
Fast and Robust Overlapping Schwarz Preconditioners in
Trilinos
Highly Scalable Algorithms and Their Efficient Implementation

Alexander Heinlein
HPC Seminar Series, Center for Data and Simulation Science (CDS), Universität zu Köln, Köln, Germany,
January 18, 2023

TU Delft

Outline

1 Exascale Computing & Trilinos

2 The FROSch (Fast and Robust Overlapping Schwarz) Package

3 Distributed Memory Parallelization – Scalability Results for FROSch
Preconditioners

4 Node-Level Performance of FROSch Preconditioners

Exascale Computing & Trilinos

Exascale Computing

For most scientific and engineering applications, Exascale implies 1018 IEEE 754 Double
Precision (64-bit) operations (multiplications and/or additions) per second (exaflops).
The High Performance Linpack (HPL) benchmark, which solves a dense linear
system using LU factorization with partial pivoting, is the current benchmark
by which the community measures the throughput of a computing system. To be
generally accepted as an Exascale system, a computer must exceed 1018 flops
(1 exaflops) on the HPL benchmark.

Bergman, Keren, et al.
Exascale computing study: Technology challenges in achieving exascale systems.
Defense Advanced Research Projects Agency Information Processing Techniques Office
(DARPA IPTO), Tech. Rep 15 (2008): 181.

Alexander Heinlein (TU Delft) HPC Seminar Series 1/34

TOP500 List (November 2022)

Taken from https://www.top500.org.

Alexander Heinlein (TU Delft) HPC Seminar Series 2/34

https://www.top500.org

Rank System Cores Rmax Rpeak Power
(PFlop/s) (PFlop/s) (kW)

1 Frontier – HPE Cray EX235a, AMD Optimized
3rd Generation EPYC 64C 2GHz, AMD Instinct
MI250X, Slingshot-11 HPE

8,730,112 1,102.00 1,685.65 21,100

DOE/SC/Oak Ridge National Laboratory, USA
2 Supercomputer Fugaku – Supercomputer Fugaku,

A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu
7,630,848 442.01 537.21 29,899

RIKEN Center for Computational Science, Japan
3 LUMI – HPE Cray EX235a, AMD Optimized

3rd Generation EPYC 64C 2GHz, AMD Instinct
MI250X, Slingshot-11,

2,220,288 309.10 428.70 6,016

HPE EuroHPC/CSC, Finland
4 Leonardo – BullSequana XH2000, Xeon Platinum

8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB,
Quad-rail NVIDIA HDR100 Infiniband, Atos

1,463,616 174.70 255.75 5,610

EuroHPC/CINECA, Italy
5 Summit – IBM Power System AC922, IBM POWER9

22C 3.07GHz, NVIDIA Volta GV100, Dual-rail
Mellanox EDR Infiniband, IBM

2,414,592 148.60 200.79 10,096

DOE/SC/Oak Ridge National Laboratory, USA
.

Alexander Heinlein (TU Delft) HPC Seminar Series 3/34

Rank System Cores Rmax Rpeak Power
(PFlop/s) (PFlop/s) (kW)

1 Frontier – HPE Cray EX235a, AMD Optimized
3rd Generation EPYC 64C 2GHz, AMD Instinct
MI250X, Slingshot-11 HPE

8,730,112 1,102.00 1,685.65 21,100

DOE/SC/Oak Ridge National Laboratory, USA
2 Supercomputer Fugaku – Supercomputer Fugaku,

A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu
7,630,848 442.01 537.21 29,899

RIKEN Center for Computational Science, Japan
3 LUMI – HPE Cray EX235a, AMD Optimized

3rd Generation EPYC 64C 2GHz, AMD Instinct
MI250X, Slingshot-11,

2,220,288 309.10 428.70 6,016

HPE EuroHPC/CSC, Finland
4 Leonardo – BullSequana XH2000, Xeon Platinum

8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB,
Quad-rail NVIDIA HDR100 Infiniband, Atos

1,463,616 174.70 255.75 5,610

EuroHPC/CINECA, Italy
5 Summit – IBM Power System AC922, IBM POWER9

22C 3.07GHz, NVIDIA Volta GV100, Dual-rail
Mellanox EDR Infiniband, IBM

2,414,592 148.60 200.79 10,096

DOE/SC/Oak Ridge National Laboratory, USA
.

Out of a total of 8,730,112 computing cores,
8,138,240 cores are GPU cores.
→ Almost all the performance in computing
bandwidth is on the GPUs.

Alexander Heinlein (TU Delft) HPC Seminar Series 3/34

What is Trilinos?

An Open-Source Library of Software for Scientific Computing

Mission statement (Heroux et al. (2005)): “The Trilinos Project is an effort to facilitate
the design, development, integration, and ongoing support of mathematical software libraries
and enabling technologies within an object-oriented software framework for the solution of
large-scale, complex multi-physics engineering and scientific problems on new and emerging

high-performance computing (HPC) architectures”.

Alexander Heinlein (TU Delft) HPC Seminar Series 4/34

Layers of a Trilinos-Based Application

Parallelization (MPI, Kokkos,
KokkosKernels, ...)

Distributed Linear Algebra

Linear Solvers

Preconditioners

Nonlinear Solvers

Discretizations

Application
Codes

Alexander Heinlein (TU Delft) HPC Seminar Series 5/34

Why Using Trilinos?

Wide range of functionality
Data services Vectors, matrices, graphs and similar data containers, and related operations
Linear and eigen-
problem solvers

For large, distributed systems of equations

Nonlinear solvers
and analysis tools

Includes basic nonlinear approaches, continuation methods and similar

Discretizations Tools for the discretization of integral and differential equations
Framework Tools for building, testing, and integrating Trilinos capabilities

Portable parallelism
Trilinos is targeted for all major parallel architectures, including

• distributed-memory using the Message Passing Interface (MPI),
• multicore using a variety of common approaches,
• accelerators using common and emerging approaches, and
• vectorization.

“ . . . as long as a given algorithm and problem size contain enough latent parallelism, the same
Trilinos source code can be compiled and execution on any reasonable combination of distributed,
multicore, accelerator and vectorizing computing devices.” — Trilinos Website

Alexander Heinlein (TU Delft) HPC Seminar Series 6/34

https://trilinos.github.io

Parallelization in Trilinos

Distributed-memory parallelization
• Process-based parallelization
• Each processor has its own internal

memory
⊕ No memory access conflicts
⊖ Requires (possibly slow) data exchange

through a network

Network

Processor

Memory

Processor

Memory

Processor

Memory

Processor

Memory

MPI

Shared-memory parallelization
• Thread-based parallelization
• All processors access a shared memory
⊕ Changes in shared memory are visible to

all
⊖ Memory access conflicts

Memory

Processor Processor Processor Processor

CPU GPU
OpenMP CUDAPthreads

Alexander Heinlein (TU Delft) HPC Seminar Series 7/34

Parallelization and Performance Portability in Trilinos

Distributed-memory parallelization (MPI)
MPI parallelization is provided through the
parallel linear algebra framework:

• At the moment, there are two different
linear algebra frameworks/packages, the
older Epetra package and the more recent
Tpetra package.

• The linear algebra frameworks both provide
parallel implementations of

• vectors,
• sparse matrices,
• redistributors,
• and more. . .

• Based on Epetra and Tpetra, Trilinos
currently provides two stacks of packages,
providing a similar range of functionality.

• Tpetra is built upon Kokkos; see right.

Shared-memory parallelization (X)
A systematic framework for shared-memory
parallelization is provided by the Kokkos
programming model:

• Kokkos implements a programming model
in C++ for writing performance portable
applications targeting all major HPC
platforms.

• KokkosKernels implements local
computational kernels for linear algebra and
graph operations, using the Kokkos
programming model.

• Support for CUDA, HPX, OpenMP and
Pthreads.

• Tpetra automatically provides access to
the functionality of Kokkos.

Alexander Heinlein (TU Delft) HPC Seminar Series 8/34

Overview of Trilinos Packages

Trilinos is a collection of more than 50 software packages:

• Each Trilinos package is a self-contained, independent piece of software with its own set
of requirements, its own development team1 and group of users.

• However, there are often certain dependencies between different Trilinos packages.
Some Trilinos packages also depend on third party libraries (TPLs).

• Generally, a certain degree of interoperability of the different Trilinos packages is
provided.

Contents of trilinos/packages:

Alexander Heinlein (TU Delft) HPC Seminar Series 9/34

Trilinos Packages
MPI (Epetra-based) MPI+X (Tpetra-based)

Linear algebra Epetra & EpetraExt Tpetra
Direct sparse solvers Amesos Amesos2
Iterative solvers AztecOO Belos
Preconditioners:
• One-level (incomplete) factorization Ifpack Ifpack2
• Multigrid ML MueLu
• Domain decomposition ShyLU
Eigenproblem solvers Anasazi
Nonlinear solvers NOX & LOCA
Partitioning Isorropia & Zoltan Zoltan2
Example problems Galeri
Performance portability Kokkos & KokkosKernels
Interoperability Stratimikos & Thyra
Tools Teuchos
...

...
...

• Packages, that do not depend on Epetra or Tpetra work in both software stacks, e.g.,
Galeri, NOX & LOCA, Teuchos

• More details on https://trilinos.github.io.

Alexander Heinlein (TU Delft) HPC Seminar Series 10/34

https://trilinos.github.io

Trilinos & Exascale Computing

The development of Trilinos towards Exascale computing is strongly influenced by U.S.
Exascale systems as well as the Exascale Computing Project.

See http://e4s.io

Alexander Heinlein (TU Delft) HPC Seminar Series 11/34

http://e4s.io

Trilinos & Exascale Computing

The development of Trilinos towards Exascale computing is strongly influenced by U.S.
Exascale systems as well as the Exascale Computing Project.

Exascale Computing Project
The Exascale Computing Project (ECP) is a
collaborative effort of two US Department of Energy
(DOE) organizations – the Office of Science
(DOE-SC) and the National Nuclear Security
Administration (NNSA).

https://www.exascaleproject.org/

The ECP is commissioned to provide new scientific software capabilities on the frontier of
algorithms, software and hardware

• ECP uses platforms to foster collaboration and cooperation as we head into the frontier
• ECP has two primary software platforms:

• E4S (Extreme-scale Scientific Software Stack): a comprehensive portfolio of ECP-sponsored
products and dependencies

• SDKs (Software Development Kits): Domain-specific collaborative and aggregate product
development of similar capabilities

Alexander Heinlein (TU Delft) HPC Seminar Series 11/34

https://www.exascaleproject.org/

The FROSch (Fast and Robust
Overlapping Schwarz) Package

Solving A Model Problem

α(x) = 1 heterogeneous α(x)

Consider a diffusion model problem:

−∇ · (α(x)∇u(x)) = f in Ω = [0, 1]2,

u = 0 on ∂Ω.

Discretization using finite elements yields a
sparse linear system of equations

Ku = f .

Direct solvers
For fine meshes, solving the system using a direct
solver is not feasible due to superlinear
complexity and memory cost.

Iterative solvers
Iterative solvers are efficient for solving sparse
linear systems of equations, however, the
convergence rate generally depends on the
condition number κ (A). It deteriorates, e.g., for

• fine meshes, that is, small element sizes h

• large contrasts maxx α(x)
minx α(x)

⇒ We introduce a preconditioner M−1 ≈ A−1 to improve the condition number:

M−1Au = M−1f

Alexander Heinlein (TU Delft) HPC Seminar Series 12/34

Solving A Model Problem

α(x) = 1 heterogeneous α(x)

Consider a diffusion model problem:

−∇ · (α(x)∇u(x)) = f in Ω = [0, 1]2,

u = 0 on ∂Ω.

Discretization using finite elements yields a
sparse linear system of equations

Ku = f .

Direct solvers
For fine meshes, solving the system using a direct
solver is not feasible due to superlinear
complexity and memory cost.

Iterative solvers
Iterative solvers are efficient for solving sparse
linear systems of equations, however, the
convergence rate generally depends on the
condition number κ (A). It deteriorates, e.g., for

• fine meshes, that is, small element sizes h

• large contrasts maxx α(x)
minx α(x)

⇒ We introduce a preconditioner M−1 ≈ A−1 to improve the condition number:

M−1Au = M−1f

Alexander Heinlein (TU Delft) HPC Seminar Series 12/34

Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner
Overlap δ = 1h Solution of local problem

Based on an overlapping domain decomposition, we
define a one-level Schwarz operator

M−1
OS-1K =

∑N

i=1
RT

i K−1
i Ri K ,

where Ri and RT
i are restriction and prolongation

operators corresponding to Ω′
i , and Ki := Ri KRT

i .
Condition number estimate:

κ
(

M−1
OS-1K

)
≤ C

(
1 + 1

Hδ

)
with subdomain size H and overlap width δ.

Lagrangian coarse space
Coarse triangulation Coarse solution

The two-level overlapping Schwarz operator reads

M−1
OS-2K = ΦK−1

0 ΦT K︸ ︷︷ ︸
coarse level – global

+
∑N

i=1
RT

i K−1
i Ri K︸ ︷︷ ︸

first level – local

,

where Φ contains the coarse basis functions and
K0 := ΦT KΦ; cf., e.g., Toselli, Widlund (2005).
The construction of a Lagrangian coarse basis requires
a coarse triangulation.
Condition number estimate:

κ
(

M−1
OS-2K

)
≤ C

(
1 + H

δ

)
Alexander Heinlein (TU Delft) HPC Seminar Series 13/34

One- Vs Two-Level Schwarz Preconditioners

Diffusion model problem in two dimensions, # subdomains = # cores, H/h = 100

Alexander Heinlein (TU Delft) HPC Seminar Series 14/34

FROSch (Fast and Robust Overlapping Schwarz) Framework in Trilinos

Software
• Object-oriented C++ domain decomposition solver framework with

MPI-based distributed memory parallelization
• Part of Trilinos with support for both parallel linear algebra packages

Epetra and Tpetra
• Node-level parallelization and performance portability on CPU and GPU

architectures through Kokkos
• Accessible through unified Trilinos solver interface Stratimikos

Methodology
• Parallel scalable multi-level Schwarz domain decomposition

preconditioners
• Algebraic construction based on the parallel distributed system matrix
• Extension-based coarse spaces

Team (active)
• Alexander Heinlein (TU Delft)
• Siva Rajamanickam (Sandia)
• Friederike Röver (TUBAF)

• Axel Klawonn (Uni Cologne)
• Oliver Rheinbach (TUBAF)
• Ichitaro Yamazaki (Sandia)

Alexander Heinlein (TU Delft) HPC Seminar Series 15/34

FROSch (Fast and Robust Overlapping Schwarz) Framework in Trilinos

Software
• Object-oriented C++ domain decomposition solver framework with

MPI-based distributed memory parallelization
• Part of Trilinos with support for both parallel linear algebra packages

Epetra and Tpetra
• Node-level parallelization and performance portability on CPU and GPU

architectures through Kokkos
• Accessible through unified Trilinos solver interface Stratimikos

Methodology
• Parallel scalable multi-level Schwarz domain decomposition

preconditioners
• Algebraic construction based on the parallel distributed system matrix
• Extension-based coarse spaces

Team (active)
• Alexander Heinlein (TU Delft)
• Siva Rajamanickam (Sandia)
• Friederike Röver (TUBAF)

• Axel Klawonn (Uni Cologne)
• Oliver Rheinbach (TUBAF)
• Ichitaro Yamazaki (Sandia)

Alexander Heinlein (TU Delft) HPC Seminar Series 15/34

Algorithmic Framework for FROSch Overlapping Domain Decompositions

Overlapping domain decomposition
In FROSch, the overlapping subdomains Ω′

1, ..., Ω′
N are constructed by recursively adding

layers of elements to the nonoverlapping subdomains; this can be performed based on the
sparsity pattern of K .

Nonoverlapping DD

Overlap δ = 1h Overlap δ = 2h

Computation of the overlapping matrices
The overlapping matrices

Ki = RiKRT
i

can easily be extracted from K since Ri is just a global-to-local index mapping.

Alexander Heinlein (TU Delft) HPC Seminar Series 16/34

Algorithmic Framework for FROSch Overlapping Domain Decompositions

Overlapping domain decomposition
In FROSch, the overlapping subdomains Ω′

1, ..., Ω′
N are constructed by recursively adding

layers of elements to the nonoverlapping subdomains; this can be performed based on the
sparsity pattern of K .

Nonoverlapping DD Overlap δ = 1h

Overlap δ = 2h

Computation of the overlapping matrices
The overlapping matrices

Ki = RiKRT
i

can easily be extracted from K since Ri is just a global-to-local index mapping.

Alexander Heinlein (TU Delft) HPC Seminar Series 16/34

Algorithmic Framework for FROSch Overlapping Domain Decompositions

Overlapping domain decomposition
In FROSch, the overlapping subdomains Ω′

1, ..., Ω′
N are constructed by recursively adding

layers of elements to the nonoverlapping subdomains; this can be performed based on the
sparsity pattern of K .

Nonoverlapping DD Overlap δ = 1h Overlap δ = 2h

Computation of the overlapping matrices
The overlapping matrices

Ki = RiKRT
i

can easily be extracted from K since Ri is just a global-to-local index mapping.

Alexander Heinlein (TU Delft) HPC Seminar Series 16/34

Algorithmic Framework for FROSch Overlapping Domain Decompositions

Overlapping domain decomposition
In FROSch, the overlapping subdomains Ω′

1, ..., Ω′
N are constructed by recursively adding

layers of elements to the nonoverlapping subdomains; this can be performed based on the
sparsity pattern of K .

Nonoverlapping DD Overlap δ = 1h Overlap δ = 2h

Computation of the overlapping matrices
The overlapping matrices

Ki = RiKRT
i

can easily be extracted from K since Ri is just a global-to-local index mapping.

Alexander Heinlein (TU Delft) HPC Seminar Series 16/34

Algorithmic Framework for FROSch Coarse Spaces
FROSch preconditioners use algebraic coarse spaces that are constructed in four algorithmic steps:

1. Identification of the domain decomposition interface
2. Construction of a partition of unity (POU) on the interface
3. Computation of a coarse basis on the interface
4. Harmonic extensions into the interior to obtain a coarse basis on the whole domain

Alexander Heinlein (TU Delft) HPC Seminar Series 17/34

Algorithmic Framework for FROSch Coarse Spaces
FROSch preconditioners use algebraic coarse spaces that are constructed in four algorithmic steps:

1. Identification of the domain decomposition interface
2. Construction of a partition of unity (POU) on the interface
3. Computation of a coarse basis on the interface
4. Harmonic extensions into the interior to obtain a coarse basis on the whole domain

Identification of the domain decomposition interface
If not provided by the user, FROSch will construct
a repeated map where the interface (Γ) nodes are
shared between processes from the parallel
distribution of the matrix rows (distributed map).
Then, FROSch automatically identifies vertices,
edges, and (in 3D) faces, by the multiplicities of the
nodes.

K =


• •
• • •

• • •
• • •

• • •
• • •

• • •
• •

 f =


•
•
•
•
•
•
•
•


distributed map overlapping map repeated map

Alexander Heinlein (TU Delft) HPC Seminar Series 17/34

Algorithmic Framework for FROSch Coarse Spaces
FROSch preconditioners use algebraic coarse spaces that are constructed in four algorithmic steps:

1. Identification of the domain decomposition interface
2. Construction of a partition of unity (POU) on the interface
3. Computation of a coarse basis on the interface
4. Harmonic extensions into the interior to obtain a coarse basis on the whole domain

Construction of a partition of unity on the interface
vertices, edges, and (in 3D) faces overlapping vertex components

We construct a partition of unity (POU) {πi }i with∑
i
πi = 1

on the interface Γ.

⇒

Alexander Heinlein (TU Delft) HPC Seminar Series 17/34

Algorithmic Framework for FROSch Coarse Spaces
FROSch preconditioners use algebraic coarse spaces that are constructed in four algorithmic steps:

1. Identification of the domain decomposition interface
2. Construction of a partition of unity (POU) on the interface
3. Computation of a coarse basis on the interface
4. Harmonic extensions into the interior to obtain a coarse basis on the whole domain

Computation of a coarse basis on the interface
interface POU function

×

null space basis (linear elasticity: translations, linearized rotation(s))

For each partition of unity function πi , we compute a basis for the space

span
(

{πi × zj }j

)
,

where {zj }j is a null space basis. In case of linear dependencies, we
perform a local QR factorization to construct a basis.
This yields an interface coarse basis ΦΓ.

The linearized rotation[
y

−x

]
depends on coordinates
(geometric information).

Alexander Heinlein (TU Delft) HPC Seminar Series 17/34

Algorithmic Framework for FROSch Coarse Spaces
FROSch preconditioners use algebraic coarse spaces that are constructed in four algorithmic steps:

1. Identification of the domain decomposition interface
2. Construction of a partition of unity (POU) on the interface
3. Computation of a coarse basis on the interface
4. Harmonic extensions into the interior to obtain a coarse basis on the whole domain

Harmonic extensions into the interior
edge coarse basis functions vertex component basis functions

For each interface coarse basis function, we compute the interior values ΦI by computing harmonic /
energy-minimizing extensions:

Φ =
[

−K−1
II KT

ΓI ΦΓ
ΦΓ

]
=

[
ΦI
ΦΓ

]
.

Alexander Heinlein (TU Delft) HPC Seminar Series 17/34

Examples of Extension-Based Coarse Spaces
GDSW (Generalized Dryja–Smith–Widlund)

• Dohrmann, Klawonn, Widlund (2008)
• Dohrmann, Widlund (2009, 2010, 2012)

RGDSW (Reduced dimension GDSW)

• Dohrmann, Widlund (2017)
• H., Klawonn, Knepper, Rheinbach, Widlund (2022)

MsFEM (Multiscale Finite Element Method)

• Hou (1997), Efendiev and Hou (2009)
• Buck, Iliev, and Andrä (2013)
• H., Klawonn, Knepper, Rheinbach (2018)

Q1 Lagrangian / piecewise bilinear

Piecewise linear interface partition of unity functions
and a structured domain decomposition.

Alexander Heinlein (TU Delft) HPC Seminar Series 18/34

Examples of Extension-Based Coarse Spaces
GDSW (Generalized Dryja–Smith–Widlund)

• Dohrmann, Klawonn, Widlund (2008)
• Dohrmann, Widlund (2009, 2010, 2012)

RGDSW (Reduced dimension GDSW)

• Dohrmann, Widlund (2017)
• H., Klawonn, Knepper, Rheinbach, Widlund (2022)

MsFEM (Multiscale Finite Element Method)

• Hou (1997), Efendiev and Hou (2009)
• Buck, Iliev, and Andrä (2013)
• H., Klawonn, Knepper, Rheinbach (2018)

Q1 Lagrangian / piecewise bilinear

Piecewise linear interface partition of unity functions
and a structured domain decomposition.

Alexander Heinlein (TU Delft) HPC Seminar Series 18/34

Distributed Memory
Parallelization – Scalability
Results for FROSch
Preconditioners

Algebraic FROSch Preconditioners for Elasticity
div σ = (0, −100, 0)T in Ω := [0, 1]3,

u = 0 on ∂ΩD := {0} × [0, 1]2,

σ · n = 0 on ∂ΩN := ∂Ω \ ∂ΩD

St. Venant Kirchhoff material, P2 finite elements, H/h = 9; implementation in FEDDLib. (timings: setup + solve = total)
prec. type #cores 64 512 4 096

GDSW

rotations #its. 16.3 17.3 19.3
time 40.1 + 5.9 = 46.0 55.0 + 8.5 = 63.5 223.3 + 24.4 = 247.7

no rotations #its. 24.5 29.3 32.3
time 32.5 + 8.4 = 40.9 38.4 + 11.8 = 46.7 102.2 + 20.0 = 122.2

fully algebraic #its. 57.5 74.8 78.0
time 42.0 + 20.5 = 62.5 46.0 + 29.9 = 75.9 124.8 + 50.5 = 175.3

RGDSW

rotations #its. 18.8 21.3 19.8
time 27.8 + 6.4 = 34.2 31.1 + 8.0 = 39.1 41.3 + 8.9 = 50.2

no rotations #its. 29.0 32.8 35.5
time 26.2 + 9.4 = 35.6 27.3 + 11.8 = 39.1 31.1 + 14.3 = 45.4

fully algebraic #its. 60.7 78.5 83.0
time 27.9 + 19.9 = 47.8 28.7 + 27.9 = 56.6 34.1 + 33.1 = 67.2

4 Newton iterations (with backtracking) were necessary for convergence (relative residual reduction of 10−8) for all
configurations.
Computations on magnitUDE (University Duisburg-Essen). Heinlein, Hochmuth, and Klawonn (2021)

Alexander Heinlein (TU Delft) HPC Seminar Series 19/34

Weak Scalability up to 64 k MPI ranks / 1.7 b Unknowns (3D Poisson; Juqueen)
Model problem: Poisson equation in 3D Coarse solver: MUMPS (direct)
Largest problem: 374 805 361 / 1 732 323 601 unknowns

Cf. Heinlein, Klawonn, Rheinbach, Widlund (2017); computations performed on Juqueen, JSC, Germany.

⇒ Using the reduced dimension coarse space, we can improve parallel scalability.

To extend the scalability even further, we consider multi-level Schwarz preconditioners.
Alexander Heinlein (TU Delft) HPC Seminar Series 20/34

Three-Level GDSW Preconditioner
domain Ω

Ωi0

Hc

subregion Ω′
i0

Ωi

H∆

subdomain Ω′
i

hδ

Heinlein, Klawonn, Rheinbach, Röver (2019, 2020),
Heinlein, Rheinbach, Röver (2022)

Recursive approach
Instead of solving the coarse problem exactly, we
apply another GDSW preconditioner on the coarse
level ⇒ recursive application of the GDSW
preconditioner.
Therefore, we introduce coarse subdomains on
the coarse level, denoted as subregions.

The three-level GDSW preconditioner is defined as

M−1
3GDSW = Φ

(third level︷ ︸︸ ︷
Φ0K−1

00 ΦT
0 +

second level︷ ︸︸ ︷∑N0

i=1
RT

i0 K−1
i0 Ri0

)
ΦT︸ ︷︷ ︸

coarse levels

+

first level︷ ︸︸ ︷∑N

j=1
RT

j K−1
j Rj ,

where K00 = ΦT
0 K0Φ0 and Ki0 = Ri0K0RT

i0 for i = 1, · · · , N0.

Here, let Ri0 : V 0 → V 0
i := V 0(Ω′

i0) for i = 1, ..., N0 be restriction operators on the subregion level
and Φ0 contain to corresponding coarse basis functions. Our approach is related to other three-level
DD methods; cf., e.g., three-level BDDC by Tu (2007).

Alexander Heinlein (TU Delft) HPC Seminar Series 21/34

Weak Scalability up to 64 k MPI ranks / 1.7 b Unknowns (3D Poisson; Juqueen)

GDSW vs RGDSW (reduced dimension)
Heinlein, Klawonn, Rheinbach, Widlund (2019).

Two-level vs three-level GDSW
Heinlein, Klawonn, Rheinbach, Röver (2019, 2020).

Alexander Heinlein (TU Delft) HPC Seminar Series 22/34

Weak Scalability up to 64 k MPI ranks / 1.7 b Unknowns (3D Poisson; Juqueen)

GDSW vs RGDSW (reduced dimension)
Heinlein, Klawonn, Rheinbach, Widlund (2019).

Two-level vs three-level GDSW
Heinlein, Klawonn, Rheinbach, Röver (2019, 2020).

subdomains (=#cores) 1 728 4 096 8 000 13 824 21 952 32 768 46 656 64 000

GDSW
Size of K0 10 439 25 695 51 319 89 999 - - - -
Size of K00 98 279 604 1 115 1 854 2 863 4 184 5 589

RGDSW
Size of K0 1 331 3 375 6 859 12 167 19 683 29 791 42 875 59 319
Size of K00 8 27 64 125 216 343 512 729

Alexander Heinlein (TU Delft) HPC Seminar Series 22/34

Weak Scalability of the Three-Level RGDSW Preconditioner – SuperMUC-NG

In Heinlein, Rheinbach, Röver (2022), it has been shown that the null space can be
transferred algebraically to higher levels.

Model problem: Linear elasticity in 3D Coarse solver level 3: Intel MKL Pardiso (direct)
Largest problem: 2 040 000 000 unknowns

Cf. Heinlein, Rheinbach, Röver (2022); computations performed on SuperMUC-NG, LRZ, Germany.

Alexander Heinlein (TU Delft) HPC Seminar Series 23/34

Weak Scalability of the Three-Level RGDSW Preconditioner – Theta

Model problem: Linear elasticity in 3D Coarse solver level 3: Intel MKL Pardiso (direct)
Largest problem: 1 118 934 000 unknowns 2 OpenMP threads (=cores) per MPI rank

Total: 221 184 cores

Cf. Heinlein, Rheinbach, Röver (2022); computations performed on Theta, ALCF, USA.

Different network topologies of SuperMUC-NG (fat tree) and Theta (Dragonfly) result in strongly
varying communication times.

Alexander Heinlein (TU Delft) HPC Seminar Series 24/34

Weak Scalability of the Three-Level RGDSW Preconditioner – Theta

Model problem: Linear elasticity in 3D Coarse solver level 3: Intel MKL Pardiso (direct)
Largest problem: 1 118 934 000 unknowns 2 OpenMP threads (=cores) per MPI rank

Total: 221 184 cores

Cf. Heinlein, Rheinbach, Röver (2022); computations performed on Theta, ALCF, USA.

Different network topologies of SuperMUC-NG (fat tree) and Theta (Dragonfly) result in strongly
varying communication times.

Alexander Heinlein (TU Delft) HPC Seminar Series 24/34

Monolithic (R)GDSW Preconditioners for CFD Simulations

Monolithic GDSW preconditioner
Consider the discrete saddle point problem

Ax =
[

K BT

B 0

] [
u
p

]
=

[
f
0

]
= b.

We construct a monolithic GDSW preconditioner

M−1
GDSW = ϕA−1

0 ϕT +
∑N

i=1
RT

i A−1
i Ri ,

with block matrices A0 = ϕTAϕ, Ai = RiART
i , and

Ri =
[
Ru,i 0

0 Rp,i

]
and ϕ =

[
Φu,u0 Φu,p0
Φp,u0 Φp,p0

]
.

Using A to compute extensions: ϕI = −A−1
II AIΓϕΓ;

cf. Heinlein, Hochmuth, Klawonn (2019, 2020).

Φu,u0 Φp,u0 Φu,p0 Φp,p0

Stokes flow Navier–Stokes flow

Related work:
• Original work on monolithic Schwarz

preconditioners: Klawonn and Pavarino (1998,
2000)

• Other publications on monolithic Schwarz
preconditioners: e.g., Hwang and Cai (2006),
Barker and Cai (2010), Wu and Cai (2014),
and the presentation Dohrmann (2010) at the
Workshop on Adaptive Finite Elements and
Domain Decomposition Methods in Milan.

Alexander Heinlein (TU Delft) HPC Seminar Series 25/34

Monolithic (R)GDSW Preconditioners for CFD Simulations

Monolithic GDSW preconditioner
Consider the discrete saddle point problem

Ax =
[

K BT

B 0

] [
u
p

]
=

[
f
0

]
= b.

We construct a monolithic GDSW preconditioner

M−1
GDSW = ϕA−1

0 ϕT +
∑N

i=1
RT

i A−1
i Ri ,

with block matrices A0 = ϕTAϕ, Ai = RiART
i , and

Ri =
[
Ru,i 0

0 Rp,i

]
and ϕ =

[
Φu,u0 Φu,p0
Φp,u0 Φp,p0

]
.

Using A to compute extensions: ϕI = −A−1
II AIΓϕΓ;

cf. Heinlein, Hochmuth, Klawonn (2019, 2020).

Φu,u0 Φp,u0 Φu,p0 Φp,p0

Monolithic vs block preconditioners

prec. MPI
ranks 64 256 1 024 4 096

monolithic time 154.7 s 170.0 s 175.8 s 188.7 s
effic. 100 % 91 % 88 % 82 %

triangular time 309.4 s 329.1 s 359.8 s 396.7 s
effic. 50 % 47 % 43 % 39 %

diagonal time 736.7 s 859.4 s 966.9 s 1 105.0 s
effic. 21 % 18 % 16 % 14 %

Computations performed on magnitUDE (University
Duisburg-Essen).

Alexander Heinlein (TU Delft) HPC Seminar Series 25/34

Monolithic (R)GDSW Preconditioners for CFD Simulations

Monolithic GDSW preconditioner
Consider the discrete saddle point problem

Ax =
[

K BT

B 0

] [
u
p

]
=

[
f
0

]
= b.

We construct a monolithic GDSW preconditioner

M−1
GDSW = ϕA−1

0 ϕT +
∑N

i=1
RT

i A−1
i Ri ,

with block matrices A0 = ϕTAϕ, Ai = RiART
i , and

Ri =
[
Ru,i 0

0 Rp,i

]
and ϕ =

[
Φu,u0 Φu,p0
Φp,u0 Φp,p0

]
.

Using A to compute extensions: ϕI = −A−1
II AIΓϕΓ;

cf. Heinlein, Hochmuth, Klawonn (2019, 2020).

Φu,u0 Φp,u0 Φu,p0 Φp,p0

Monolithic vs SIMPLE preconditioner

Steady-state Navier-Stokes equations

prec. MPI
ranks 243 1 125 15 562

Monolithic
RGDSW
(FROSch)

setup 39.6 s 57.9 s 95.5 s
solve 57.6 s 69.2 s 74.9 s
total 97.2 s 127.7 s 170.4 s

SIMPLE
RGDSW (Teko
& FROSch)

setup 39.2 s 38.2 s 68.6 s
solve 86.2 s 106.6 s 127.4 s
total 125.4 s 144.8 s 196.0 s

Computations on Piz Daint (CSCS). Implementation in the
finite element software FEDDLib.

Alexander Heinlein (TU Delft) HPC Seminar Series 25/34

FROSch Preconditioners for Land Ice Simulations

https://github.com/SNLComputation/Albany

The velocity of the ice sheet in Antarctica and Greenland is
modeled by a first-order-accurate Stokes approximation model,

−∇ · (2µϵ̇1) + ρg ∂s
∂x = 0, −∇ · (2µϵ̇2) + ρg ∂s

∂y = 0,

with a nonlinear viscosity model (Glen’s law); cf., e.g., Blatter (1995) and Pattyn (2003).
Antarctica (velocity) Greenland (multiphysics vel. & temperature)

4 km resolution, 20 layers, 35 m dofs 1-10 km resolution, 20 layers, 69 m dofs
MPI ranks avg. its avg. setup avg. solve avg. its avg. setup avg. solve
512 41.9 (11) 25.10 s 12.29 s 41.3 (36) 18.78 s 4.99 s
1 024 43.3 (11) 9.18 s 5.85 s 53.0 (29) 8.68 s 4.22 s
2 048 41.4 (11) 4.15 s 2.63 s 62.2 (86) 4.47 s 4.23 s
4 096 41.2 (11) 1.66 s 1.49 s 68.9 (40) 2.52 s 2.86 s
8 192 40.2 (11) 1.26 s 1.06 s - - -

Computations performed on Cori (NERSC). Heinlein, Perego, Rajamanickam (2022)

Alexander Heinlein (TU Delft) HPC Seminar Series 26/34

https://github.com/SNLComputation/Albany

Node-Level Performance of
FROSch Preconditioners

Inexact Subdomain Solvers in FROSch

M−1
OS-2K = ΦK−1

0 ΦT K +
∑N

i=1
RT

i K−1
i Ri K

3D Laplacian; 512 MPI ranks = 512 (= 8 × 8 × 8) subdomains; H/δ = 10; RGDSW coarse space.
subdomain solver

direct ILU(k) symm. Gauß–Seidel Chebyshev polyn.
solver k = 2 k = 3 5 sweeps 10 sweeps p = 6 p = 8

H/h = 20,
≈ 14 k dofs
per rank

iter 26 33 30 31 28 34 31
setup time 1.89 s 0.97 s 1.01 s 0.89 s 0.91 s 0.73 s 0.71 s
apply time 0.39 s 0.27 s 0.31 s 0.31 s 0.35 s 0.30 s 0.30 s
prec. time 2.28 s 1.24 s 1.32 s 1.20 s 1.26 s 1.03 s 1.01 s

H/h = 40,
≈ 105 k dofs
per rank

iter 30 55 46 52 41 59 51
setup time 12.09 s 6.14 s 6.26 s 5.74 s 5.89 s 5.55 s 5.64 s
apply time 4.21 s 1.84 s 1.96 s 2.66 s 3.28 s 2.52 s 2.47 s
prec. time 16.30 s 7.98 s 8.22 s 8.40 s 9.18 s 8.16 s 8.11 s

H/h = 60,
≈ 350 k dofs
per rank

iter OOM 81 64 76 56 88 74
setup time - 47.29 s 47.87 s 45.14 s 45.08 s 45.44 s 45.49 s
apply time - 10.79 s 9.98 s 13.00 s 16.16 s 11.95 s 12.09 s
prec. time - 58.08 s 57.85 s 58.15 s 61.25 s 57.39 s 57.59 s

Intel MKL Pardiso; ILU / symmetric Gauß–Seidel / Chebyshev polynomials from Ifpack2.

Parallel computations on dual-socket Intel Xeon Platinum machine at Sandia National Laboratories (Blake).
Alexander Heinlein (TU Delft) HPC Seminar Series 27/34

Inexact Subdomain Solvers in FROSch

M−1
OS-2K = ΦK−1

0 ΦT K +
∑N

i=1
RT

i K−1
i Ri K

3D Laplacian; 512 MPI ranks = 512 (= 8 × 8 × 8) subdomains; H/δ = 10; RGDSW coarse space.
subdomain solver

direct ILU(k) symm. Gauß–Seidel Chebyshev polyn.
solver k = 2 k = 3 5 sweeps 10 sweeps p = 6 p = 8

H/h = 20,
≈ 14 k dofs
per rank

iter 26 33 30 31 28 34 31
setup time 1.89 s 0.97 s 1.01 s 0.89 s 0.91 s 0.73 s 0.71 s
apply time 0.39 s 0.27 s 0.31 s 0.31 s 0.35 s 0.30 s 0.30 s
prec. time 2.28 s 1.24 s 1.32 s 1.20 s 1.26 s 1.03 s 1.01 s

H/h = 40,
≈ 105 k dofs
per rank

iter 30 55 46 52 41 59 51
setup time 12.09 s 6.14 s 6.26 s 5.74 s 5.89 s 5.55 s 5.64 s
apply time 4.21 s 1.84 s 1.96 s 2.66 s 3.28 s 2.52 s 2.47 s
prec. time 16.30 s 7.98 s 8.22 s 8.40 s 9.18 s 8.16 s 8.11 s

H/h = 60,
≈ 350 k dofs
per rank

iter OOM 81 64 76 56 88 74
setup time - 47.29 s 47.87 s 45.14 s 45.08 s 45.44 s 45.49 s
apply time - 10.79 s 9.98 s 13.00 s 16.16 s 11.95 s 12.09 s
prec. time - 58.08 s 57.85 s 58.15 s 61.25 s 57.39 s 57.59 s

Intel MKL Pardiso; ILU / symmetric Gauß–Seidel / Chebyshev polynomials from Ifpack2.

Parallel computations on dual-socket Intel Xeon Platinum machine at Sandia National Laboratories (Blake).
Alexander Heinlein (TU Delft) HPC Seminar Series 27/34

Inexact Extension Solvers in FROSch

Φ =
[

−K−1
II KT

ΓI ΦΓ

ΦΓ

]
=

[
ΦI

ΦΓ

]
.

3D Laplacian; 512 MPI ranks = 512 (= 8 × 8 × 8) subdomains; H/δ = 10; RGDSW coarse space.
extension solver direct

solver

preconditioned GMRES (rel. tol. = 10−4)
(10 Gauss–Seidel sweeps for ILU(k) symm. Gauß–Seidel Chebyshev polyn.

the subdomain solver) k = 2 k = 3 5 sweeps 10 sweeps p = 6 p = 8

H/h = 20,
≈ 14 k dofs
per rank

iter 28 28 28 28 28 28 28
setup time 0.89 s 0.93 s 0.89 s 0.78 s 0.83 s 0.79 s 0.84 s
apply time 0.35 s 0.35 s 0.34 s 0.36 s 0.34 s 0.35 s 0.34 s
prec. time 1.23 s 1.28 s 1.23 s 1.14 s 1.17 s 1.14 s 1.18 s

H/h = 40,
≈ 105 k dofs
per rank

iter 41 41 41 41 41 41 41
setup time 5.72 s 4.16 s 4.61 s 4.26 s 4.64 s 4.27 s 4.33 s
apply time 3.33 s 3.33 s 3.30 s 3.33 s 3.30 s 3.28 s 3.29 s
prec. time 9.04 s 7.49 s 7.92 s 7.59 s 7.95 s 7.55 s 7.62 s

H/h = 60,
≈ 350 k dofs
per rank

iter 56 56 56 56 56 56 56
setup time 45.16 s 17.75 s 18.16 s 17.98 s 19.34 s 17.93 s 18.04 s
apply time 15.83 s 18.04 s 17.08 s 16.26 s 15.81 s 16.19 s 16.44 s
prec. time 60.99 s 35.79 s 35.25 s 34.24 s 35.15 s 34.12 s 34.49 s

Intel MKL Pardiso; ILU / symmetric Gauß–Seidel / Chebyshev polynomials from Ifpack2.

Parallel computations on dual-socket Intel Xeon Platinum machine at Sandia National Laboratories (Blake).
Alexander Heinlein (TU Delft) HPC Seminar Series 28/34

Inexact Extension Solvers in FROSch

Φ =
[

−K−1
II KT

ΓI ΦΓ

ΦΓ

]
=

[
ΦI

ΦΓ

]
.

3D Laplacian; 512 MPI ranks = 512 (= 8 × 8 × 8) subdomains; H/δ = 10; RGDSW coarse space.
extension solver direct

solver

preconditioned GMRES (rel. tol. = 10−4)
(10 Gauss–Seidel sweeps for ILU(k) symm. Gauß–Seidel Chebyshev polyn.

the subdomain solver) k = 2 k = 3 5 sweeps 10 sweeps p = 6 p = 8

H/h = 20,
≈ 14 k dofs
per rank

iter 28 28 28 28 28 28 28
setup time 0.89 s 0.93 s 0.89 s 0.78 s 0.83 s 0.79 s 0.84 s
apply time 0.35 s 0.35 s 0.34 s 0.36 s 0.34 s 0.35 s 0.34 s
prec. time 1.23 s 1.28 s 1.23 s 1.14 s 1.17 s 1.14 s 1.18 s

H/h = 40,
≈ 105 k dofs
per rank

iter 41 41 41 41 41 41 41
setup time 5.72 s 4.16 s 4.61 s 4.26 s 4.64 s 4.27 s 4.33 s
apply time 3.33 s 3.33 s 3.30 s 3.33 s 3.30 s 3.28 s 3.29 s
prec. time 9.04 s 7.49 s 7.92 s 7.59 s 7.95 s 7.55 s 7.62 s

H/h = 60,
≈ 350 k dofs
per rank

iter 56 56 56 56 56 56 56
setup time 45.16 s 17.75 s 18.16 s 17.98 s 19.34 s 17.93 s 18.04 s
apply time 15.83 s 18.04 s 17.08 s 16.26 s 15.81 s 16.19 s 16.44 s
prec. time 60.99 s 35.79 s 35.25 s 34.24 s 35.15 s 34.12 s 34.49 s

Intel MKL Pardiso; ILU / symmetric Gauß–Seidel / Chebyshev polynomials from Ifpack2.

Parallel computations on dual-socket Intel Xeon Platinum machine at Sandia National Laboratories (Blake).
Alexander Heinlein (TU Delft) HPC Seminar Series 28/34

Land Ice Problem – OpenMP VS MPI Parallelization (Strong Scaling)
We can make use of OpenMP parallelization:

• Tpetra linear algebra stack in FROSch and
Albany ⇒ OpenMP parallelization of the
linear algebra operations.

• OpenMP parallelization of the subdomain
and coarse solver Intel MKL Pardiso used
in FROSch.

Antarctica mesh & domain decomposition.
OpenMP parallelization (512 MPI ranks) MPI parallelization
OpenMP avg. its avg. avg. MPI avg. its avg. avg. its

cores threads (nl its) setup solve ranks (nl its) setup solve
512 1 42.6 (11) 14.99 s 12.50 s 512 42.6 (11) 14.99 s 12.50 s

1 024 2 42.6 (11) 9.43 s 6.80 s 1 024 44.5 (11) 5.65 s 6.08 s
2 048 4 42.6 (11) 5.50 s 4.02 s 2 048 42.7 (11) 3.11 s 2.79 s
4 096 8 42.6 (11) 3.65 s 2.71 s 4 096 42.5 (11) 1.07 s 1.54 s
8 192 16 42.6 (11) 2.56 s 2.32 s 8 192 42.0 (11) 1.20 s 1.16 s

Problem: Velocity Mesh: Antarctica Size: 35.3 m degrees Coarse space: RGDSW
4 km hor. resolution of freedom
20 vert. layers (P1 FE)

Alexander Heinlein (TU Delft) HPC Seminar Series 29/34

Sparse Triangular Solver in Kokkos-Kernels (Amesos2 – SuperLU/Cholmod)
The sparse triangular solver is an important kernel in many codes
(including FROSch) but is challenging to parallelize

• Factorization using a sparse direct solver typically leads to
triangular matrices with dense blocks called supernodes

• In supernodal triangular solver, rows/columns with a similar
sparsity pattern are merged into a supernodal block, and the
solve is then performed block-wise

• The parallelization potential for the triangular solver is
determined by the sparsity pattern

Parallel supernode-based triangular solver:

1. Supernode-based level-set scheduling, where all
leaf-supernodes within one level are solved in parallel
(batched kernels for hierarchical parallelism)

2. Partitioned inverse of the submatrix associated with each level:
SpTRSV is transformed into a sequence of SpMVs

See Yamazaki, Rajamanickam, Ellingwood (2020) for more details.

Lower-triangular matrix – SuperLU
with METIS nested dissection ordering

Alexander Heinlein (TU Delft) HPC Seminar Series 30/34

Three-Dimensional Linear Elasticity – Weak Scalability
nodes 1 2 4 8 16
dofs 375K 750K 1.5M 3M 6M

SuperLU
CPUs 2.03 (75) 2.07 (69) 1.87 (61) 1.95 (58) 2.48 (69)
np/gpu = 1 1.43 (47) 1.52 (53) 2.82 (77) 2.44 (68) 2.61 (75)
2 1.03 (46) 1.36 (65) 1.37 (60) 1.52 (65) 1.98 (86)
4 0.93 (59) 0.91 (53) 0.98 (59) 1.33 (77) 1.21 (66)
6 0.67 (46) 0.99 (65) 0.92 (57) 0.91 (57) 0.95 (57)
7 1.03 (75) 1.04 (69) 0.90 (61) 0.97 (58) 1.18 (69)
Speedup 2.0× 2.0× 2.1× 2.0× 2.1×

Tacho
CPUs 1.60 (75) 1.63 (69) 1.49 (61) 1.51 (58) 1.90 (69)
np/gpu = 1 1.17 (47) 1.37 (53) 1.92 (77) 1.78 (68) 2.21 (75)
2 0.79 (46) 1.14 (65) 1.05 (60) 1.18 (65) 1.70 (86)
4 0.85 (59) 0.81 (53) 0.78 (59) 1.22 (77) 1.19 (66)
6 0.60 (46) 0.86 (65) 0.75 (57) 0.84 (57) 0.91 (57)
7 0.99 (75) 0.93 (69) 0.82 (61) 0.93 (58) 1.22 (69)
Speedup 1.6× 1.8× 1.8× 1.6× 1.6×

Computations on Summit (OLCF);
42 IBM Power9 CPU cores and 6
NVIDIA V100 GPUs per node.

Yamazaki, Heinlein,
Rajamanickam (acc. 2022)

SuperLU

Tacho

Alexander Heinlein (TU Delft) HPC Seminar Series 31/34

Three-Dimensional Linear Elasticity – Strong Scalability Using Tacho

Setup time Solve time

Cf. Yamazaki, Heinlein, Rajamanickam (acc. 2022)

Alexander Heinlein (TU Delft) HPC Seminar Series 32/34

Three-Dimensional Linear Elasticity – ILU Subdomain Solver
ILU level 0 1 2 3

Setup
CP

U No 1.5 1.9 3.0 4.8
ND 1.6 2.6 4.4 7.4

GP
U

KK(No) 1.4 1.5 1.8 2.4
KK(ND) 1.7 2.0 2.9 5.2
Fast(No) 1.5 1.6 2.1 3.2
Fast(ND) 1.5 1.7 2.5 4.5

Speedup 1.0× 1.2× 1.4× 1.5×

Solve

CP
U No 2.55 (158) 3.60 (112) 5.28 (99) 6.85 (88)

ND 4.17 (227) 5.36 (134) 6.61 (105) 7.68 (88)

GP
U

KK(No) 3.81 (158) 4.12 (112) 4.77 (99) 5.65 (88)
KK(ND) 2.89 (227) 4.27 (134) 5.57 (105) 6.36 (88)
Fast(No) 1.14 (173) 1.11 (141) 1.26 (134) 1.43 (126)
Fast(ND) 1.49 (227) 1.15 (137) 1.10 (109) 1.22 (100)

Speedup 2.2× 3.2× 4.3× 4.8×
Computations on Summit (OLCF);
42 IBM Power9 CPU cores and 6
NVIDIA V100 GPUs per node.

Yamazaki, Heinlein,
Rajamanickam

(acc. 2022)

KokkosKernels ILU (KK)
VS

FastILU (Fast); cf. Chow, Patel (2015)
and Boman, Patel, Chow, Rajamanickam

(2016)

Alexander Heinlein (TU Delft) HPC Seminar Series 33/34

Three-Dimensional Linear Elasticity – Weak Scalability Using ILU
nodes 1 2 4 8 16
dofs 648K 1.2M 2.6M 5.2M 10.3M

Setup
CPU 1.9 2.2 2.4 2.4 2.6

GP
U KK 1.4 2.0 2.2 2.4 2.8

Fast 1.5 2.2 2.3 2.5 2.8
Speedup 1.3× 1.0× 1.0× 1.0× 0.9×

Solve
CPU 3.60 (112) 7.26 (84) 6.93 (78) 6.41 (75) 4.1 (109)

GP
U KK 4.12 (112) 6.17 (84) 5.82 (78) 5.95 (75) 7.16 (83)

Fast 1.11 (141) 1.12 (91) 1.08 (81) 1.21 (76)
Speedup 3.3× 3.8× 3.4× 2.5× 2.6×

Computations on Summit (OLCF);
42 IBM Power9 CPU cores and 6 NVIDIA V100 GPUs per
node.

Yamazaki, Heinlein, Rajamanickam
(acc. 2022)

Alexander Heinlein (TU Delft) HPC Seminar Series 34/34

Thank you for your attention!

Summary
• Making numerical software ready for the first supercomputers of the Exascale era requires dealing

with heterogeneous computing architectures. Trilinos enables this due to the Tpetra
parallel linear algebra framework as well as tight integration of the performance portability
framework Kokkos and KokkosKernels

• FROSch is based on the Schwarz framework and energy-minimizing coarse spaces, which
provide numerical scalability using only algebraic information for a variety of applications

• FROSch is well-integrated into the Trilinos software framework, enabling

• large-scale distributed memory parallelization and
• node-level performance on CPU and/or GPU architectures

Acknowledgements
• Financial support: DFG (KL2094/3-1, RH122/4-1)

• Computing ressources: Summit (OLCF), Cori (NERSC), JUQUEEN (JSC), magnitUDE (UDE),
Piz Daint (CSCS)

	Exascale Computing & Trilinos
	The FROSch (Fast and Robust Overlapping Schwarz) Package
	Distributed Memory Parallelization – Scalability Results for FROSch Preconditioners
	Node-Level Performance of FROSch Preconditioners
	Appendix

