

Neural networks with physical constraints, domain decomposition-based training strategies, and model order reduction

Alexander Heinlein

SimTech ML-Session, University of Stuttgart, January 11, 2023

Delft University of Technology

Scientific Machine Learning in Computational Science and Engineering

Numerical methods

Based on physical models

- + Robust and generalizable
- Require availability of mathematical models

Machine learning models

Driven by data

- + Do not require mathematical models
- Sensitive to data, limited extrapolation capabilities

Scientific machine learning (SciML)

Combining the strengths and compensating the weaknesses of the individual approaches:

numerical methods **improve** machine learning techniques machine learning techniques **assist** numerical methods

A. Heinlein (TU Delft)

ML-Session

Scientific Machine Learning as a Standalone Field

 N. Baker, A. Frank, T. Bremer, A. Hagberg, Y. Kevrekidis, H. Najm, M. Parashar, A. Patra, J. Sethian, S. Wild, K. Willcox, and S. Lee.
 Workshop Report on Basic Research Needs for Scientific Machine Learning: Core Technologies for Artificial Intelligence.
 USDOE Office of Science (SC), Washington, DC (United States),

Priority Research Directions

Foundational research themes:

- Domain-awareness
- Interpretability
- Robustness

Capability research themes:

- Massive scientific data analysis
- Machine learning-enhanced modeling and simulation
- Intelligent automation and decision-support for complex systems

2019.

Development of the Field of Scientific Machine Learning

M. Raissi, P. Perdikaris, and G. E. Karniadakis.

Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics, 378, 686-707. 2019.

(and the respective arXiv preprints)

Scientific Machine Learning Examples

Many approaches in scientific machine learning have been developed in the past few years.

A. Heinlein (TU Delft)

Scientific Machine Learning Examples

Many approaches in scientific machine learning have been developed in the past few years. We will focus on **two types**:

A. Heinlein (TU Delft)

Outline

- 1 Physics-informed machine learning
- Domain decomposition-based training strategies for PINNs Based on joint work with Victorita Dolean (University of Strathclyde) and Ben Moseley and Siddhartha Mishra (ETH Zürich)
- **3** Surrogate models for computational fluid dynamics simulations Data-driven approach

Based on joint work with Mattias Eichinger and Axel Klawonn (University of Cologne)

Surrogate models for computational fluid dynamics simulations – GAN-based training

Based on joint work with Mirko Kemna and Kees Vuik (TU Delft)

 Surrogate models for computational fluid dynamics simulations – Physics-aware approach

Based on joint work with Viktor Grimm and Axel Klawonn (University of Cologne)

Physics-informed machine learning

Neural Networks for Solving Differential Equations

Artificial Neural Networks for Solving Ordinary and Partial Differential Equations

Isaac Elias Lagaris, Aristidis Likas, Member, IEEE, and Dimitrios I. Fotiadis

Published in IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, 1998.

Idea: Solve a general differential equation subject to boundary conditions

$$G(\mathbf{x}, \Psi(\mathbf{x}), \nabla \Psi(\mathbf{x}), \nabla^2 \Psi(\mathbf{x})) = 0$$
 in Ω

by solving an optimization problem

$$\min_{\mathbf{p}} \sum_{\mathbf{x}_i} G(\mathbf{x}_i, \Psi_t(\mathbf{x}_i, \mathbf{p}), \nabla \Psi_t(\mathbf{x}_i, \mathbf{p}), \nabla^2 \Psi_t(\mathbf{x}_i), \mathbf{p})^2$$

where $\Psi_t(\mathbf{x}, \mathbf{p})$ is a trial function, x_i sampling points inside the domain Ω and \mathbf{p} are adjustable parameters.

Construction of the trial functions

The trial functions **explicitly satisfy the boundary conditions**:

 $\Psi_t(\mathbf{x},\mathbf{p}) = A(\mathbf{x}) + F(\mathbf{x},N(\mathbf{x},\mathbf{p})),$

where

- N(x, p) is a trainable feedforward neural network with parameters p and input x ∈ ℝⁿ and
- the functions A and F are fixed functions, chosen such that
 - A satisfies the boundary conditions, and
 - *F* does not contribute to the boundary conditions.

From the conclusion of the paper:

"The success of the method can be attributed to **two factors**. The first is the employment of neural networks that are **excellent function** approximators and the second is the form of the trial solution that satisfies by construction the BC's and therefore the constrained optimization problem becomes a substantially simpler unconstrained one."

Physics-Informed Neural Networks (PINNs)

In Raissi, Perdikaris, Karniadakis (2019), the authors have revisited and modified the approach by Lagaris et al. (1998), denoting their method as physics-informed neural networks (PINNs). Consider the generic partial differential equation

 $\mathcal{N}[u](\mathbf{x}, \mathbf{t}) = f(\mathbf{x}, \mathbf{t}), \quad (\mathbf{x}, \mathbf{t}) \in [0, T] \times \Omega \subset \mathbb{R}^d.$

The main novelty of PINNs is that a **hybrid loss function** is used for training the feedforward neural network:

$$\mathcal{L} = \omega_{\text{data}} \mathcal{L}_{\text{data}} + \omega_{\text{PDE}} \mathcal{L}_{\text{PDE}},$$

where ω_{data} and ω_{PDE} are weights and

$$\begin{split} \mathcal{L}_{\text{data}} &= \frac{1}{N_{\text{data}}} \sum_{i=1}^{N_{\text{data}}} \left(u(x_i, t_i) - u_i \right)^2, \\ \mathcal{L}_{\text{PDE}} &= \frac{1}{N_{\text{PDE}}} \sum_{i=1}^{N_{\text{data}}} \left(\mathcal{N}[u](x, t) - f(x, t) \right)^2. \end{split}$$

- Known solution values can be included in $\mathcal{L}_{\text{data}}$
- Initial and boundary conditions are also included in *L*_{data}

Sketch of the PINN approach by Raissi et al.

Advantages and Drawbacks of PINNs

Advantages

- "Meshfree".
- Mostly unsupervised and work with incomplete models (e.g., we learn only the missing physics) and imperfect data.
- Strong generalization properties with small data due to embedded physics.
- **High-dimensional problems** (PDEs like Black-Scholes, Allen-Cahn).
- Solve inverse and forward problems, stationary and time-dependent, assimilate data in the same way.

Drawbacks

- Large computational cost associated with the training of the neural networks.
- Generally, the training process is not robust and depends heavily on well-chosen weights
- Convergence properties not well-understood yet.
- **Poor scaling** to large domains.
- Learning high frequencies (spectral bias) / multi-scale solutions is difficult.

Epidemic Parameter Identification Using Physics-Informed Neural Networks

SEIR model

We consider the system of ODEs

$$\frac{dS}{dt} = -\beta \frac{SI}{N}$$
$$\frac{dE}{dt} = \beta \frac{SI}{N} - \kappa E$$
$$\frac{dI}{dt} = \kappa E - \gamma I$$
$$\frac{dR}{dt} = \gamma I$$

with initial values $S(t_0) \ge 0$, $E(t_0) \ge 0$, $I(t_0) \ge 0$, and $R(t_0) \ge 0$ at some initial time t_0 . The infective period γ and the exposed period $1/\kappa$ are given.

 \rightarrow Identify the time-dependent contact rate β from given data for *S*, *E*, and *I*.

Parameter identification using PINNs

Training the weights W and bias b of the the neural work and the contact rate β by minimizing the mean-squared data error (MSDE) and the mean-squared residual error (MSRE):

$$\arg\min_{W,b,\beta} \left(\underbrace{\mathcal{L}_{\mathsf{data}}\left(W,b,\beta\right)}_{\mathsf{MSDE}} + \underbrace{\mathcal{L}_{\mathsf{ODE}}\left(W,b,\beta\right)}_{\mathsf{MSRE}} \right)$$

Cf. Grimm, Heinlein, Klawonn, Lanser, Weber (2022).

Cf. Grimm, Heinlein, Klawonn, Lanser, Weber (2022).

Available Theoretical Results for PINNs – an Example

Mishra and Molinaro. Estimates on the generalisation error of PINNs, 2022

Estimate of the generalization error

The generalization error (or total error) satisfies

$$\mathcal{E}_{G} \leq C_{\mathsf{PDE}} \mathcal{E}_{\mathsf{T}} + C_{\mathsf{PDE}} C_{\mathsf{quad}}^{1/p} N^{-\alpha/p}$$

where

- $\mathcal{E}_G = \mathcal{E}_G(\theta; \mathbf{X}) := \|\mathbf{u} \mathbf{u}^*\|_V (V \text{ Sobolev space, } \mathbf{X} \text{ training data set})$
- \mathcal{E}_{T} is the training error (I^{p} loss of the residual of the PDE)
- C_{PDE} and C_{quad} constants depending on the PDE resp. the quadrature
- N number of the training points and α convergence rate of the quadrature

The devil is in the details:

"As long as the PINN is trained well, it also generalizes well"

Scaling Issues in Neural Network Training

• **Spectral bias:** Neural networks prioritize learning lower frequency functions first irrespective of their amplitude.

Rahaman, N., et al, On the spectral bias of neural networks. 36th International Conference on Machine Learning, ICML (2019)

- Solving solutions on large domains and/or with multiscale features potentially requires very large neural networks.
- Training may not sufficiently reduce the loss or take large numbers of iterations.
- Significant increase on the computational work

When PINNs Fail to Train?

Perdikaris et al, When and why PINNs fail to train: A neural tangent kernel perspective, JCP (2022)

Neural tangent kernel (NTK) theory in a nutshell

• Write the gradient descent method at the continuous level (\pounds is the loss function)

$$rac{d heta}{dt} = -
abla \mathcal{L}(heta), \quad \mathcal{L}(heta) = \omega_{\mathsf{data}} \sum_i \mathcal{R}_{\mathsf{data}}(\mathbf{x}^i_{\mathsf{data}}, m{ heta}(t))^2 + \omega_{\mathsf{PDE}} \sum_i \mathcal{R}_{\mathsf{PDE}}(\mathbf{x}^i_{\mathsf{PDE}}, m{ heta}(t))^2$$

Residual vectors in the collocation points obey an ODE

$$\frac{d}{dt} \begin{bmatrix} \mathcal{R}_{\mathsf{data}}(\mathbf{x}_{\mathsf{data}}, \boldsymbol{\theta}(t)) \\ \mathcal{R}_{\mathsf{PDE}}(\mathbf{x}_{\mathsf{PDE}}, \boldsymbol{\theta}(t)) \end{bmatrix} = - \begin{bmatrix} \mathcal{K}_{\mathsf{data},\mathsf{data}}(t) & \mathcal{K}_{\mathsf{data},\mathsf{PDE}}(t) \\ \mathcal{K}_{\mathsf{PDE},\mathsf{data}}(t) & \mathcal{K}_{\mathsf{PDE},\mathsf{PDE}}(t) \end{bmatrix} \begin{bmatrix} \mathcal{R}_{\mathsf{data}}(\mathbf{x}_{\mathsf{data}}, \boldsymbol{\theta}(t)) \\ \mathcal{R}_{\mathsf{PDE}}(\mathbf{x}_{\mathsf{PDE}}, \boldsymbol{\theta}(t)) \end{bmatrix}$$

- The NTK $K(t) \rightarrow K^*$ (convergence of the expectation) for infinitely wide and shallow networks
- Spectral properties of K^{*} explain the speed of training

"To provide further insight, we analyze the **training dynamics of fully-connected PINNs through the lens of their NTK** and show that **not only they suffer from spectral bias**, but they also exhibit a **discrepancy in the convergence rate among the different loss components** contributing to the total training error" Domain decomposition-based training strategies for PINNs

Domain Decomposition Methods

Images based on Heinlein, Perego, Rajamanickam (2022)

Historical remarks: The alternating Schwarz method is the earliest domain decomposition method (DDM), which has been invented by H. A. Schwarz and published in 1870:

 Schwarz used the algorithm to establish the existence of harmonic functions with prescribed boundary values on regions with non-smooth boundaries.

Idea

Decomposing a large **global problem** into smaller **local problems**:

- Better robustness and scalability of numerical solvers
- Improved computational efficiency
- Introduce parallelism

A. Heinlein (TU Delft)

A non-exhaustive overview:

- Machine Learning-enhanced adaptive FETI-DP (finite element tearing and interconnecting dual primal): Heinlein, Klawonn, Lanser, Weber (2019)
- D3M (deep domain decomposition method): Li, Tang, Wu, and Liao (2019)
- DeepDDM (deep-learning-based domain decomposition method): Li, Xiang, Xu (2020)
- Two-Level DeepDDM: Mercier, Gratton (arXiv 2021)
- cPINNs (conservative physics-informed neural networks): Jagtap, Kharazmi, and Karniadakis (2020)
- XPINNs (extended physics-informed neural networks): Jagtap, Karniadakis (2020)
- FBPINNs (finite basis physics-informed neural networks): Moseley, Markham, and Nissen-Meyer (arXiv 2021)

An overview of the state-of-the-art in early 2021:

A. Heinlein, A. Klawonn, M. Lanser, J. Weber.

Combining machine learning and domain decomposition methods for the solution of partial differential equations — A review.

GAMM-Mitteilungen. 2021.

DeepDDM (deep-learning-based domain decomposition method)

Li, Xiang, Xu. Deep domain decomposition method: Elliptic problems. Mathematical and Scientific Machine Learning (2020)

Train **local networks** h_s by **batch stochastic gradient descent** (SGD) and transmitting only interface values to the neighboring subdomains.

Local loss functions contain volume, boundary, and interface jump terms:

$$\mathcal{L}_{s}\left(\theta_{s}; \boldsymbol{X}_{s}\right) := \mathcal{L}_{\Omega_{s}}\left(\theta_{s}; \boldsymbol{X}_{s}\right) + \mathcal{L}_{\partial\Omega_{s}\setminus\Gamma_{s}}\left(\theta_{s}; \boldsymbol{X}_{s}\right) + \mathcal{L}_{\Gamma_{s}}\left(\theta_{s}; \boldsymbol{X}_{s}\right),$$

where

$$\begin{split} \mathcal{L}_{\Omega_{s}}\left(\theta; \mathbf{X}_{f_{s}}\right) &:= \frac{1}{N_{f_{s}}} \sum_{i=1}^{N_{f_{s}}} \left| \mathcal{P}\left(h_{s}\left(\mathbf{x}_{f_{s}}^{i}; \theta_{s}\right)\right) - f\left(\mathbf{x}_{f_{s}}^{i}\right) \right|^{2}, \\ \mathcal{L}_{\partial\Omega_{s}\setminus\Gamma_{s}}\left(\theta_{s}; \mathbf{X}_{g_{s}}\right) &:= \frac{1}{N_{g_{s}}} \sum_{i=1}^{N_{g_{s}}} \left| \mathcal{B}\left(h_{s}\left(\mathbf{x}_{g_{s}}^{i}; \theta_{s}\right)\right) - g\left(\mathbf{x}_{g_{s}}^{i}\right) \right|^{2}, \\ \mathcal{L}_{\Gamma_{s}}\left(\theta_{s}; \mathbf{X}_{\Gamma_{s}}\right) &:= \frac{1}{N_{\Gamma_{s}}} \sum_{i=1}^{N_{\Gamma_{s}}} \left| \mathcal{D}\left(h_{s}\left(\mathbf{x}_{\Gamma_{s}}^{i}; \theta_{s}\right)\right) - \mathcal{D}\left(h_{r}\left(\mathbf{x}_{\Gamma_{s}}^{i}; \theta_{s}\right)\right) \right. \end{split}$$

Advantages

- The outer-iteration depends on the size overlap and the number of subdomains
- DeepDDM can "easily" handle PDEs with curved interfaces and heterogeneities.

Drawbacks

- No quantitative estimates of the convergence rate of deep learning solving PDE.
- What is the standard to design the best network architecture?

DeepDDM for Helmholtz

Li, Wang, Cui, Xiang, Xu. Deep domain decomposition method: Helmholtz equation. Advances in Applied Mathematics and Mechanics (2023)

Train **local networks** h_s by transmitting only Robin interface values to the neighboring subdomains.

Use of NNs with **plane wave (PW) activation** to account for oscillatory nature of the solution. The loss function reads

$$\mathcal{L}_{s}\left(\theta_{s}; \boldsymbol{X}_{s}\right) := \mathcal{L}_{\Omega_{s}}\left(\theta_{s}; \boldsymbol{X}_{s}\right) + \mathcal{L}_{\partial\Omega_{s}\setminus\Gamma_{s}}\left(\theta_{s}; \boldsymbol{X}_{s}\right) + \mathcal{L}_{\Gamma_{s}}\left(\theta_{s}; \boldsymbol{X}_{s}\right),$$

where

$$\begin{split} \mathcal{L}_{\Omega_{s}}\left(\theta_{s}; \boldsymbol{X}_{f_{s}}\right) &:= \frac{1}{N_{f_{s}}} \sum_{i=1}^{N_{f_{s}}} \left| \mathcal{B}\left(h_{s}\left(\boldsymbol{x}_{f_{s}}^{i}; \theta_{s}\right)\right) - f\left(\boldsymbol{x}_{f_{s}}^{i}\right) \right|^{2}, \\ \mathcal{L}_{\partial\Omega_{s} \setminus \Gamma_{s}}\left(\theta_{s}; \boldsymbol{X}_{g_{s}}\right) &:= \frac{1}{N_{g_{s}}} \sum_{i=1}^{N_{g_{s}}} \left| \mathcal{B}\left(h_{s}\left(\boldsymbol{x}_{g_{s}}^{i}; \theta_{s}\right)\right) - g\left(\boldsymbol{x}_{g_{s}}^{i}\right) \right|^{2}, \\ \mathcal{L}_{\Gamma_{s}}\left(\theta_{s}; \boldsymbol{X}_{\Gamma_{s}}\right) &:= \frac{1}{N_{\Gamma_{s}}} \sum_{i=1}^{N_{\Gamma_{s}}} \left| \frac{\partial h_{s}\left(\boldsymbol{x}_{g_{\Gamma_{s}}}^{i}; \theta_{s}\right)}{\partial \boldsymbol{n}_{s}} + \gamma_{s}h_{s}\left(\boldsymbol{x}_{\Gamma_{s}}^{i}; \theta_{s}\right) - g_{s}\left(\boldsymbol{x}_{\Gamma_{s}}^{i}\right) \right|^{2} \end{split}$$

Advantages

- Number of outer iterations comparable to the use of FDM with DDM
- Competitive solution time/iteration when the wave number increases.

Drawbacks

- Comparison done with an iterative Schwarz method – what about Krylov acceleration?
- All relies on PW activation function – number of parameters dependent on k.

Mercier, Gratton, Boudier. A coarse space acceleration of DeepDDM (arXiv 2021)

Add a **second level** by training a **coarse network** h_c on the top of DeepDDM in order to achieve scalability. Loss of the coarse network:

$$\mathcal{L}_{c}\left(\theta_{c}\right) := \mathcal{L}_{\Omega}\left(\theta_{c}\right) + \mathcal{L}_{\partial\Omega}\left(\theta_{c}\right) + \mathcal{L}_{f}\left(\theta_{c}\right),$$

where

$$\begin{split} \mathcal{L}_{\Omega}\left(\theta_{c}\right) &:= \frac{1}{N_{f}} \sum_{i=1}^{N_{f}} \left| \mathcal{N}\left(h_{c}\left(\mathbf{x}_{f}^{i,c};\theta_{c}\right)\right) - f\left(\mathbf{x}_{f}^{i}\right) \right|^{2}, \\ \mathcal{L}_{\partial\Omega_{s} \setminus \Gamma_{s}}\left(\theta_{c}\right) &:= \frac{1}{N_{g}} \sum_{i=1}^{N_{g}} \left| \mathcal{B}\left(h_{c}\left(\mathbf{x}_{g}^{i,c};\theta_{c}\right)\right) - g\left(\mathbf{x}_{g}^{i}\right) \right|^{2}, \\ \mathcal{L}_{\Gamma_{s}}\left(\theta_{c}\right) &:= \frac{1}{N_{f,c}} \sum_{i=1}^{N_{f,c}} \left| h_{c}\left(\mathbf{x}_{f}^{i,c};\theta_{c}\right) - \sum_{s} E_{s}\left(\chi_{s}h_{s}\left(\mathbf{x}_{f}^{i,c};\theta_{s}\right)\right) \right|^{2} \end{split}$$

- χ_s partition of unity
- *E_s* extension by zero operator

Ongoing work & open questions

- What is the best accuracy that one can obtain for a given number of subdomains?
- How does the performance depend on the capacities of the local and coarse problem networks?
- How does the size of the overlap influence the convergence?
- How does the performance depend on how the collocation points are distributed?

XPINNs (extended physics-informed neural networks)

Jagtap, Karniadakis. Extended physics-informed neural networks (XPINNs): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations. Communications in Computational Physics (2020)

$$\mathcal{L}_{s}\left(\theta_{s}, \mathbf{X}_{s}\right) = \omega_{u_{s}}\mathcal{L}_{u_{s}}\left(\theta_{s}, \mathbf{X}_{u_{s}}\right) + \omega_{\mathcal{I}_{s}}\mathcal{L}_{\mathcal{I}_{s}}\left(\theta_{s}, \mathbf{X}_{l_{s}}\right) + \omega_{l_{\mathcal{I}_{s}}}\underbrace{\mathcal{L}_{\mathcal{R}}\left(\theta_{s}, \mathbf{X}_{l_{s}}\right)}_{\text{interface condition}} + \underbrace{\mathcal{L}_{\mathcal{R}}\left(\theta_{s}, \mathbf{X}_{l_{s}}\right)}_{\text{interface condition}} + \underbrace{\mathcal{L}_{\mathcal{R}}$$

ML-Session

DD behavior

A Motivation for the FBPINN Approach

The **FBPINN** (finite basis physics-informed neural networks) approach has been proposed in **Moseley, Markham, and Nissen-Meyer (arXiv 2021)**.

Solve

$$\frac{du}{dx} = \cos(\omega x),$$

$$u(0) = 0,$$

for different values of ω .

Scaling issuesSize of the

computational domain

Size of frequencies

ML-Session

Finite Basis Physics-Informed Neural Networks (FBPINNs)

In the finite basis physics informed neural network (FBPINNs) method introduced in Moseley, Markham, and Nissen-Meyer (arXiv 2021), we solve the boundary value problem

$$\begin{split} \mathcal{N}[u](m{x}) &= f(m{x}), \qquad m{x} \in \Omega \subset \mathbb{R}^d, \\ \mathcal{B}_k[u](m{x}) &= g_k(m{x}), \qquad m{x} \in \Gamma_k \subset \partial \Omega. \end{split}$$

using neural networks, we employ the PINN approach and enforce the boundary conditions using a constraining operator, similar to Lagaris et al. (1998).

Weak enforcement of boundary conditions Loss function

$$\mathcal{L}(\boldsymbol{\theta}) = \omega_{\mathsf{PDE}} \mathcal{L}_{\mathsf{PDE}} + \omega_{\mathsf{BC}} \mathcal{L}_{\mathsf{BC}}$$

Hard enforcement of boundary conditions Loss function

$$\mathcal{L}(\boldsymbol{\theta}) = \sum_{i=1}^{N_l} (\mathcal{N}[\mathcal{C}u](\boldsymbol{x}_i, \boldsymbol{\theta}) - f(\boldsymbol{x}_i))^2,$$

where

$$\begin{aligned} \mathcal{L}_{\mathsf{PDE}}(\boldsymbol{\theta}) &= \frac{1}{N_{\mathsf{PDE}}} \sum_{i=1}^{N_{\mathsf{PDE}}} (\mathcal{N}[u](\boldsymbol{x}_i, \boldsymbol{\theta}) - f(\boldsymbol{x}_i))^2, \\ \mathcal{L}_{\mathsf{BC}}(\boldsymbol{\theta}) &= \frac{1}{N_{\mathsf{BC}}} \sum_{i=1}^{N_{\mathsf{BC}}} (\mathcal{B}_k[u](\boldsymbol{x}_i, \boldsymbol{\theta}) - g_k(\boldsymbol{x}_i))^2. \end{aligned}$$

with constraining operator C, which **explicitly** enforces the boundary conditions.

 \rightarrow Often improves training performance

FBPINNs – Overlapping Domain Decomposition

- Domain decomposition: $\Omega = \cup_{j=1}^{J} \Omega_j$
- Collocation points (global): {x_i}^N_{i=1}
- Overlapping/interior parts Ω_j° and $\Omega_j^{\textit{int}}$
- Local solutions u_j, window functions w_j
- Global solution $C u = C \sum_{j, x_i \in \Omega_j} \omega_j u_j$

Global loss function

$$\mathcal{L}(\theta_{1},...,\theta_{J}) = \underbrace{\frac{1}{N} \sum_{\mathbf{x} \in X^{int}} \left(\mathcal{N}[\mathcal{C} \sum_{l,\mathbf{x} \in X_{l}} \omega_{l} u_{l}](\mathbf{x},\theta_{l}) - f(\mathbf{x}) \right)^{2}}_{=:\mathcal{L}^{\circ}(\theta_{1},...,\theta_{J})} + \underbrace{\frac{1}{N} \sum_{\mathbf{x} \in X^{\circ}} \left(\mathcal{N}[\mathcal{C} \sum_{l,\mathbf{x} \in X_{l}} \omega_{l} u_{l}](\mathbf{x},\theta_{l}) - f(\mathbf{x}) \right)^{2}}_{=:\mathcal{L}^{int}(\theta_{1},...,\theta_{J})}.$$

Since
$$X_i^{int} \cap X_j^{int} = \emptyset$$
 for $i \neq j$,
 $\mathcal{L}^{int}(\theta_1, \dots, \theta_J) = \frac{1}{N} \sum_{j=1}^J \sum_{\mathbf{x}_i \in X_j^{int}} (\mathcal{N}[\mathcal{C}\omega_j u_j](\mathbf{x}_i, \theta_j) - f(\mathbf{x}_i))^2$

- The subdomains can be split into active (trained in parallel) and inactive (fixed)
- This corresponds to classical parallel (all active) or multiplicative (one active at a time) Schwarz methods

FBPINN With Flexible Scheduling

Algorithm 1: FBPINN training step

if $j \in \mathcal{A}$ (Ω_j is an active domain) then Perform p iterations of gradient descent on θ_j^k (θ_i^k where $i \neq j$ are kept fixed):

$$oldsymbol{ heta}_{j}^{k+l} = oldsymbol{ heta}_{j}^{k+l-1} - \lambda
abla_{oldsymbol{ heta}_{j}} \mathcal{L}(oldsymbol{ heta}_{1}^{k},...,oldsymbol{ heta}_{j-1}^{k},oldsymbol{ heta}_{j}^{k+l-1},oldsymbol{ heta}_{j+1}^{k},...,oldsymbol{ heta}_{j}^{k}),$$

Update the solution in the overlapping regions (communicate with neighbours):

$$\forall \mathbf{x} \in \Omega_j^\circ, \ u(\mathbf{x}, \boldsymbol{\theta}_j^{k+p}) \leftarrow \sum_{l, \mathbf{x} \in \Omega_l} \omega_l u_l(\mathbf{x}, \boldsymbol{\theta}_l^{k+p}).$$

Summary

- Communication every p iterations (better for overall efficiency)
- Multiplication with a window function : a way to restrict to the local domain.
- The set of active domains can be changed after the local training is completed.

end

 \rightarrow We only consider **parallel** (all active) iterations for now.

FBPINNs – Weak Scaling Study

Solve, for $\omega = 15$,

 $\frac{du}{dx} = \cos(\omega x), \quad u(0) = 0.$

- Fixed local network size and number of local collocation points. Then, we increase the number of subdomains.
- We choose all subdomains as active and test the influence of

_	FBPINN (1 updates every 1 iterations)
-	FBPINN (1 updates every 10 iterations)
-	FBPINN (1 updates every 100 iterations)
-	FBPINN (1 updates every 1000 iterations)
	FBPINN (10 updates every 1000 iterations)

FBPINN (100 updates every 1000 iterations)

Observations

- Convergence get worse with an increasing number of subdomains
- No noticeable difference depending on how often we update, unless we update every iteration

Let us focus **updating each iteration** for now.

Laplace Problem

Let us now consider the simple boundary value problem

$$-\Delta u = 1$$
 in [0, 1],
 $u(0) = u(1) = 0$,

which has the solution

$$u(x)=\frac{1}{2}x(1-x).$$

1 level, 2 subdomains

Weak Scaling – Effect of the Overlap

Weak Scaling – Effect of the Overlap

 \rightarrow Larger overlap improves convergence.

Weak Scaling – Effect of the Overlap

- \rightarrow Larger overlap improves convergence.
- \rightarrow No scalability with respect to increasing number of subdomains.
Two-Level FBPINN Algorithm

Coarse correction and spectral bias

Questions:

- Scalability requires global transport of information.
 In domain decomposition, this is typically done using a coarse global problem.
- What does this mean in the **context of network training**?

Idea:

 \rightarrow Learn low frequencies using a small global network, train high frequencies using local networks.

Investigate this for a simple model problem with two frequencies

$$\begin{cases} \frac{du}{dx} = \omega_1 \cos(\omega_1 x) + \omega_2 \cos(\omega_2 x) \\ u(0) = 0. \end{cases}$$

with $\omega_1 = 1$, $\omega_2 = 15$,

Coarse and Local Training

Now, learn the error (higher frequencies) using the one-level FBPINN model using local models on 30 subdomains.

Laplace Problem

Let us, again, consider the boundary value problem

$$-\Delta u = 1$$
 in [0, 1],
 $u(0) = u(1) = 0$,

which has the solution

$$u(x)=\frac{1}{2}x(1-x).$$

1 level, 16 subdomains

Weak Scaling – Comparison One and Two Levels

 \rightarrow Adding a second level improves scalability.

Multi-Frequency Laplace Problem

Let us now consider the boundary value problem

$$\begin{aligned} -\Delta u = &\pi^2 \sin(\pi x) + (20\pi)^2 \sin(20\pi x) \\ &+ (50\pi)^2 \sin(50\pi x) \text{ in } [0,1], \\ &u(0) = &u(1) = 0, \end{aligned}$$

which has the solution

$$u(x) = \sin(\pi x) + \sin(20\pi x) + \sin(50\pi x).$$

1 level, 2 subdomains

A. Heinlein (TU Delft)

Multi-Frequency Laplace Problem

Let us now consider the boundary value problem

$$\begin{aligned} -\Delta u = &\pi^2 \sin(\pi x) + (20\pi)^2 \sin(20\pi x) \\ &+ (50\pi)^2 \sin(50\pi x) \text{ in } [0,1], \\ &u(0) = &u(1) = 0, \end{aligned}$$

which has the solution

$$u(x) = \sin(\pi x) + \sin(20\pi x) + \sin(50\pi x).$$

2 levels, 2 subdomains

2 levels, 32 subdomains

Weak Scaling – Comparison One and Two Levels

Surrogate models for computational fluid dynamics simulations Data-driven approach

Computational Fluid Dynamics (CFD) Simulations are Time Consuming

In Giese, Heinlein, Klawonn, Knepper, Sonnabend (2019), a benchmark for comparing MRI measurements and CFD simulations of hemodynamics in intracranial aneurysms was proposed.

To obtain accurate simulation results, simulations with ≈ 10 m d.o.f.s were carried out. On O(100) MPI ranks, the computation of a steady state took O(1) h on CHEOPS supercomputer at UoC.

Computational Fluid Dynamics (CFD) Simulations are Time Consuming

In Giese, Heinlein, Klawonn, Knepper, Sonnabend (2019), a benchmark for comparing MRI measurements and CFD simulations of hemodynamics in intracranial aneurysms was proposed.

To obtain accurate simulation results, simulations with $\approx 10 \text{ m}$ d.o.f.s were carried out. On O(100) MPI ranks, the computation of a steady state took O(1) h on CHEOPS supercomputer at UoC.

Using PINNs as Surrogate Models

Learning the solution of one specific boundary value problem (BVP), for instance, using PINNs

$$\begin{array}{lll} \mathcal{N}[u](\boldsymbol{x}) &=& f(\boldsymbol{x}), & \boldsymbol{x} \in \Omega \subset \mathbb{R}^d, \\ \mathcal{B}_k[u](\boldsymbol{x}) &=& g_k(\boldsymbol{x}), & \boldsymbol{x} \in \Gamma_k \subset \partial\Omega, \end{array}$$

generally requires re-training the model once the boundary problem changes.

Instead, we are interested in a **single surrogate model** that can predict the solution for a variety of

- geometries,
- initial and boundary conditions, and/or
- material parameters.

Operator Learning and Surrogate Modeling

Our approach is inspired by the work **Guo**, **Li**, **lorio** (2016), in which **convolutional neural networks** (CNNs) are employed to predict the flow in channel with an obstacle.

In particular, we use a pixel image of the **geometry as input** and predict an image of the resulting **stationary flow field as output**:

Other related works: E.g.

- Guo, Li, Iorio (2016)
- Niekamp, Niemann, Schröder (2022)
- Stender, Ohlsen, Geisler, Chabchoub, Hoffmann, Schlaefer (2022)

A. Heinlein (TU Delft)

ML-Session

Operator Learning and Surrogate Modeling

We learn the nonlinear map between a representation space of the geometry and the solution space of the stationary Navier–Stokes equations \rightarrow Operator learning.

Operator learning

Learning maps between function spaces, e.g.,

 between the right-hand side and the solution of a BVP.

Other operator learning approaches

- DeepOnet: Lu, Jin, and Karniadakis. (arXiv preprint 2019).
- Neural operators: Kovachki, Li, Liu, Azizzadenesheli, Bhattacharya, Stuart, and Anandkumar (arXiv preprint 2021).

Model Problem – Flow Around an Obstacle in Two Dimensions

We propose a **simple model problem** to investigate predictions of a **steady flow in a channel with an obstacle**; this setup is also inspired by **Guo, Li, Iorio (2016)**.

In particular, we restrict ourselves to

- $\rightarrow\,$ a simple rectangular basic geometry and
- \rightarrow fixed boundary conditions.

However, we vary the geometry of the polygonal obstacle. In addition, we interpolate the input and output data to a structured tensor product mesh to impose a structure.

Type I – III Geometries (Eichinger, Heinlein, Klawonn (2021, 2022))

We first consider **obstacles** of the following three types; see also **Guo**, **Li**, **lorio** (2016) for a similar approach. In particular, we randomly generate star-shaped polygons with 3, 4, 5, 6, and 12 edges.

First, we consider **100 000 pairs of geometry and flow data** (90 000 training; 10 000 validation) for **Type I (50 000) & Type II (50 000)**. Later, we will also consider Type III.

Computation of the Flow Data Using OpenFOAM®

We solve the steady Navier-Stokes equations

$$\begin{split} -\nu \Delta \vec{u} + (u \cdot \nabla) \, \vec{u} + \nabla \rho &= 0 \text{ in } \Omega, \\ \nabla \cdot u &= 0 \text{ in } \Omega, \end{split}$$

where \vec{u} and p are the velocity and pressure fields and ν is the viscosity. Furthermore, we prescribe the previously described boundary conditions.

Software pipeline

- 1. Define the boundary of the polygonal obstacle and create the corresponding STL (standard triangulation language) file.
- Generate a hexahedral compute grid (snappyHexMesh).
- 3. Run the **CFD simulation** (simpleFoam).
- 4. Interpolate geometry information and flow field onto a pixel grid.
- 5. Train the CNN.

40/61

 $256 \,\mathrm{dx}$

ML-Session

Neural Network Architectures

Bottleneck CNN (Guo, Li, Iorio (2016))

U-Net (Ronneberger, Fischer, Brox (2015))

One decoder

Two decoders

Comparison CFD Vs NN (Relative Error 2%)

Cf. Eichinger, Heinlein, Klawonn (2021, 2022)

Comparison CFD Vs NN (Relative Error 14%)

Cf. Eichinger, Heinlein, Klawonn (2021, 2022)

Comparison CFD Vs NN (Relative Error 31%)

Cf. Eichinger, Heinlein, Klawonn (2021, 2022)

First Results (Eichinger, Heinlein, Klawonn (2021, 2022))

We compare the relative error (RE) $\frac{\|u_{i,j}-\hat{u}_{i,j}\|_2}{\|u_{i,j}\|_{2}+10^{-4}}$ averaged over all non-obstacle pixels and all validation data configurations. Furthermore: MSE = mean squared error; MAE = mean absolute error.

			Bottleneck CNN (Guo, Li, Iorio (2016))			U-Net (Ronneberger, Fischer, Brox (2015))		
input	# dec.	loss	total	type I	type II	total	type I	type II
		MSE	61.16 %	110.46 %	11.86 %	17.04 %	29.42 %	4.66 %
	1	MSE + RE	3.97 %	3.31 %	4.63 %	2.67 %	2.11 %	3.23 %
	1	MAE	25.19%	41.52 %	8.86 %	9.10 %	13.89 %	4.32 %
SDE		MAE + RE	4.45 %	3.84 %	5.05 %	2.48 %	1.87%	3.10 %
501		MSE	49.82 %	89.12 %	10.51%	13.01 %	21.59 %	4.42 %
	2	MSE + RE	3.85 %	3.05 %	4.64 %	2.43%	1.78 %	3.23 %
		MAE	45.23 %	81.38 %	9.08 %	5.47 %	7.06 %	3.89 %
		MAE + RE	4.33 %	3.74 %	4.91 %	2.57 %	1.98 %	3.17 %
		MSE	49.78 %	88.28 %	11.28 %	27.15 %	49.15 %	5.15 %
	1	MSE + RE	10.12 %	11.44%	8.80 %	5.49%	6.25 %	4.74 %
Binary	1	MAE	39.16 %	64.77 %	13.54%	15.69 %	26.36 %	5.02 %
		MAE + RE	10.61 %	12.34 %	8.87 %	4.48%	5.05 %	3.90 %
		MSE	51.34 %	91.20 %	11.48 %	24.00 %	43.14 %	4.85 %
	2	MSE + RE	10.03 %	11.37 %	8.69 %	5.56 %	6.79%	4.33 %
	2	MAE	37.16 %	62.01 %	12.32 %	21.54 %	38.12 %	4.96 %
		MAE + RE	9.53 %	10.91 %	8.15 %	6.04 %	7.88 %	4.20 %

A. Heinlein (TU Delft)

Generalization Properties (Eichinger, Heinlein, Klawonn (2021, 2022))

We test the generalization properties of our previously trained U-Net. In particular, we predict the flow for new geometries of Type I and Type II; 1000 geometries each (500 Type I & 500 Type II).

# polygon	SDF input			Binary input		
edges	total	type I	type II	total	type I	type II
7	2.71 %	1.89 %	3.53 %	4.39 %	4.61 %	4.16 %
8	2.82 %	1.98 %	3.65 %	4.67 %	4.89 %	4.44 %
10	3.21 %	2.32 %	4.10 %	5.23%	5.51%	4.94 %
15	4.01 %	3.16 %	4.86 %	7.76%	7.85 %	6.66%
20	5.08 %	4.22 %	5.93 %	9.70%	10.43 %	8.97 %

 u_X CFD

Generalization Issues – Type III Geometry (Relative Error 158%)

Cf. Eichinger, Heinlein, Klawonn (2022)

Transfer Learning – Type III Geometries

The **best model (U-Net, one decoder, MAE+RE loss)** trained on type I and type II geometries **performs poorly on 2500 type III geometries**:

	SDF Input	binary Input
type III	22 985.89 %	4 134.69 %

We compare the following approaches to generalize to type III geometries:

- Approach 1: Train a new model from scratch on type III geometries (2500 training + 2500 validation data)
- Approach 2: Train the previous model on type III geometries
- Approach 3: Train the previous model on a data set consisting of the old data (type I & type II) and type III data

		type	&	typ	be III
learning	# training				
approach	epochs	SDF input	binary input	SDF input	binary input
1	100	-	-	98.02 %	111.75 %
2	100	208.02 %	105.43 %	7.18%	11.81 %
3	3	3.33 %	7.06 %	4.94 %	11.28 %

Neural networks forget if data is removed from the training data. However, new geometries (type III: symmetric to Type I) can be learned quickly if they are added to the existing training data.

	Avg. Runtime per Case
	(Serial)
Create STL	0.15 s
snappyHexMesh	37 s
simpleFoam	13 s
Total Time	pprox 50 s

CFD (CPU)

50 s

	Bottleneck CNN		U-	Net
# decoders	1	2	1	2
# parameters	pprox 47 m	pprox 85 m	$\approx 34 \mathrm{m}$	pprox 53.5 m
time/epoch	180 s	245 s	195 s	270 s

NN (CPU)

0.092 s

Training:

Data:

Comparison CFD Vs NN:

 \Rightarrow Flow predictions using neural networks may be less accurate and the training phase expensive, but the flow prediction is $\approx 5 \cdot 10^2 - 10^4$ times faster.

Avg. Time

CPU: AMD Threadripper 2950X (8 \times 3.8 Ghz), 32GB RAM;

GPU: GeForce RTX 2080Ti

NN (GPU)

0.0054 s

Surrogate models for computational fluid dynamics simulations GAN-based training

Training the Surrogate Model via GANs

Cf. Kemna, Heinlein, Vuik (accepted 2022).

- Generative adversarial networks (GANs) based on Goodfellow et al. (2014) consist of two
 independent neural networks that are trained concurrently in an adversarial setting:
 - Generator is trained to fool the discriminator into classifying its outputs as training data
 - Discriminator is trained to distinguish between generated samples and training data

GANs for Fluid Prediction – Bifurcation Example

For investigating the effect of training the surrogate model as a generator of a GAN, consider the following sudden expansion scenario (see, e.g., Mullin et al. (2009)), which leads to a bifurcation if the inlet is centered.

	. Heinlein (TU Delft)	ML-Session	49/61
--	-----------------------	------------	-------

GANs for Fluid Prediction – Overall Performance

GANs for Fluid Prediction – Divergence Error

Let us investigate how well the predictions satisfy the continuity equation in the Navier–Stokes equations:

$$-\nu\Delta \vec{u} + (u \cdot \nabla) \vec{u} + \nabla p = 0 \text{ in } \Omega,$$
$$\nabla \cdot u = 0 \text{ in } \Omega.$$

GANs for Fluid Prediction – Divergence Error

Let us investigate how well the predictions satisfy the continuity equation in the Navier–Stokes equations:

$$-\nu\Delta \vec{u} + (u \cdot \nabla) \vec{u} + \nabla p = 0 \text{ in } \Omega,$$
$$\nabla \cdot \boldsymbol{u} = 0 \text{ in } \Omega.$$

 \rightarrow The GAN loss seems to help learning the physics of the system.

Surrogate models for computational fluid dynamics simulations Physics-aware approach

 \rightarrow We further **improved the U-Net architecture** for our application.

A. Heinlein (TU Delft)

ML-Session

Convolution

The action of a **convolutional layer** corresponds to **going over the image with a filter** (matrix):

(a ₁₁	a_{12}	a ₁₃
a ₂₁	a ₂₂	a ₂₃
a_{31}	<i>a</i> ₃₂	a ₃₃ /

A. Heinlein (TU Delft)

Convolution

The action of a **convolutional layer** corresponds to **going over the image with a filter** (matrix):

(a ₁₁	a_{12}	a ₁₃
a ₂₁	a ₂₂	a ₂₃
a_{31}	<i>a</i> ₃₂	a ₃₃ /

A. Heinlein (TU Delft)

Convolution

The action of a **convolutional layer** corresponds to **going over the image with a filter** (matrix):

(a ₁₁	a_{12}	a ₁₃
a ₂₁	a ₂₂	a ₂₃
a_{31}	a ₃₂	a ₃₃ /

Unsupervised Learning Approach – PDE Loss Using Finite Differences

$$\left\|\begin{array}{c}F_{mom}(u_{NN}, p_{NN})\\F_{mass}(u_{NN}, p_{NN})\end{array}\right\|^{2} >> 0$$

Cf. Grimm, Heinlein, Klawonn

Minimization of the mean squared residual of the Navier-Stokes equations

$$\min_{u_{\text{NN}}, p_{\text{NN}}} \frac{1}{\# \text{pixels}} \sum_{\text{pixels}} \left\| \begin{array}{c} F_{\text{mom}}(u_{\text{NN}}, p_{\text{NN}}) \\ F_{\text{mass}}(u_{\text{NN}}, p_{\text{NN}}) \end{array} \right\|$$

where $u_{\rm NN}$ and $p_{\rm NN}$ are the output images of our CNN and

$$F_{\text{mom}}(u, p) := -\nu \Delta \vec{u} + (u \cdot \nabla) \vec{u} + \nabla p,$$

$$F_{\text{mass}}(u, p) := \nabla \cdot u.$$

We use a **finite difference discretization on the output pixel image** by defining filters on the last layer of the CNN-based on the stencils:

 $\left\|\begin{array}{c}F_{\text{mom}}(u_{\text{NN}}, p_{\text{NN}})\\F_{\text{mass}}(u_{\text{NN}}, p_{\text{NN}})\end{array}\right\|^{2} \approx 0$

Convergence Comparison – CNN Versus FDM

A. Heinlein (TU Delft)

ML-Session

54/61

Convergence Comparison – CNN Versus FDM

The results are in alignment with the **spectral bias of neural networks**. The neural network approximations yield a low error norm compared with the residual (MSE loss).

$$Ae = A(u^* - u) = b - Au = r$$

Cf. Grimm, Heinlein, Klawonn (submitted 2022).

Physics-Aware Approach – Boundary Conditions

The PDE loss can be minimized **without using simulation results as training data**. Therefore, we also call this **physics-aware** approach **unsupervised**.

 \rightarrow On a single geometry, this training of the neural network just corresponds to an unconventional way of discretizing the Navier-Stokes equations using finite differences.

Hence, we also have to enforce the boundary conditions of our boundary value problem:

Physics-Aware Approach – Single Geometry

Physics-Aware Approach – Single Geometry

 \Rightarrow We can solve the boundary value problem using a neural network.

Physics-Aware Approach – Single Geometry

 \Rightarrow We can solve the boundary value problem using a neural network.

 \rightarrow Now, we again build a surrogate model for multiple geometries.

Results on \approx 5000 Type II Geometries

	training	OFFOF	$ u_{NN} - u _2$	$ p_{NN} - p _2$	mean residual		# epochs
	data	error	<i>u</i> ₂	<i>p</i> ₂	momentum	mass	trained
data-based	10%	train.	2.07%	10.98%	$1.1\cdot10^{-1}$	$1.4\cdot 10^0$	500
		val.	4.48 %	15.20%	$1.6 \cdot 10^{-1}$	$1.7\cdot 10^0$	
	25%	train.	1.93%	8.45%	$9.1 \cdot 10^{-2}$	$1.2\cdot 10^0$	500
		val.	3.49 %	10.70%	$1.2 \cdot 10^{-1}$	$1.4\cdot 10^0$	
	50%	train.	1.48%	8.75%	$9.0 \cdot 10^{-2}$	$1.1\cdot 10^0$	500
		val.	2.70 %	10.09 %	$1.1 \cdot 10^{-1}$	$1.2\cdot 10^0$	
	75%	train.	1.43%	7.30%	$1.0 \cdot 10^{-1}$	$1.5\cdot 10^0$	500
		val.	2.52 %	8.67 %	$1.2 \cdot 10^{-1}$	$1.5\cdot 10^0$	
physics-aware	10%	train.	5.35%	12.95%	$3.5\cdot10^{-2}$	$7.8 \cdot 10^{-2}$	5 000
		val.	6.72%	15.39%	$6.7 \cdot 10^{-2}$	$2.0 \cdot 10^{-1}$	
	25%	train.	5.03%	12.26%	$3.2 \cdot 10^{-2}$	$7.3 \cdot 10^{-2}$	5 000
		val.	5.78%	13.38 %	$5.3 \cdot 10^{-2}$	$1.4 \cdot 10^{-1}$	5 000
	50%	train.	5.81%	12.92%	$3.9 \cdot 10^{-2}$	$9.3 \cdot 10^{-2}$	5 000
		val.	5.84 %	12.73 %	$4.8 \cdot 10^{-2}$	$1.2 \cdot 10^{-1}$	5000
	75%	train.	5.03%	11.63%	$3.2 \cdot 10^{-2}$	$7.7 \cdot 10^{-2}$	5 000
		val.	5.18%	11.60 %	$4.2 \cdot 10^{-2}$	$1.1 \cdot 10^{-1}$	J 000

Results on \approx 5000 Type II Geometries

	training		$ u_{NN} - u _2$	$ p_{NN} - p _2$	mean residual		# epochs
	data	enor	<i>u</i> ₂	<i>p</i> ₂	momentum	mass	trained
data-based	10%	train.	2.07%	10.98%	$1.1\cdot10^{-1}$	$1.4\cdot 10^0$	500
		val.	4.48 %	15.20 %	$1.6\cdot10^{-1}$	$1.7\cdot 10^0$	
	25%	train.	1.93%	8.45%	$9.1 \cdot 10^{-2}$	$1.2\cdot 10^0$	500
		val.	3.49 %	10.70%	$1.2 \cdot 10^{-1}$	$1.4\cdot 10^0$	
	50%	train.	1.48%	8.75%	$9.0 \cdot 10^{-2}$	$1.1\cdot 10^0$	500
		val.	2.70 %	10.09 %	$1.1 \cdot 10^{-1}$	$1.2\cdot 10^0$	
	75%	train.	1.43%	7.30%	$1.0 \cdot 10^{-1}$	$1.5\cdot 10^0$	500
		val.	2.52 %	8.67 %	$1.2 \cdot 10^{-1}$	$1.5\cdot 10^0$	
physics-aware	10%	train.	5.35%	12.95%	$3.5\cdot10^{-2}$	$7.8 \cdot 10^{-2}$	E 000
		val.	6.72%	15.39%	$6.7 \cdot 10^{-2}$	$2.0 \cdot 10^{-1}$	5 000
	25%	train.	5.03%	12.26%	$3.2 \cdot 10^{-2}$	$7.3 \cdot 10^{-2}$	5 000
		val.	5.78%	13.38 %	$5.3 \cdot 10^{-2}$	$1.4 \cdot 10^{-1}$	5 000
	50%	train.	5.81%	12.92%	$3.9 \cdot 10^{-2}$	$9.3 \cdot 10^{-2}$	5 000
		val.	5.84 %	12.73 %	$4.8 \cdot 10^{-2}$	$1.2 \cdot 10^{-1}$	
	75%	train.	5.03%	11.63%	$3.2 \cdot 10^{-2}$	$7.7 \cdot 10^{-2}$	5 000
		val.	5.18%	11.60 %	$4.2 \cdot 10^{-2}$	$1.1 \cdot 10^{-1}$	5 000

 \rightarrow The results for the **physics-aware approach** are **comparable to the data-based approach**; the **errors are slightly higher**. However, no reference data at all is needed for the training.

Generalization

Generalization

 \rightarrow The unsupervised approach generalizes slightly better, and in particular, the prediction is smoother and misses unphysical artifacts.

Generalization With Respect to the Inflow Velocity

Training: 500 geometries **Validation:** $\approx 1\,200$ geometries Relative *L*2-error on the validation data set in *u*: **4.9**%, in *p*: **9.5**%.

Summary

- The new field of scientific machine learning (SciML) deals with the combination of scientific computing and machine learning techniques; physics-informed machine learning models allow for the combination of physical models and data.
- Domain decomposition methods can help to improve the training process for PINNs, especially for (but not restricted to) large domains and/or multiscale problems.
- The FBPINN method integrates domain decomposition approaches into PINN training in a natural way; it can also be extended to a two-level method.
- Using CNNs on image data yields an operator learning approach for predicting fluid flow inside varying computational domains; again, the model training can be enhanced by using physics.

Acknowledgements

• The Helmholtz School for Data Science in Life, Earth and Energy (HDS-LEE)