omega_{e} \rightarrow \Omega_{e}}(\theta)\right)_{l_{2}\left(\partial \Omega_{e}\right)}=\lambda_{e, *} a_{\Omega_{e}}\left(R_{e \rightarrow \Omega_{e}}\left(E_{\partial \Omega_{e} \rightarrow \Omega_{e}}\left(\tau_{e, *}\right)\right), R_{e \rightarrow \Omega_{e}}\left(E_{\partial \Omega_{e} \rightarrow \Omega_{e}}(\theta)\right)\right) \quad \forall \theta \in V_{\partial \Omega_{e}}^{0}$

## Fully Algebraic Adaptive Coarse Space - Condition Number Bound

## Condition Number Estimate (Non-Algebraic Variant)

Using the non-algebraic eigenvalue problem (transfer eigenvalue problem with $a_{\Omega_{e}}(\cdot, \cdot)$ ), we obtain a condition number of the form:

$$
\kappa\left(\boldsymbol{M}_{\mathrm{DIR} \mathrm{\& TR}}^{-1} \boldsymbol{A}\right) \leq C \max \left(\frac{1}{T O L_{1}}, T O L_{2}\right)
$$

where $C$ is independent of $H, h$, and the contrast of the coefficient function $\alpha$.

## Condition Number Estimate (Algebraic Variant)

Using the algebraic eigenvalue problem (transfer eigenvalue problem with $(\cdot, \cdot)_{l_{2}\left(\partial \Omega_{e}\right)}$ ), we obtain a condition number of the form:

$$
\kappa\left(\boldsymbol{M}_{\mathrm{DIR} \mathrm{\& TR}}^{-1} \boldsymbol{A}\right) \leq C \max \left\{\frac{1}{T O L_{1}}, \frac{T O L_{2}}{\alpha_{\min }}\right\}
$$

where $C$ is independent of $H, h$, and the contrast of the coefficient function $\alpha$.

Cf. Heinlein and Smetana (Preprint: arXiv:2207.05559).

## Fully Algebraic Adaptive Coarse Space - Condition Number Bound

## Condition Number Estimate (Non-Algebraic Variant)

Using the non-algebraic eigenvalue problem (transfer eigenvalue problem with $a_{\Omega_{e}}(\cdot, \cdot)$ ), we obtain a condition number of the form:

$$
\kappa\left(\boldsymbol{M}_{\mathrm{DIR} \mathrm{\& TR}}^{-1} \boldsymbol{A}\right) \leq C \max \left(\frac{1}{T O L_{1}}, T O L_{2}\right)
$$

where $C$ is independent of $H, h$, and the contrast of the coefficient function $\alpha$.

## Condition Number Estimate (Algebraic Variant)

Using the algebraic eigenvalue problem (transfer eigenvalue problem with $(\cdot, \cdot)_{l_{2}\left(\partial \Omega_{e}\right)}$ ), we obtain a condition number of the form:

$$
\kappa\left(\boldsymbol{M}_{\mathrm{DIR} \mathrm{\& TR}}^{-1} \boldsymbol{A}\right) \leq C \max \left\{\frac{1}{T O L_{1}}, \frac{T O L_{2}}{\alpha_{\min }}\right\}
$$

where $C$ is independent of $H, h$, and the contrast of the coefficient function $\alpha$.
$\rightarrow$ The $\alpha_{\text {min }}$ arises from the fact that

$$
\alpha_{\min }\|\theta\|_{I_{2}\left(\partial \Omega_{e}\right)}^{2} \leq C\left\|E_{\partial \Omega_{e} \rightarrow \Omega_{e}}(\theta)\right\|_{a, \Omega_{e}}^{2} \quad \forall \theta \in V_{\partial \Omega_{e}} .
$$

Cf. Heinlein and Smetana (Preprint: arXiv:2207.05559).

## Numerical Results - Channel Coefficient Function



| $V_{0}$ | variant | $T O L_{\text {DIR }}$ | TOL | TOLPOD | $\operatorname{dim} V_{0}$ | $\kappa$ | \# its. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{\text {GDSW }}$ | - |  |  | - | 33 | $2.7 \cdot 10^{5}$ | 118 |
| $V_{\text {AGDSW }}$ | - | $1.0 \cdot 10^{-2}$ |  |  | 57 | 7.4 | 24 |
| $V_{\text {DIR\&TR }}$ | $a_{\Omega_{e}}(\cdot, \cdot)$ | $1.0 \cdot 10^{-3}$ | $1.0 \cdot 10$ | $1.0 \cdot 10^{-5}$ | 57 | 7.2 | 24 |
| $V_{\text {DIR\&TR }}$ | $(\cdot, \cdot) l_{2}\left(\partial \Omega_{\mathrm{e}}\right)$ | $1.0 \cdot 10^{-3}$ | $1.0 \cdot 10$ | $1.0 \cdot 10^{-5}$ | 57 | 7.2 | 24 |

$\rightarrow$ In order to get rid of potential linear dependencies between the $V_{\text {DIR }}$ and $V_{\text {TR }}$ spaces, apply
a proper orthogonal decomposition (POD) with threshold $T O L_{\text {POD }}$ for each edge.

## Numerical Results - Model 2, SPE10 Benchmark

Layer 70 from model 2 of the SPE10 benchmark; cf. Christie and Blunt (2001)


| $V_{0}$ | variant | $T O L_{\text {DIR }}$ | $T O L_{\text {TR }}$ | $T O L_{\text {POD }}$ | $\operatorname{dim} V_{0}$ |
| :--- | :--- | ---: | ---: | ---: | ---: |
| $V_{\text {GDSW }}$ | - | - | $\kappa$ | \# its. |  |
| $V_{\text {AGDSW }}$ | - | - | 85 | $2.0 \cdot 10^{5}$ | 57 |
| $V_{\text {DIR\&TR }}$ | $a \Omega_{e}(\cdot, \cdot)$ | $1.0 \cdot 10^{-3} 1.0 \cdot 10^{-2}$ | $1.0 \cdot 10^{-5}$ | 93 | 19.3 |

Original coefficient $\alpha_{\max } \approx 10^{4}, \alpha_{\min } \approx 10^{-2}$ (without thresholding)

| $V_{\text {GDSW }}$ | - | - | - | 85 | 20.6 | 42 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Thank you for your attention!

## Summary

- Using adaptive coarse spaces we are able to retain robustness of two-level Schwarz preconditioners for highly heterogeneous problems:
- The support and computation of the coarse basis functions are local, however, the computation comes at substantial computational cost.
- The condition number bound is independent of the contrast of the coefficient function.
- The algebraic variant requires the solution of two eigenvalue problems. The minimum value of the coefficient function appears in the condition number bound.


## Outlook

- Efficient solution of the local eigenvalue problems, for instance, using inexact eigensolvers
- Parallel implementation of adaptive coarse spaces


## Additional Results

## Numerical Results - Comb Type Coefficient Function


yellow: $\alpha=10^{6}$

blue: $\alpha=1$

| $V_{0}$ | $\Omega_{e}$ | TOL $_{\text {DIR }}$ TOL $_{\text {TR }}$ TOL |  |
| :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: |

## Numerical Results - Variation of $\alpha_{\text {min }}$




