

Efficient Schwarz Preconditioning Techniques for Nonlinear Problems Using FROSch

Alexander Heinlein¹

10th International Congress on Industrial and Applied Mathematics (ICIAM 2023 Tokyo) Waseda University, Tokyo, Japan, August 20-25, 2023

¹Delft University of Technology

Based on joint work with Axel Klawonn and Lea Saßmannshausen (University of Cologne) and Mauro Perego, Sivasankaran Rajamanickam, and Ichitaro Yamazaki (Sandia National Laboratories)

Solving A Model Problem

Consider a diffusion model problem:

$$-\nabla \cdot (\alpha(x)\nabla u(x)) = f \quad \text{in } \Omega = [0,1]^2,$$
$$u = 0 \quad \text{on } \partial\Omega.$$

Discretization using finite elements yields a **sparse** linear system of equations

$$Ku = f$$
.

Direct solvers

For fine meshes, solving the system using a direct solver is not feasible due to **superlinear complexity and memory cost**.

Iterative solvers

Iterative solvers are efficient for solving sparse linear systems of equations, however, the convergence rate generally depends on the condition number κ (*A*). It deteriorates, e.g., for

- fine meshes, that is, small element sizes h

Solving A Model Problem

Consider a diffusion model problem:

 $-\nabla \cdot (\alpha(x)\nabla u(x)) = f \quad \text{in } \Omega = [0, 1]^2,$ $u = 0 \quad \text{on } \partial\Omega.$

Discretization using finite elements yields a **sparse** linear system of equations

Ku = f.

Direct solvers

For fine meshes, solving the system using a direct solver is not feasible due to **superlinear complexity and memory cost**.

Iterative solvers

Iterative solvers are efficient for solving sparse linear systems of equations, however, the convergence rate generally depends on the condition number κ (A). It deteriorates, e.g., for

- fine meshes, that is, small element sizes h
- large contrasts $\frac{\max_{x} \alpha(x)}{\min_{x} \alpha(x)}$

 \Rightarrow We introduce a preconditioner $M^{-1} \approx A^{-1}$ to improve the condition number:

$$M^{-1}Au = M^{-1}f$$

Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner

Based on an overlapping domain decomposition, we define a one-level Schwarz operator

$$\boldsymbol{M}_{\text{OS-1}}^{-1}\boldsymbol{K} = \sum_{i=1}^{N} \boldsymbol{R}_{i}^{T}\boldsymbol{K}_{i}^{-1}\boldsymbol{R}_{i}\boldsymbol{K}_{i}$$

where \mathbf{R}_i and $\mathbf{R}_i^{\mathsf{T}}$ are restriction and prolongation operators corresponding to Ω'_i , and $\mathbf{K}_i := \mathbf{R}_i \mathbf{K} \mathbf{R}_i^{\mathsf{T}}$.

Condition number estimate:

$$\kappa\left(\pmb{M}_{\mathsf{OS-1}}^{-1}\pmb{K}
ight) \leq C\left(1+rac{1}{H\delta}
ight)$$

with subdomain size H and overlap width δ .

Lagrangian coarse space

The two-level overlapping Schwarz operator reads

$$\boldsymbol{M}_{\text{OS-2}}^{-1}\boldsymbol{K} = \underbrace{\boldsymbol{\Phi}\boldsymbol{K}_{0}^{-1}\boldsymbol{\Phi}^{\mathsf{T}}\boldsymbol{K}}_{\text{coarse level - global}} + \underbrace{\sum_{i=1}^{N}\boldsymbol{R}_{i}^{\mathsf{T}}\boldsymbol{K}_{i}^{-1}\boldsymbol{R}_{i}\boldsymbol{K}}_{\text{first level - local}},$$

where Φ contains the coarse basis functions and $K_0 := \Phi^T K \Phi$; cf., e.g., Toselli, Widlund (2005). The construction of a Lagrangian coarse basis requires a coarse triangulation.

Condition number estimate:

$$\kappa\left(\boldsymbol{M}_{\mathsf{OS-2}}^{-1}\boldsymbol{K}\right) \leq C\left(1+rac{\boldsymbol{H}}{\delta}
ight)$$

Alexander Heinlein (TU Delft)

Two-Level Schwarz Preconditioners

FROSch (Fast and Robust Overlapping Schwarz) Framework in Trilinos

Software

- Object-oriented C++ domain decomposition solver framework with MPI-based distributed memory parallelization
- Part of TRILINOS with support for both parallel linear algebra packages EPETRA and TPETRA
- Node-level parallelization and performance portability on CPU and GPU architectures through KOKKOS and KOKKOSKERNELS
- Accessible through unified $\mathrm{TRILINOS}$ solver interface $\mathrm{STRATIMIKOS}$

Methodology

- Parallel scalable multi-level Schwarz domain decomposition
 preconditioners
- · Algebraic construction based on the parallel distributed system matrix
- Extension-based coarse spaces

Team (active)

- Alexander Heinlein (TU Delft)
- Siva Rajamanickam (Sandia)
- Friederike Röver (TUBAF)
- Ichitaro Yamazaki (Sandia)

- Axel Klawonn (Uni Cologne)
- Oliver Rheinbach (TUBAF)
- Lea Saßmannshausen (Uni Cologne)

Overlapping domain decomposition

In FROSch, the overlapping subdomains $\Omega'_1, ..., \Omega'_N$ are constructed by **recursively adding layers of elements** to the nonoverlapping subdomains; this can be performed based on the sparsity pattern of K.

Nonoverlapping DD

Overlapping domain decomposition

In FROSch, the overlapping subdomains $\Omega'_1, ..., \Omega'_N$ are constructed by **recursively adding layers of elements** to the nonoverlapping subdomains; this can be performed based on the sparsity pattern of K.

Nonoverlapping DD

Overlapping domain decomposition

In FROSch, the overlapping subdomains $\Omega'_1, ..., \Omega'_N$ are constructed by **recursively adding layers of elements** to the nonoverlapping subdomains; this can be performed based on the sparsity pattern of K.

Nonoverlapping DD

 $\text{Overlap } \delta = 1h$

Overlap $\delta = 2h$

Overlapping domain decomposition

In FROSch, the overlapping subdomains $\Omega'_1, ..., \Omega'_N$ are constructed by **recursively adding layers of elements** to the nonoverlapping subdomains; this can be performed based on the sparsity pattern of K.

Nonoverlapping DD

Overlap $\delta = 1h$

Overlap $\delta = 2h$

Computation of the overlapping matrices

The overlapping matrices

$$oldsymbol{K}_i = oldsymbol{R}_i oldsymbol{K} oldsymbol{R}_i^T$$

can easily be extracted from K since R_i is just a global-to-local index mapping.

1. Identification interface components

Identification from parallel distribution of matrix:

3. Interface basis

 null space basis

 (e.g., linear elasticity: translations, linearized rotation(s))

 ×

The interface values of the basis of the coarse space is obtained by **multiplication with the null space**.

2. Interface partition of unity (IPOU)

vertex & edge functions

Based on the interface components, construct an **interface partition of** unity:

$$\sum_i \pi_i = 1$$
 on Γ

4. Extension into the interior

edge basis function

vertex basis function

The values in the interior of the subdomains are computed via the **extension operator**:

$$\Phi = \begin{bmatrix} \Phi_I \\ \Phi_{\Gamma} \end{bmatrix} = \begin{bmatrix} -K_{II}^{-1}K_{\Gamma I}^{T}\Phi_{\Gamma} \\ \Phi_{\Gamma} \end{bmatrix}.$$

(For elliptic problems: energy-minimizing extension)

2. Interface partition of unity (IPOU)

vertex & edge functions

vertex functions

Based on the interface components, construct an interface partition of unity:

$$\sum\nolimits_{i} \pi_{i} = 1 ext{ on } \Gamma$$

Alexander Heinlein (TU Delft)

1. Identification interface components
 K =
 Identification from parallel distribution of matrix:
 distributed map
 overlapping map
 repeated map
 interface components
 3. Interface basis

The interface values of the basis of the coarse space is obtained by **multiplication with the null space**.

Alexander Heinlein (TU Delft)

2. Interface partition of unity (IPOU)

vertex & edge functions

vertex functions

Based on the interface components, construct an **interface partition of** u**nity**:

$$\sum_i \pi_i = 1$$
 on Γ

4. Extension into the interior

edge basis function

- -

vertex basis function

The values in the interior of the subdomains are computed via the **extension operator**:

(For elliptic problems: energy-minimizing extension)

edge basis function

4. Extension into the interior

The values in the interior of the subdomains are computed via the extension operator:

$$\Phi = \begin{bmatrix} \Phi_I \\ \Phi_{\Gamma} \end{bmatrix} = \begin{bmatrix} -\boldsymbol{K}_{II}^{-1}\boldsymbol{K}_{\Gamma I}^{T}\Phi_{\Gamma} \\ \Phi_{\Gamma} \end{bmatrix}.$$

(For elliptic problems: energy-minimizing extension)

Alexander Heinlein (TU Delft)

1. Identification interface components

Identification from parallel distribution of matrix:

3. Interface basis

The interface values of the basis of the coarse space is obtained by **multiplication with the null space**.

2. Interface partition of unity (IPOU)

vertex & edge functions

vertex functions

Based on the interface components, construct an **interface partition of unity**:

$$\sum_i \pi_i = 1 \,\, {
m on} \,\, {\sf \Gamma}$$

4. Extension into the interior

edge basis function

The values in the interior of the subdomains are computed via the **extension operator**:

$$\Phi = \begin{bmatrix} \Phi_I \\ \Phi_{\Gamma} \end{bmatrix} = \begin{bmatrix} -\boldsymbol{K}_{II}^{-1}\boldsymbol{K}_{\Gamma I}^{T}\Phi_{\Gamma} \\ \Phi_{\Gamma} \end{bmatrix}.$$

(For elliptic problems: energy-minimizing extension)

Alexander Heinlein (TU Delft)

Examples of FROSch Coarse Spaces

GDSW (Generalized Dryja-Smith-Widlund)

- Dohrmann, Klawonn, Widlund (2008)
- Dohrmann, Widlund (2009, 2010, 2012)

MsFEM (Multiscale Finite Element Method)

- Hou (1997), Efendiev and Hou (2009)
- Buck, Iliev, and Andrä (2013)
- H., Klawonn, Knepper, Rheinbach (2018)

RGDSW (Reduced dimension GDSW)

- Dohrmann, Widlund (2017)
- H., Klawonn, Knepper, Rheinbach, Widlund (2022)

Q1 Lagrangian / piecewise bilinear

Piecewise linear interface partition of unity functions and a **structured domain decomposition**.

Alexander Heinlein (TU Delft)

Examples of FROSch Coarse Spaces

GDSW (Generalized Dryja-Smith-Widlund)

- Dohrmann, Klawonn, Widlund (2008)
- Dohrmann, Widlund (2009, 2010, 2012)

MsFEM (Multiscale Finite Element Method)

- Hou (1997), Efendiev and Hou (2009)
- Buck, Iliev, and Andrä (2013)
- H., Klawonn, Knepper, Rheinbach (2018)

RGDSW (Reduced dimension GDSW)

- Dohrmann, Widlund (2017)
- H., Klawonn, Knepper, Rheinbach, Widlund (2022)

Q1 Lagrangian / piecewise bilinear

Piecewise linear interface partition of unity functions and a **structured domain decomposition**.

Alexander Heinlein (TU Delft)

Monolithic (R)GDSW Preconditioners for CFD Simulations

Consider the discrete saddle point problem

$$\mathcal{A}_{X} = \begin{bmatrix} \mathbf{K} & \mathbf{B}^{\top} \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} \mathbf{f} \\ \mathbf{0} \end{bmatrix} = \mathbf{6}.$$

Monolithic GDSW preconditioner

We construct a monolithic GDSW preconditioner

$$\mathcal{M}_{\mathsf{GDSW}}^{-1} = \phi \mathcal{R}_0^{-1} \phi^\top + \sum_{i=1}^N \mathcal{R}_i^\top \mathcal{R}_i^{-1} \mathcal{R}_i,$$

with block matrices $\mathcal{A}_0 = \phi^\top \mathcal{A} \phi$, $\mathcal{A}_i = \mathcal{R}_i \mathcal{A} \mathcal{R}_i^\top$, and

$$\mathcal{R}_i = \begin{bmatrix} \mathcal{R}_{u,i} & \mathbf{0} \\ \mathbf{0} & \mathcal{R}_{p,i} \end{bmatrix} \quad \text{and} \quad \phi = \begin{bmatrix} \Phi_{u,u_0} & \Phi_{u,p_0} \\ \Phi_{p,u_0} & \Phi_{p,p_0} \end{bmatrix}.$$

Using \mathcal{A} to compute extensions: $\phi_I = -\mathcal{A}_{II}^{-1}\mathcal{A}_{I\Gamma}\phi_{\Gamma}$; cf. Heinlein, Hochmuth, Klawonn (2019, 2020).

Stokes flow

Navier-Stokes flow

Related work:

- Original work on monolithic Schwarz preconditioners: Klawonn and Pavarino (1998, 2000)
- Other publications on monolithic Schwarz preconditioners: e.g., Hwang and Cai (2006), Barker and Cai (2010), Wu and Cai (2014), and the presentation Dohrmann (2010) at the Workshop on Adaptive Finite Elements and Domain Decomposition Methods in Milan.

Alexander Heinlein (TU Delft)

Monolithic (R)GDSW Preconditioners for CFD Simulations

Consider the discrete saddle point problem

$$\mathcal{A}_{X} = \begin{bmatrix} \mathbf{K} & \mathbf{B}^{\top} \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} \mathbf{f} \\ \mathbf{0} \end{bmatrix} = \mathbf{6}.$$

Monolithic GDSW preconditioner

We construct a monolithic GDSW preconditioner

$$\mathcal{M}_{\mathsf{GDSW}}^{-1} = \phi \mathcal{R}_0^{-1} \phi^\top + \sum_{i=1}^N \mathcal{R}_i^\top \mathcal{R}_i^{-1} \mathcal{R}_i$$

with block matrices $\mathcal{A}_0 = \phi^\top \mathcal{A} \phi$, $\mathcal{A}_i = \mathcal{R}_i \mathcal{A} \mathcal{R}_i^\top$.

Block diagonal & triangular preconditioners

Block-diagonal preconditioner:

$$\boldsymbol{M}_{\mathrm{D}}^{-1} = \begin{bmatrix} \boldsymbol{K}^{-1} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{S}^{-1} \end{bmatrix} \approx \begin{bmatrix} \boldsymbol{M}_{\mathrm{GDSW}}^{-1}(\boldsymbol{K}) & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{M}_{\mathrm{OS-1}}^{-1}(\boldsymbol{M}_{\boldsymbol{P}}) \end{bmatrix}$$

Block-triangular preconditioner:

$$\begin{split} m_{\mathsf{T}}^{-1} &= \begin{bmatrix} \boldsymbol{K}^{-1} & \boldsymbol{0} \\ -\boldsymbol{S}^{-1}\boldsymbol{B}\boldsymbol{K}^{-1} & \boldsymbol{S}^{-1} \end{bmatrix} \\ &\approx \begin{bmatrix} \boldsymbol{M}_{\mathsf{GDSW}}^{-1}(\boldsymbol{K}) & \boldsymbol{0} \\ -\boldsymbol{M}_{\mathsf{OS}-1}^{-1}(\boldsymbol{M}_{\boldsymbol{\rho}})\boldsymbol{B}\boldsymbol{M}_{\mathsf{GDSW}}^{-1}(\boldsymbol{K}) & \boldsymbol{M}_{\mathsf{OS}-1}^{-1}(\boldsymbol{M}_{\boldsymbol{\rho}}) \end{bmatrix} \end{split}$$

Monolithic vs. block prec. (Stokes)

prec.	# MPI ranks	64	256	1024	4 096
mono.	time	154.7 s	170.0 s	175.8 s	188.7 s
	effic.	100 %	91 %	88 %	82 %
tuiona	time	309.4 s	329.1 s	359.8 s	396.7 s
triang.	effic.	50 %	47 %	43 %	39 %
1.	time	736.7 s	859.4 s	966.9 s	$1105.0\mathrm{s}$
diag.	effic.	21 %	18%	16%	14 %

Computations performed on magnitUDE (University Duisburg-Essen).

Monolithic (R)GDSW Preconditioners for CFD Simulations

Consider the discrete saddle point problem

$$\mathcal{A}_{X} = \begin{bmatrix} \mathbf{K} & \mathbf{B}^{\top} \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} \mathbf{f} \\ \mathbf{0} \end{bmatrix} = \mathbf{6}.$$

Monolithic GDSW preconditioner

We construct a monolithic GDSW preconditioner

$$\mathcal{M}_{\mathsf{GDSW}}^{-1} = \phi \mathcal{R}_0^{-1} \phi^\top + \sum\nolimits_{i=1}^N \mathcal{R}_i^\top \mathcal{R}_i^{-1} \mathcal{R}_i$$

with block matrices $\mathcal{A}_0 = \phi^\top \mathcal{A} \phi$, $\mathcal{A}_i = \mathcal{R}_i \mathcal{A} \mathcal{R}_i^\top$.

SIMPLE block preconditioner

We employ the SIMPLE (Semi-Implicit Method for Pressure Linked Equations) block preconditioner

$$m_{\mathsf{SIMPLE}}^{-1} = \begin{bmatrix} \mathbf{I} & -\mathbf{D}^{-1}\mathbf{B} \\ \mathbf{0} & \alpha \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{K}^{-1} & \mathbf{0} \\ -\hat{\mathbf{S}}^{-1}\mathbf{B}\mathbf{K}^{-1} & \hat{\mathbf{S}}^{-1} \end{bmatrix};$$

see Patankar and Spalding (1972). Here,

- $\hat{\boldsymbol{S}} = -\boldsymbol{B}\boldsymbol{D}^{-1}\boldsymbol{B}^{\top}$, with $\boldsymbol{D} = \operatorname{diag} \boldsymbol{K}$
- α is an under-relaxation parameter

We approximate the inverses using (R)GDSW preconditioners.

Monolithic vs. SIMPLE preconditioner

Steady-state Navier-Stokes equations

prec.	# MPI ranks	243	1 1 2 5	15 562
Monolithic	setup	39.6 s	57.9 s	95.5 s
RGDSW	solve	57.6 s	69.2 s	74.9 s
(FROSCH)	total	97.2 s	127.7 s	170.4 s
(FROSCH) SIMPLE	total setup	97.2 s 39.2 s	127.7 s 38.2 s	170.4 s 68.6 s
(FROSCH) SIMPLE RGDSW (Теко	total setup solve	97.2 s 39.2 s 86.2 s	127.7 s 38.2 s 106.6 s	170.4 s 68.6 s 127.4 s

Computations on Piz Daint (CSCS). Implementation in the finite element software FEDDLib.

Alexander Heinlein (TU Delft)

Monolithic Vs. Block (R)GDSW Preconditioners for CFD Simulations

Problem: Steady-state Navier–Stokes equations

Computations on Fritz (FAU). Implementation in the finite element software FEDDLIB.

Monolithic GDSW preconditioner

$$\mathcal{M}_{\mathsf{GDSW}}^{-1} = \phi \mathcal{R}_0^{-1} \phi^\top + \sum_{i=1}^N \mathcal{R}_i^\top \mathcal{R}_i^{-1} \mathcal{R}_i$$

SIMPLE block preconditioner

$$\boldsymbol{m}_{\mathsf{SIMPLE}}^{-1} = \begin{bmatrix} \boldsymbol{I} & -\boldsymbol{D}^{-1}\boldsymbol{B} \\ \boldsymbol{0} & \alpha \boldsymbol{I} \end{bmatrix} \begin{bmatrix} \boldsymbol{K}^{-1} & \boldsymbol{0} \\ -\hat{\boldsymbol{S}}^{-1}\boldsymbol{B}\boldsymbol{K}^{-1} & \hat{\boldsymbol{S}}^{-1} \end{bmatrix}$$

P1–P1 stabilized, H/h = 20

prec.	# MPI ranks	243	1 1 2 5	4 608
Monolithic	# its.	57.8(5)	71.6(5)	79.4(5)
	setup	39.6 s	50.9 s	49.8 s
(EDOCarr)	solve	38.2 s	58.7 s	71.7 s
(FROSCH)	total	77.8 s	109.8 s	121.5 s
SIMPLE	# its.	168.4(5)	196.8(5)	200.0(5)
RGDSW	setup	21.2 s	32.2 s	26.9 s
(Теко &	solve	106.2 s	156.0 s	175.0 s
FROSCH)	total	127.4 s	188.2 s	201.9 s

P2–P1, *H*/*h* = 9

prec.	# MPI ranks	243	1 1 2 5	4 608
Monolithic	# its.	84.2(6)	100.4(5)	108.6(5)
	setup	44.2 s	48.5 s	49.7 s
(EDOCarr)	solve	50.0 s	63.9 s	88.0 s
(FROSCH)	total	94.2 s	112.4 s	137.7 s
SIMPLE	$\overline{\#}$ its.	157.5(6)	161.8(5)	169.8(5)
RGDSW	setup	26.8 s	31.7 s	28.5 s
(Теко &	solve	84.8 s	90.4 s	111.5 s
FROSCH)	total	111.6 s	122.1 s	140.0 s

Heinlein, Klawonn, and Saßmannshausen (in preparation)

FROSch Preconditioners for Land Ice Simulations

Stationary velocity problem

We use a first-order (or Blatter-Pattyn) approximation of the Stokes equations

 $\begin{cases} -\nabla \cdot (2\mu \,\dot{\epsilon}_1) &= -\rho_i \, |\boldsymbol{g}| \, \partial_x s, \\ -\nabla \cdot (2\mu \,\dot{\epsilon}_2) &= -\rho_i \, |\boldsymbol{g}| \, \partial_y s, \end{cases}$

with ice density ρ_i , ice surface elevation *s*, gravity acceleration *g*, and strain rates $\dot{\epsilon}_1$ and $\dot{\epsilon}_2$; cf. Blatter (1995) and Pattyn (2003).

Ice viscosity modeled by Glen's law: $\mu = \frac{1}{2}A(T)^{-\frac{1}{n}}\dot{\epsilon_e}^{\frac{1-n}{n}}$.

Stationary temperature problem

The enthalpy equation reads

$$abla \cdot \boldsymbol{q}(h) + \boldsymbol{u} \cdot \nabla h = 4\mu \,\epsilon_e^2$$

with the enthalpy flux

$$q(h) = \left\{ egin{array}{c} rac{k}{
ho_i c_i}
abla h, & \quad ext{for cold ice } (h \leq h_m), \ rac{k}{
ho_i c_i}
abla h_m +
ho_w L oldsymbol{j}(h), & \quad ext{for temperate ice.} \end{array}
ight.$$

Set of complex boundary conditions: Dirichlet, Neumann, Robin, and Stefan boundary and coupling conditions.

FROSch preconditioners

We compute the **nonoverlapping domain decomposition** based on the **surface mesh**.

For the coupled problem, we construct a **monolithic**

two-level (R)GDSW preconditioner (Heinlein, Hochmuth, Klawonn (2019, 2020))

$$\mathcal{M}_{\mathrm{GDSW}}^{-1} = \phi \mathcal{R}_0^{-1} \phi^{\mathsf{T}} + \sum_{i=1}^{\mathsf{N}} \mathcal{R}_i^{\mathsf{T}} \mathcal{R}_i^{-1} \mathcal{R}_i,$$

where the linearized system is of the form

$$\mathcal{A} x := \begin{bmatrix} A_u & C_{uT} \\ C_{Tu} & A_T \end{bmatrix} \begin{bmatrix} x_u \\ x_T \end{bmatrix} = \begin{bmatrix} \tilde{r}_u \\ \tilde{r}_T \end{bmatrix} =: r.$$

For single-physics problems, we employ a **standard (R)GDSW preconditioner**.

Alexander Heinlein (TU Delft)

Antarctica Velocity Problem – Reuse Strategies (Strong Scaling)

We employ different **reuse strategies** to **reduce the setup costs** of the two-level preconditioner

$$M_{\text{GDSW}}^{-1} = \boldsymbol{\Phi} \mathbf{K}_{\mathbf{0}}^{-1} \boldsymbol{\Phi}^{T} + \sum_{i=1}^{N} \mathbf{R}_{i}^{T} \mathbf{K}_{i}^{-1} \mathbf{R}_{i}.$$

	restriction operators			+ coarse basis			+ 0	oarse mat	rix
reuse	+ symboli	c fact. (1	st level)	+ symbol	lic fact.	(2nd level)			
MPI	avg. its	avg.	avg.	avg. its	avg	g. avg. its	avg. its	avg.	avg.
ranks	(nl its)	setup	solve	(nl its)	setu	p solve	(nl its)	setup	solve
512	41.9 (11)	25.10 s	12.29 s	42.6 (11)	14.99	s 12.50 s	46.7 (11)	14.94 s	13.81 s
1 0 2 4	43.3 (11)	9.18 s	5.85 s	44.5 (11)	5.65	s 6.08 s	49.2 (11)	5.75 s	6.78 s
2 0 4 8	41.4 (11)	4.15 s	2.63 s	42.7 (11)	3.11	s 2.79 s	47.7 (11)	2.92 s	3.10 s
4 0 9 6	41.2 (11)	1.66 s	1.49 s	42.5 (11)	1.07	s 1.54 s	48.9 (11)	0.95 s	1.75 s
8 1 9 2	40.2 (11)	1.26 s	1.06 s	42.0 (11)	1.20	s 1.16 s	50.1 (11)	0.63 s	1.35 s
Problem	n: Velocity	Mesh:	Antarctica 4 km hor. 20 vert. la	a resolution ayers	Size:	35.3 m degrees of freedom (P1 FE)	s Coarse sp	ace: RGI	DSW

Cf. Heinlein, Perego, Rajamanickam (2022)

Greenland Coupled Problem – Coarse Spaces

			fully coupled extensions					
			nc	reuse		reuse coarse basis		
	MPI		avg. its	avg.	avg.	avg. its	avg.	avg.
	ranks	dim V_0	(nl its)	setup	solve	(nl its)	setup	solve
	256	1 400	100.1 (27)	4.10 s	6.40 s	18.5 (70)	2.28 s	1.07 s
	512	2852	129.1 (28)	1.88 s	4.20 s	24.6 (38)	1.04 s	0.70 s
	1024	6 0 3 6	191.2 (65)	1.21 s	4.76 s	34.2 (32)	0.66 s	0.70 s
	2048	12 368	237.4 (30)	0.96 s	4.06 s	37.3 (30)	0.60 s	0.58 s
			deo	coupled	extension	IS		
			nc	reuse		reuse coarse basis		
	MPI		avg. its	avg.	avg.	avg. its	avg.	avg.
	ranks	dim V_0	(nl its)	setup	solve	(nl its)	setup	solve
	256	1 400	23.6 (29)	3.90 s	1.32 s	21.5 (34)	2.23 s	1.18 s
	512	2852	27.5 (30)	1.83 s	0.78 s	26.4 (33)	1.13 s	0.78 s
	1024	6 0 3 6	30.1 (29)	1.19 s	0.60 s	28.6 (43)	0.66 s	0.61 s
	2048	12 368	36.4 (30)	0.69 s	0.56 s	31.2 (50)	0.57 s	0.55 s
Problem:	Couple	d Mesh:	Greenland 3-30 km hor 20 vert. laye	. resolutio	Size:	7.5 m degr of freedom (P1 FE)	rees Co a	arse space:

Alexander Heinlein (TU Delft)

RGDSW

Greenland Coupled Problem – Large Problem

|--|--|

	decoupled			fully coupled			decoupled		
	(n	o reuse)		(reuse coarse basis)			(reuse 1st level symb. fact.		
							+ co	barse basis))
MPI	avg. its.	avg.	avg.	avg. its	avg.	avg.	avg. its	avg.	avg.
ranks	(nl its)	setup	solve	(nl its)	setup	solve	(nl its)	setup	solve
512	41.3 (36)	18.78 s	4.99 s	45.3 (32)	11.84 s	5.35 s	45.0 (35)	10.53 s	5.36 s
1024	53.0 (29)	8.68 s	4.22 s	47.8 (37)	5.36 s	3.82 s	54.3 (32)	4.59 s	4.31 s
2 0 4 8	62.2 (86)	4.47 s	4.23 s	66.7 (38)	2.81 s	4.53 s	59.1 (38)	2.32 s	3.99 s
4 0 9 6	68.9 (40)	2.52 s	2.86 s	79.1 (36)	1.61 s	3.30 s	78.7 (38)	1.37 s	3.30 s
Problem	n: Coupled	Mesh:	Greenlar 1-10 km 20 vert.	nd hor. resolutio layers	Size:	68.6 m c of freedo (P1 FE)	legrees Coa om	rse space:	RGDSW

Cf. Heinlein, Perego, Rajamanickam (2022)

Sparse Triangular Solver in KokkosKernels (Amesos2 – SuperLU/CHOLMOD)

The sparse triangular solver is an **important kernel** in many codes (including FROSch) but is **challenging to parallelize**

- Factorization using a **sparse direct solver** typically leads to triangular matrices with **dense blocks** called **supernodes**
- In supernodal triangular solvers, rows/columns with a similar sparsity pattern are merged into a supernodal block, and the solve is then performed block-wise
- The parallelization potential for the triangular solver is determined by the sparsity pattern

Parallel supernode-based triangular solver:

- 1. Supernode-based level-set scheduling, where all leaf-supernodes within one level are solved in parallel (batched kernels for hierarchical parallelism)
- 2. Partitioned inverse of the submatrix associated with each level: SpTRSV is transformed into a sequence of SpMVs

See Yamazaki, Rajamanickam, and Ellingwood (2020) for more details.

Lower-triangular matrix – SuperLU

with METIS nested dissection ordering

Three-Dimensional Linear Elasticity – Weak Scalability

Computations on Summit (OLCF): 42 IBM Power9 CPU cores and 6 NVIDIA V100 GPUs per node. Yamazaki, Heinlein, Rajamanickam (2023)

Alexander Heinlein (TU Delft)

Three-Dimensional Linear Elasticity – Weak Scalability

# nodes	1	2	4	8	16			
# dofs	375K	750K	1.5M	3M	6M			
SUPERLU solve								
CPUs	2.03 (75)	2.07 (69)	1.87 (61)	1.95 (58)	2.48 (69)			
$n_p/\text{gpu} = 1$	1.43 (47)	1.52 (53)	2.82 (77)	2.44 (68)	2.61 (75)			
2	1.03 (46)	1.36 (65)	1.37 (60)	1.52 (65)	1.98 (86)			
4	0.93 (59)	0.91 (53)	0.98 (59)	1.33 (77)	1.21 (66)			
6	0.67 (46)	0.99 (65)	0.92 (57)	0.91 (57)	0.95 (57)			
7	1.03 (75)	1.04 (69)	0.90 (61)	0.97 (58)	1.18 (69)			
speedup	2 .0×	2 .0×	2 .1×	2 .0×	2 .1×			
		Tacho	solve					
CPUs	1.60 (75)	1.63 (69)	1.49 (61)	1.51 (58)	1.90 (69)			
$n_p/\text{gpu} = 1$	1.17 (47)	1.37 (53)	1.92 (77)	1.78 (68)	2.21 (75)			
2	0.79 (46)	1.14 (65)	1.05 (60)	1.18 (65)	1.70 (86)			
4	0.85 (59)	0.81 (53)	0.78 (59)	1.22 (77)	1.19 (66)			
6	0.60 (46)	0.86 (65)	0.75 (57)	0.84 (57)	0.91 (57)			
7	0.99 (75)	0.93 (69)	0.82 (61)	0.93 (58)	1.22 (69)			
speedup	1.6 ×	1.8 ×	1.8 imes	1.6 imes	1.6 imes			

Computations on Summit (OLCF): 42 IBM Power9 CPU cores and 6 NVIDIA V100 GPUs per node.

Yamazaki, Heinlein, Rajamanickam (2023)

Alexander Heinlein (TU Delft)

Three-Dimensional Linear Elasticity – ILU Subdomain Solver

ILU	J level	0	1	2	3					
	setup									
\cap	No	1.5	1.9	3.0	4.8					
G	ND	1.6	2.6	4.4	7.4					
	KK(No)	1.4	1.5	1.8	2.4					
	KK(ND)	1.7	2.0	2.9	5.2					
GF	Fast(No)	1.5	1.6	2.1	3.2					
	Fast(ND)	1.5	1.7	2.5	4.5					
spe	eedup	1.0×	1.2×	1 .4×	1.5×					
			solve							
\Box	No	2.55 (158)	3.60 (112)	5.28 (99)	6.85 (88)					
ß	ND	4.17 (227)	5.36 (134)	6.61 (105)	7.68 (88)					
	KK(No)	3.81 (158)	4.12 (112)	4.77 (99)	5.65 (88)					
	KK(ND)	2.89 (227)	4.27 (134)	5.57 (105)	6.36 (88)					
5	Fast(No)	1.14 (173)	1.11 (141)	1.26 (134)	1.43 (126)					
	Fast(ND)	1.49 (227)	1.15 (137)	1.10 (109)	1.22 (100)					
spe	eedup	2.2×	3.2×	4 .3×	4 .8×					

Computations on Summit (OLCF): 42 IBM Power9 CPU cores and 6 NVIDIA V100 GPUs per node. Yamazaki, Heinlein, Rajamanickam (2023)

ILU variants

- Kokkoskernels ILU (KK)
- FASTILU (Fast); cf. Chow, Patel (2015) and Boman, Patel, Chow, Rajamanickam (2016)

No reordering (No) and nested dissection (ND) $% \left(ND\right) =0$

Three-Dimensional Linear Elasticity – Weak Scalability Using ILU

# r	nodes	1	2	4	8	16					
# c	lofs	648 K	1.2 M	2.6 M	5.2 M	10.3 M					
	setup										
CP	U	1.9	2.2	2.4	2.4	2.6					
Ú	KK	1.4	2.0	2.2	2.4	2.8					
GP	Fast	1.5	2.2	2.3	2.5	2.8					
spe	edup	1.3×	1.0 ×	1.0 ×	1.0 ×	0.9 ×					
			SO	lve							
CP	U	3.60 (112)	7.26 (84)	6.93 (78)	6.41 (75)	4.1 (109)					
D	KK	4.3 (119)	3.9 (110)	4.8 (105)	4.3 (97)	4.9 (109)					
GF	Fast	1.2 (154)	1.0 (133)	1.1 (130)	1.3 (117)	1.6 (131)					
spe	edup	3.3×	3.8 ×	3.4 ×	2.5 ×	2.6 ×					

Computations on Summit (OLCF): 42 IBM Power9 CPU cores and 6 NVIDIA V100 GPUs per node.

Yamazaki, Heinlein, Rajamanickam (2023)

Thank you for your attention!

Summary

- FROSCH is based on the Schwarz framework and energy-minimizing coarse spaces, which provide numerical scalability using only algebraic information for a variety of applications including nonlinear multi-physics problems
- For nonlinear problems,
 - the reuse of components of the preconditioner and
 - the speedup of the solver phase (e.g., using GPUs)

can significantly help to improve the solver performance.

Acknowledgements

- Financial support: DFG (KL2094/3-1, RH122/4-1), DFG SPP 2311 project number 465228106
- Computing resources: Summit (OLCF), Cori (NERSC), magnitUDE (UDE), Piz Daint (CSCS), Fritz (FAU)

Thank you for your attention!

- \rightarrow Talk by Ichitaro Yamazaki on Tuesday (00911 (2/2)): Related nonlinear Schwarz methods
- \rightarrow Talk by Martin Lanser on Thursday (01054 (2/3)): FROSch on GPUs
- \rightarrow Talk by Friederike Röver on Friday (01054 (3/3)): FROSch for chemo-mechanics problems