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Highly Heterogeneous Multiscale Problems

Highly heterogeneous multiscale problems appear in most areas of modern science and
engineering, e.g., composite materials, porous media, and turbulent transport in high
Reynolds number flow.

Microsection of a dual-phase steel.
(Courtesy of Jörg Schröder, University of
Duisburg-Essen, Germany; cooperation
with ThyssenKrupp Steel.)

Groundwater flow: model 2 from
the Tenth SPE Comparative
Solution Project; cf. Christie and
Blunt (2001).

Representation of the composition
of a small segment of arterial walls;
taken from O’Connell et al. (2008).

→ The solution of such problems requires a high spatial and temporal resolution but also
poses challenges to the solvers.
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Highly Heterogeneous Model Problem
Consider the diffusion boundary value problem: find u such that

−∇ · (α(x)∇u(x)) = f(x) in Ω,

u = 0 on ∂Ω,

with a highly varying coefficient function α. The corresponding
weak formulation is: find u ∈ H1

0 (Ω), such that

aΩ(u, v) = f(v) ∀v ∈ H1
0 (Ω)

with the bilinear form and linear functional

aΩ(u, v) :=
∫

Ω
α(x)(∇u(x))T ∇v(x) dx and f(v) :=

∫
Ω
f(x)v(x) dx .

Discretization using finite elements yields the linear system

Au = f

with stiffness matrix A, discrete solution u, and right hand side f .

Original microsection of a
dual-phase steel

Binary coefficient function

Solution of the BVP
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Schwarz Domain Decomposition
Preconditioners



Homogeneous Model Problem & Overlapping Domain Decomposition

Consider a homogeneous diffusion model
problem (α(x) = 1):

−∆u = f in Ω = [0, 1]2,

u = 0 on ∂Ω.

Discretization using finite elements yields the linear
equation system

Au = f .

Overlapping Domain Decomposition
Overlapping Schwarz methods are based on
overlapping decompositions of the
computational domain Ω.

Overlapping subdomains Ω′
1, ..., Ω′

N can be
constructed by recursively adding layers of
elements to nonoverlapping subdomains
Ω1, ..., ΩN .

Nonoverlap. DD
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Two-Level Schwarz Preconditioners

One-Level Schwarz Preconditioner
Overlap δ = 1h Restriction Ri to Ω′

i

Based on an overlapping domain decomposition, we
define a one-level Schwarz operator

M−1
OS-1A =

∑N

i=1
RT

i A−1
i Ri A,

where Ri and RT
i are restriction and prolongation

operators corresponding to Ω′
i , and Ai := Ri ART

i .

Condition number estimate:

κ
(

M−1
OS-1A

)
≤ C

(
1 + 1

Hδ

)
with subdomain size H and the width of the overlap δ.

Adding a Lagrangian Coarse Space
Coarse triangulation Q1 basis function

The two-level overlapping Schwarz operator reads

M−1
OS-2A = ΦA−1

0 ΦT A︸ ︷︷ ︸
coarse level – global

+
∑N

i=1
RT

i A−1
i Ri A︸ ︷︷ ︸

first level – local

,

where Φ contains the coarse basis functions and
A0 := ΦT AΦ; cf., e.g., Toselli, Widlund (2005).

A Lagrangian coarse basis requires a coarse
triangulation (geometric information) → not algebraic

⇒ κ (MOS-2A) ≤ C
(

1 + H
δ

)
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Extension-Based GDSW Coarse Spaces
Non-overlapping DD Ident. vertices & edges Restr. of the null space Energy minimizing ext.

In GDSW (Generalized–Dryja–Smith–Widlund)
coarse spaces, the coarse basis functions are chosen
as energy minimizing extensions of functions ΦΓ

that are defined on the interface Γ:

Φ =
[

−A−1
II AT

ΓIΦΓ

ΦΓ

]
=

[
ΦI

ΦΓ

]
The functions ΦΓ are restrictions of the null space
of global Neumann matrix to the edges, vertices,
and, in 3D, faces (partition of unity) of the
non-overlapping decomposition.

The condition number of the GDSW operator
is bounded by

κ
(
M−1

GDSWA
)

≤ C
(

1 + H
δ

) (
1 + log

(H
h

))2
;

cf. Dohrmann, Klawonn, Widlund (2008),
Dohrmann, Widlund (2009, 2010, 2012).

→ We only obtain the exponent 2 for very
irregular subdomains.

→ Scalable and algebraic!
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Weak Scalability up to 64 k MPI Ranks / 1.7 b Unknowns (3D Poisson; Juqueen)

GDSW vs RGDSW (Reduced Dimension)
Heinlein, Klawonn, Rheinbach, Widlund (2019).

RGDSW (Reduced Dimension GDSW)
Non-overlapping DD

RGDSW option 1

Ident. vertices & edges

RGDSW option 2.2

Reduced dimension GDSW coarse spaces are
constructed from nodal interface functions (different
partition of unity); cf. Dohrmann, Widlund (2017).

Alexander Heinlein (TU Delft) Solvers for frequency-domain wave problems and applications 6/29



FROSch (Fast and Robust Overlapping Schwarz) Framework in Trilinos

Software
• Object-oriented C++ domain decomposition solver framework with

MPI-based distributed memory parallelization
• Part of Trilinos with support for both parallel linear algebra packages

Epetra and Tpetra
• Node-level parallelization and performance portability on CPU and GPU

architectures through Kokkos
• Accessible through unified Trilinos solver interface Stratimikos

Methoddology
• Parallel scalable multi-level Schwarz domain decomposition preconditioners
• Algebraic construction based on the parallel distributed system matrix
• Extension-based coarse spaces

Team (Active)
• Alexander Heinlein (TU Delft)
• Siva Rajamanickam (Sandia)
• Friederike Röver (TUBAF)

• Axel Klawonn (Uni Cologne)
• Oliver Rheinbach (TUBAF)
• Ichitaro Yamazaki (Sandia)
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Observations for Heterogeneous
Problems



Heterogeneous Problem – Random Distribution

Problem Configuration
Diffusion problem with random binary coefficient α: find u such
that

−∇ · (α(x)∇u(x)) = f(x) in Ω,

u = 0 on ∂Ω.

Domain decomposition into 10 × 10 subdomains with H/h = 10
and overlap 1h. dark blue: α = 108 light blue: α = 1

Prec. its. κ

– >2 000 4.51 · 108

M−1
OS-1 >2 000 4.51 · 108

M−1
OS-2 586 5.56 · 105

Observations

→ For heterogeneous coefficients, the condition number clearly
deteriorates. It depends on the contrast of the coefficient
function

Let us consider some pathological cases to better understand the behavior of overlapping Schwarz
methods for heterogeneous coefficient distributions.
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Heterogeneous Problem – Heterogeneities Only Inside Subdomains

Problem Configuration
Diffusion problem with random binary coefficient α without
high coefficients touching the interface: find u such that

−∇ · (α(x)∇u(x)) = f(x) in Ω,

u = 0 on ∂Ω.

Domain decomposition into 10 × 10 subdomains with H/h = 10
and overlap 1h. dark blue: α = 108 light blue: α = 1

Prec. its. κ

– >2 000 7.99 · 108

M−1
OS-1 64 133.16

M−1
OS-2 78 139.15

Observations

→ In the first level, we solve the subdomain problems exactly
⇒ Jumps inside the subdomains are not problematic

→ Classical one- and two-level methods are robust for jumps within
the subdomains
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Heterogeneous Problem – Channels Across the Interface

Problem Configuration
Diffusion problem with binary coefficient α with high contrast
channels: find u such that

−∇ · (α(x)∇u(x)) = f(x) in Ω,

u = 0 on ∂Ω.

Domain decomposition into 10 × 10 subdomains with H/h = 10
and overlap 1h. dark blue: α = 108 light blue: α = 1

Prec. δ its. κ

– 987 8.03 · 108

1h 259 83.34 · 106

2h 216 5.56 · 106M−1
OS-1

3h 37 91.97
1h 163 4.70 · 105

2h 128 3.24 · 105M−1
OS-2

3h 44 91.94

Observations

→ In case the channels with high coefficient lie completely within
the overlapping subdomains, the method is again robust.
Otherwise, the convergence deteriorates.

→ In general, it is not practical to extend the overlap until each
high coefficient component lies completely within one
overlapping subdomain.
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Heterogeneous Problem – Inclusions at the Vertices
Problem Configuration

Diffusion problem with binary coefficient α with high coefficient
inclusions at the vertices: find u such that

−∇ · (α(x)∇u(x)) = f(x) in Ω,

u = 0 on ∂Ω.

Domain decomposition into 10 × 10 subdomains with H/h = 10
and overlap 1h. dark blue: α = 108 light blue: α = 1

Prec. its. κ

– 874 1.35 · 109

M−1
OS-1 163 4.06 · 107

M−1
OS-2 138 1.07 · 106

M−1
MsFEM 24 8.05

Observations

→ In general, one- or two-level Schwarz
methods are not robust for high
coefficient inclusions at the vertices

→ Robustness can be retained by using
multiscale finite element method
(MsFEM) type functions instead; cf. Hou
(1997), Efendiev and Hou (2009)

Lagrangian function

MsFEM function
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Heterogeneous Problem – Channels & Inclusions

Problem Configuration
Diffusion problem with binary coefficient α with channels and
vertex inclusions: find u such that

−∇ · (α(x)∇u(x)) = f(x) in Ω,

u = 0 on ∂Ω.

Domain decomposition into 10 × 10 subdomains with H/h = 10
and overlap 1h. dark blue: α = 108 light blue: α = 1

Prec. its. κ

– 1708 1.16 · 109

M−1
OS-1 447 4.17 · 107

M−1
OS-2 268 1.10 · 106

M−1
MsFEM 117 4.34 · 105

Observations

→ All of the aforementioned approaches fail for this example.

→ Since we were able to deal with the vertex inclusions, the
problem has to be related to the edges. How can we construct
suitable coarse basis functions to deal with coefficient jumps
at the edges?

Let us now discuss the Schwarz theory in order to construct a robust coarse space for arbitrary
heterogeneous problems.
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Influence of Heterogeneities on
the Schwarz Theory



Schwarz Theory

In order to establish a condition number bound for κ
(

M−1
ad A

)
based on the abstract Schwarz framework, we

have to verify the following three assumptions:

Assumption 1: Stable Decomposition
There exists a constant C0 such that, for every u ∈ V , there exists a decomposition u =

∑N
i=0 RT

i ui , ui ∈ Vi ,
with ∑N

i=0
ai (ui , ui ) ≤ C2

0 a(u, u).

Assumption 2: Strengthened Cauchy-Schwarz Inequality
There exist constants 0 ≤ ϵij ≤ 1, 1 ≤ i , j ≤ N, such that∣∣a(RT

i ui , RT
j uj )

∣∣ ≤ ϵij
(

a(RT
i ui , RT

i ui )
)1/2 (

a(RT
j uj , RT

j uj )
)1/2

for ui ∈ Vi and uj ∈ Vj . (Consider E = (εij ) and ρ (E) its spectral radius)

Assumption 3: Local Stability
There exists ω < 0, such that

a(RT
i ui , RT

i ui ) ≤ ωai (ui , ui ), ui ∈ range
(

P̃i
)

, 0 ≤ i ≤ N.
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Schwarz Theory

General Condition Number Bound
With Assumption 1–3, we have

κ
(

M−1
ad A

)
≤ C2

0 ω (ρ (E) + 1)
for

MadA =
∑N

0=1
RT

i A−1
i Ri A;

see, e.g., Toselli, Wildund (2005).

To obtain a condition number bound for a specific
additive Schwarz preconditioner, we have to
estimate ω, ρ (E), and C2

0 .

The constants ω and ρ (E) can often easily be
bounded.

Exact Solvers
If we choose the local bilinear forms as

ai (ui , ui ) := a(RT
i ui , RT

i ui )
we obtain Ai = Ri ART

i and ω = 1.

→ For exact exact local and coarse solvers, ω

does not depend on the coefficient.

Coloring Constant

The spectral radius ρ (E) is bounded by the number of
colors Nc of the domain decomposition.

→ Nc depends only on the domain decomposition but not
on the coefficient function.
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Stable Decomposition – GDSW Coarse Space
In order to prove the existence of a stable
decomposition

u =
N∑

i=0

RT
i ui and

N∑
i=0

ai (ui , ui ) ≤ C2
0 a(u, u)

for a specific coarse space, the most essential
estimate is

a0(u0, u0) ≤ C2
0 a(u, u).

⇒ C2
0 will arise in the condition number

estimate.

Homogeneous Diffusion
In the case of a diffusion problem with a
constant coefficient,

−∆u = f in Ω,

u = 0 on ∂Ω,

this just corresponds to proving

|u0|2H1(Ω) ≤ C2
0 |u|2H1(Ω) .

GDSW Coarse Space
In the proof for the GDSW preconditioner, we have

u0(x) =
∑

V
u(V)θV(x) +

∑
E

ūEθE(x).

Then, using an inverse inequality for θV and a discrete
Sobolev inequality for u − ūΩi ,∣∣(u(V) − ūΩi )θV

∣∣2
a,Ωi

≤ C(1 + log(H/h))
∥∥u − ūΩi

∥∥2
H1(Ωi )

and, similarly (estimating θE adds another (1 + log(H/h))),∣∣(ūE − ūΩi )θE
∣∣2
a,Ωi

≤ C(1 + log(H/h))2
∥∥u − ūΩi

∥∥2
H1(Ωi )

.

Using a Poincaré inequality, we then obtain |u|2a,Ωi
.

Discrete harmonic GDSW basis functions θV and θE.
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Stable Decomposition – Adaptive Coarse Spaces
In order to prove the existence of a stable
decomposition

u =
N∑

i=0

RT
i ui and

N∑
i=0

ai (ui , ui ) ≤ C2
0 a(u, u)

for a specific coarse space, the most essential
estimate is

a0(u0, u0) ≤ C2
0 a(u, u).

⇒ C2
0 will arise in the condition number

estimate.

Heterogeneous Diffusion
In the case of a heterogeneous diffusion
problem,

−∇ · (A(x) · ∇u) = f in Ω,

u = 0 on ∂Ω,

we have a(u, v) =
∫

Ω A(x)∇u · ∇v dx and the
constants may depend on the contrast
αmax/αmin. ⇒ Remove dependence

Idea of Adaptive Coarse Spaces
Ensure

a(u0, u0) ≤ C2
0 a(u, u)

by introducing two bilinear forms c(·, ·) and d(·, ·) with
a(u0, u0) ≤ C1d(u0, u0) (high energy)

and
c(u0, u0) ≤ C2a(u, u), (low energy)

where C1 and C2 are independent of the coefficient
function and u0 := I0u is a suitable coarse function. Then,
we enhance the coarse space by all eigenvectors with
eigenvalues below a tolerance tol of the generalized
eigenvalue problem

d(v , w) = λ c(v , w)
and obtain

a(u0, u0) ≤ C1 d(u0, u0) ≤ C1 tol c(u0, u0) ≤ C1 C2 tol a(u, u)

without applying a Poincaré inequality. In practice,
eigenvalue problem is partitioned into many local
eigenvalue problems → parallelization!
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and obtain
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In practice, it is sufficient if C1 and C2 depend on either
• αmin or

• αmax.
→ In the algebraic variant, C2 depends only on αmin.
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Adaptive Coarse Spaces –
OS-ACMS, AGDSW, and a Fully
Algebraic Adaptive Coarse Space



Adaptive Coarse Spaces in Domain Decomposition Methods – Literature Overview
This list is not exhaustive:

• FETI & Neumann–Neumann: Bjørstad and Krzyzanowski (2002); Bjørstad, Koster, and Krzyzanowski
(2001); Rixen and Spillane (2013); Spillane (2015, 2016)

• BDDC & FETI-DP: Mandel and Sousedík (2007); Sousedík (2010); Sístek, Mandel, and Sousedík
(2012); Dohrmann and Pechstein (2013, 2016); Klawonn, Radtke, and Rheinbach (2014, 2015, 2016);
Klawonn, Kühn, and Rheinbach (2015, 2016, 2017); Kim and Chung (2015); Kim, Chung, and Wang
(2017); Beirão da Veiga, Pavarino, Scacchi, Widlund, and Zampini (2017); Calvo and Widlund (2016);
Oh, Widlund, Zampini, and Dohrmann (2017)

• Overlapping Schwarz: Galvis and Efendiev (2010, 2011); Nataf, Xiang, Dolean, and Spillane (2011);
Spillane, Dolean, Hauret, Nataf, Pechstein, and Scheichl (2011); Gander, Loneland, and Rahman
(preprint 2015); Eikeland, Marcinkowski, and Rahman (preprint 2016); Marcinkowski and Rahman
(2018); Al Daas, Grigori, Jolivet, Tournier (2021); Bastian, Scheichl, Seelinger, and Strehlow (2022);
Spillane (preprint 2021, preprint 2021); Bootland, Dolean, Graham, Ma, Scheichl (preprint 2021)

• Approaches for overlapping Schwarz methods in this talk:
• OS-ACMS: Heinlein, Klawonn, Knepper, Rheinbach (2018)
• AGDSW: Heinlein, Klawonn, Knepper, Rheinbach (2019, 2019), Heinlein, Klawonn, Knepper,

Rheinbach Widlund (2022)
• Fully Algebraic Coarse Space: Heinlein and Smetana (Preprint: arXiv:2207.05559)

There is also related work on multigrid methods, such as AMGe by Brezina, Cleary, Falgout, Henson, Jones,
Manteuffel, McCormick, Ruge (2000).
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OS-ACMS – An Adaptive Coarse Space Based on the ACMS Discretization

As in the ACMS finite element space, we construct a coarse space composed of MsFEM-type nodal and
coupling basis functions. However, in order to obtain a robust coarse space, the construction has to be
slightly modified; see Heinlein, Klawonn, Knepper, Rheinbach (2018).

MsFEM Type Basis Functions
Interface values MsFEM basis function red: αmax blue: αmin

We define the interface values as follows:
φv (v ′) = δv,v′ ∀v ′ ∈ V (Kronecker property)

φv |e = E∂e→Ωe (φv |∂e) ∀e ∈ E (Energy min. ext.)
The interior values are then obtained by an energy
minimizing extension into the interior:

φv = EΓ→Ω (φv |Γ)

Energy Minimizing Extensions
The energy minimizing extension
E∂Ω→Ω (v) of the function v defined
on ∂Ω is given by the solution of the
boundary value problem:

aΩ(E∂Ω→Ω (v) , w) = 0 ∀w ∈ V 0
Ω,

E∂Ω→Ω (v) = v on ∂Ω.

This is equivalent to solving

E∂Ω→Ω (v) = arg min
w∈VΩw∂Ω=v

aΩ (w , w) .
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OS-ACMS – An Adaptive Coarse Space Based on the ACMS Discretization
OS-ACMS Edge Basis Functions

Low energy extension Ee→Ωe (·) High energy extension Re→Ωe (·) Ext. into the interior

First, we solve the following eigenvalue problem for each edge e ∈ E:
aΩe (Ee→Ωe (τe,∗) , Ee→Ωe (θ)) = λe,∗aΩe (Re→Ωe (τe,∗) , Re→Ωe (θ)) ∀θ ∈ V 0

e

Then, we select all eigenfunctions τe,∗ with λe,∗ below a user-chosen threshold TOL. We then extend
τe,∗ by zero onto Γ and with minimum energy into Ω to obtain the corresponding basis functions:

φe,∗ = EΓ→Ω (Re→Γ (τe,∗))

Condition Number Bound
Using the coarse space VOS-ACMS = {φv } ∪ {φe} in the two-level Schwarz preconditioner, we obtain

κ
(
M−1

OS-ACMSA
)

≤ C (1/TOL),

where C is independent of H, h, and the contrast of the coefficient function α.
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AGDSW – An Adaptive GDSW Coarse Space
The adaptive GDSW (AGDSW) coarse space is a related approach, which also depends on a partition
of the domain decomposition interface into edges and vertices. It differs from OS-ACMS as follows:

• Instead of MsFEM functions, we use the much simpler and cheaper GDSW vertex basis
functions

• The edge eigenvalue problem has to be modified accordingly

As a result, the AGDSW coarse space

• always contains the classical GDSW coarse space.
Cf. Heinlein, Klawonn, Knepper, Rheinbach (2019, 2019, 2022).

AGDSW Vertex Basis Function

The interior values are then obtained by extending 1 be zero onto the
remainder of the interface followed by an energy minimizing extension
into the interior:

φv = EΓ→Ω (Rv→Γ (1v ))
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AGDSW – An Adaptive GDSW Coarse Space
AGDSW Edge Basis Functions

Low energy extension Ee→Ωe (·) High energy extension Re→Ωe (·) Ext. into the interior

First, we solve the following eigenvalue problem for each edge e ∈ E:
aΩe (Ee→Ωe (τe,∗) , Ee→Ωe (θ)) = λe,∗aΩe (Re→Ωe (τe,∗) , Re→Ωe (θ)) ∀θ ∈ Ve

Then, we select eigenfunctions using the threshold TOL and extend the edge values to Ω:
φe,∗ = EΓ→Ω (Re→Γ (τe,∗))

Condition Number Bound
Using the coarse space VOS-ACMS = {φv } ∪ {φe} in the two-level Schwarz preconditioner, we obtain

κ
(
M−1

AGDSWA
)

≤ C (1/TOL),

where C is independent of H, h, and the contrast of the coefficient function α.
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Numerical Results of Adaptive Coarse Spaces (2D)

Example 1

dark blue: α = 108 light blue: α = 1

4 × 4 subdomains, H/h = 30, δ = 2h

V0 tol it. κ dim V0

VMsFEM - 199 7.8 · 105 9
VOS-ACMS 10−2 23 5.1 69
VSHEM 10−3 20 4.3 69
VAGDSW 10−2 29 7.2 93

Example 2

dark blue: α = 108 light blue: α = 1

4 × 4 subdomains, H/h = 30, δ = 2h

V0 tol it. κ dim V0

VMsFEM - 282 3.8 · 107 9
VOS-ACMS 10−2 41 13.2 33
VSHEM 10−3 29 6.4 93
VAGDSW 10−2 42 16.5 45

SHEM by Gander, Loneland, Rahman (TR 2015), OS-ACMS from H., Klawonn, Knepper, Rheinbach (2018),
AGDSW from H., Klawonn, Knepper, Rheinbach (2019)
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Extensions of the AGDSW Approach

Reducing the Coarse Space Dimension
GDSW partition RGDSW partition

As in the reduced dimension GDSW (RGDSW)
approach, we partition the interface into
interface components centered around the
vertices. On these interface components, we
solve (slightly modified) eigenvalue problems.

Cf. Heinlein, Klawonn, Knepper, Rheinbach (2021) and
Heinlein, Klawonn, Knepper, Rheinbach, Widlund (2022).

Extension to Three Dimensions
Face Edge

• In AGDSW, we have to solve face and edge
eigenvalue problems

• In RAGDSW, only the interface components
change

RGDSW interface component
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Reduced Dimension (Adaptive) GDSW – 3D Numerical Example

cross section detailed view of partially peeled
beams

Heterogeneous linear elasticity problem
• Ω: cube; Dirichlet boundary condition on ∂Ω.
• Structured tetrahedral mesh; 132 651 nodes

(397 953 DOFs); unstructured domain
decomposition (METIS); 125 subdomains.

• Poisson ration ν = 0.4.
• Young modulus: elements with E(T ) = 106 in light

blue (beams); remainder set to E(T ) = 1.
• Right hand side f ≡ 1.
• Overlap: two layers of finite elements.

V0 tol iter κ dim V0
dim V0
dim V h

GDSW − >2 000 3.1·105 9 996 2.51%
RGDSW − >2 000 3.9·105 3 358 0.84%
AGDSW 0.100 71 41.1 14 439 3.63%
AGDSW 0.050 90 59.5 13 945 3.50%
AGDSW 0.010 132 161.1 13 763 3.46%
RAGDSW 0.100 67 34.6 8 249 2.07%
RAGDSW 0.050 88 61.3 7 683 1.93%
RAGDSW 0.010 114 117.4 7 501 1.88%

• RAGDSW: 45% reduction of coarse space
dimension compared to AGDSW (highlighted
line).

• RAGDSW: smaller coarse space dimension
compared to GDSW and even robust!
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Neumann Matrices and Algebraicity

The low energy property

c(u0, u0) ≤ C2a(u, u)

of the left hand side in the eigenvalue problems of the OS-ACMS
and AGDSW methods is satisfied due to the use of Neumann
boundary conditions:

aΩe (Ee→Ωe (τe,∗) , Ee→Ωe (θ)) = λe,∗aΩe (Re→Ωe (τe,∗) , Re→Ωe (θ)) ∀θ ∈ V 0
e (OS-ACMS)

aΩe (Ee→Ωe (τe,∗) , Ee→Ωe (θ)) = λe,∗aΩe (Re→Ωe (τe,∗) , Re→Ωe (θ)) ∀θ ∈ V 0
e (AGDSW)

In both approaches, the right hand side matrix just corresponds to the submatrix Aee of A
corresponding to the edge e, whereas the Neumann matrices on the left hand sides cannot be
extracted from the fully assembled matrix A.

→ Both approaches are not algebraic
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Fully Algebraic Adaptive Coarse Space
We can make use of the a-orthogonal decomposition

VΩe = V 0
Ωe ⊕ {E∂Ωe→Ωe (v) : v ∈ V∂Ωe }︸ ︷︷ ︸

=:VΩe ,harm

to “split the AGDSW eigenvalue problem” into two:

• Dirichlet eigenvalue problem on V 0
Ωe

• Transfer eigenvalue problem on VΩe ,harm; cf. Smetana, Patera (2016)

Dirichlet Eigenvalue Problem
Low energy ext. (lhs evp) High energy ext. (rhs evp) Basis function

We solve the eigenvalue problem, choose λe,∗ < TOL1, and extend the basis functions to Ω as before:

aΩe

(
E∂Ωe

e→Ωe
(τe,∗) , E∂Ωe

e→Ωe
(θ)

)
= λe,∗aΩe (Re→Ωe (τe,∗) , Re→Ωe (θ)) ∀θ ∈ V 0

e

Alexander Heinlein (TU Delft) Solvers for frequency-domain wave problems and applications 23/29



Transfer Operator

Solution Space of Elliptic PDEs is Locally Low-Dimensional

• Consider ωout = (−2, 2) × (0, 1)
−∆u = 0 in ωout ,

uy (x , 1) = uy (x , 0) = 0.

• plus arbitrary Dirichlet b.c. on ∂ωout .
• separation of variables: all local solutions on ωout have the form

u(x , y) = a0 + b0x +
∞∑

n=1
cos(nπy)[an cosh(nπx) + bn sinh(nπx)]

• Solution u(x , 2
3 ) for boundary cond. − cos(nπy) at x = −2, x = 2:

A very low-dimensional subspace on ωin

will already yield a very good approxima-
tion

Cf. Smetana, Patera (2016)
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Transfer Operator

Constructing Local Reduced Spaces via a Transfer Operator

Introduce transfer operator T:

• ... acts on the space of local solutions of the
PDE and maps values ζ on ∂ωout to ωin

• ... by solving the PDE locally with Dirichlet
boundary values ζ

• ... and restricting the local solution to ωin

Cf. Smetana, Patera (2016)
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Fully Algebraic Adaptive Coarse Space – Transfer Eigenvalue Problem

Transfer Eigenvalue Problem
Low energy ext. E∂Ωe →Ωe (·) High energy ext. Re→Ωe (E∂Ωe →Ωe (·)) Basis function

The transfer eigenvalue problem is based on Smetana, Patera (2016). Different from all the
eigenvalue problems before, it is solved on the boundary of Ωe :

aΩe (E∂Ωe→Ωe (ηe,∗) , E∂Ωe→Ωe (θ)) = λe,∗aΩe (Re→Ωe (E∂Ωe→Ωe (τe,∗)) , Re→Ωe (E∂Ωe→Ωe (θ))) ∀θ ∈ V 0
∂Ωe

We select all eigenfunctions ηe,∗ with λe,∗ above a second user-chosen threshold TOL2. Then, we
first compute the edge values τe,∗ = E∂Ωe→Ωe (ηe,∗) |e and then extend them into the interior

φe,∗ = EΓ→Ω (Re→Γ (τe,∗))

→ Even though no Neumann matrices are needed to compute E∂Ωe→Ωe (θ), Neumann matrices are
needed to evaluate aΩe (·, ·) for functions with nonnegative trace on ∂Ωe
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Fully Algebraic Adaptive Coarse Space – Transfer Eigenvalue Problem
Algebraic Transfer Eigenvalue Problem

Low energy ext. E∂Ωe →Ωe (·)

Low energy ext. E∂Ωe →Ωe (·)

High energy ext. Re→Ωe (E∂Ωe →Ωe (·))

High energy ext. Re→Ωe (E∂Ωe →Ωe (·))

Basis function for aΩe (·, ·)

Basis function for (·, ·)l2(∂Ωe )

In order to obtain an algebraic transfer eigenvalue problem, we replace aΩe (·, ·) by (·, ·)l2(∂Ωe ):

(E∂Ωe→Ωe (τe,∗) , E∂Ωe→Ωe (θ))l2(∂Ωe ) = λe,∗aΩe (Re→Ωe (E∂Ωe→Ωe (τe,∗)) , Re→Ωe (E∂Ωe→Ωe (θ))) ∀θ ∈ V 0
∂Ωe
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Fully Algebraic Adaptive Coarse Space – Condition Number Bound
Condition Number Estimate (Non-Algebraic Variant)
Using the non-algebraic eigenvalue problem (transfer eigenvalue problem with aΩe (·, ·)), we obtain a
condition number of the form:

κ
(
M−1

DIR&TRA
)

≤ C max
( 1

TOL1
, TOL2

)
,

where C is independent of H, h, and the contrast of the coefficient function α.

Condition Number Estimate (Algebraic Variant)
Using the algebraic eigenvalue problem (transfer eigenvalue problem with (·, ·)l2(∂Ωe )), we obtain a
condition number of the form:

κ
(
M−1

DIR&TRA
)

≤ C max
{ 1

TOL1
,

TOL2
αmin

}
,

where C is independent of H, h, and the contrast of the coefficient function α.

→ The αmin arises from the fact that

αmin∥θ∥2
l2(∂Ωe ) ≤ C∥E∂Ωe→Ωe (θ) ∥2

a,Ωe ∀θ ∈ V∂Ωe .

Cf. Heinlein and Smetana (Preprint: arXiv:2207.05559).
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Numerical Results – Channel Coefficient Function

yellow: α = 106 blue: α = 1

V0 variant TOLDIR TOLTR TOLPOD dim V0 κ # its.
VGDSW - - - - 33 2.7 · 105 118
VAGDSW - 1.0 · 10−2 57 7.4 24
VDIR&TR aΩe (·, ·) 1.0 · 10−3 1.0 · 101 1.0 · 10−5 57 7.2 24
VDIR&TR (·, ·)l2(∂Ωe ) 1.0 · 10−3 1.0 · 101 1.0 · 10−5 57 7.2 24

→ In order to get rid of potential linear dependencies between the VDIR and VTR spaces, apply
a proper orthogonal decomposition (POD) with threshold TOLPOD for each edge.
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Numerical Results – Model 2, SPE10 Benchmark
Layer 70 from model 2 of the SPE10 benchmark; cf. Christie and Blunt (2001)

V0 variant TOLDIR TOLTR TOLPOD dim V0 κ # its.
VGDSW - - - - 85 2.0 · 105 57
VAGDSW - 1.0 · 10−2 93 19.3 38
VDIR&TR aΩe (·, ·) 1.0 · 10−3 1.0 · 105 1.0 · 10−5 90 19.4 39
VDIR&TR (·, ·)l2(∂Ωe ) 1.0 · 10−3 1.0 · 105 1.0 · 10−5 147 9.6 31

Original coefficient αmax ≈ 104, αmin ≈ 10−2 (without thresholding)
VGDSW - - - - 85 20.6 42
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Thank you for your attention!

Summary
• Using adaptive coarse spaces we are able to retain robustness of two-level Schwarz preconditioners for

highly heterogeneous problems:
• The support and computation of the coarse basis functions are local, however, the computation comes

at substantial computational cost.
• The condition number bound is independent of the contrast of the coefficient function.

• The algebraic variant requires the solution of two eigenvalue problems. The minimum value of the
coefficient function appears in the condition number bound.

Outlook
• Efficient solution of the local eigenvalue problems, for instance, using inexact eigensolvers

• Parallel implementation of adaptive coarse spaces
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Additional Results



Numerical Results – Comb Type Coefficient Function

yellow: α = 106 blue: α = 1

V0 Ωe TOLDIR TOLTR TOLPOD dim V0 κ # its.
Ω2h

e 10−3 – – 57 7.1 24
Ω5h

e 10−3 – – 45 12.6 26
ΩH

e 10−3 – – 33 24.1 31VAGDSW

– 10−3 – – 33 24.1 31
Ω2h

e 10−3 106 10−5 57 7.1 24
Ω5h

e 10−3 105 10−5 45 17.1 33VDIR&TR
ΩH

e 10−3 105 10−5 33 24.1 31
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Numerical Results – Variation of αmin

yellow: α = 106 blue: α = αmin

αmin V0 toldir toltr TOLO dim V0 κ # its.
VGDSW – – – 33 2.7 · 107 14210−2
VDIR&TR 10−3 104 10−5 57 7.3 25
VGDSW – – – 33 2.7 · 105 1181 VDIR&TR 10−3 104 10−5 57 7.2 25
VGDSW – – – 33 2.7 · 103 95102
VDIR&TR 10−3 104 10−5 57 7.4 24
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