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Part I — Classical Schwarz Domain Decomposition Methods

1. Literature on Domain Decomposition Methods

2. The Alternating Schwarz Algorithm

3. The Parallel Schwarz Algorithm

4. Comparison of the two Methods

5. Effect of the Size of the Overlap



1 Literature on Domain Decomposition Methods

Alfio Quarteroni and Alberto Valli
Domain decomposition methods for partial differential equations
Oxford University Press, 1999

Barry Smith, Petter Bjorstad, and William Gropp
Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential
Equations
Cambridge University Press, 2004

Andrea Toselli, and Olof Widlund
Domain decomposition methods-algorithms and theory.
Springer Science & Business Media, 2006

Victorita Dolean, Pierre Jolivet, Frédéric Nataf
An Introduction to Domain Decomposition Methods: Algorithms, Theory, and
Parallel Implementation
Society for Industrial and Applied Mathematics, 2016
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Domain Decomposition Methods

Graphics based on Heinlein, Perego, Rajamanickam (2022)

Idea
Decomposition of a large global problem
into smaller local problems.

Parallel solvers

. . . . . .

Coupled problems

velocity temperature
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2 The Alternating Schwarz Algorithm

Historical remarks: The alternating Schwarz method is the earliest domain
decomposition method (DDM), which has been invented by H. A. Schwarz and published
in 1870:

• Schwarz used the algorithm to establish the existence of harmonic functions with
prescribed boundary values on regions with nonsmooth boundaries.

• The regions are constructed recursively by forming unions of pairs of regions starting
with “simple” regions for which existence can be established by more elementary means.

• At the core of Schwarz’s work is a proof that this iterative method converges in the
maximum norm at a geometric rate.

Ω

Classical “doorknob” geometry
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We solve the Poisson equation

−∆u = 1 in Ω,

u = 0 on ∂Ω.

on the classical “doorknob” geometry.

Overlapping domain decomposition

Ω

Γ2

Γ1
Ω′

1

∂Ω′
1

Ω′
2

∂Ω′
2

The alternating Schwarz iteration corresponds to solving alternatingly solving the local
problems

(D1)


−∆un+1/2 = f in Ω′

1,

un+1/2 = un auf Γ1
un+1/2 = un on Ω \ Ω′

1

(D2)


−un+1′′ = f in Ω′

2,

un+1 = un+1/2 auf Γ2
un+1 = un+1/2 on Ω \ Ω′

2
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For the sake of simplicity, instead of the two-dimensional geometry,

Ω

Γ2

Γ1
Ω′

1

∂Ω′
1

Ω′
2

∂Ω′
2

we consider the one-dimensional Poisson
equation

−u′′ = 1 in [0, 1],
u(0) = u(1) = 0.

Domain decomposition:

0 Ω 1Ω′
1

Γ1

Ω′
2

Γ2

Solution: u(x) = −1
2x(x − 1).
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Let us consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform an alternating Schwarz iteration:

Figure 1: Iterate (left) and error (right) in iteration 0.
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Let us consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform an alternating Schwarz iteration:

Figure 1: Iterate (left) and error (right) in iteration 2.
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Let us consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform an alternating Schwarz iteration:

Figure 1: Iterate (left) and error (right) in iteration 3.
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Let us consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform an alternating Schwarz iteration:

Figure 1: Iterate (left) and error (right) in iteration 4.
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Let us consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform an alternating Schwarz iteration:

Figure 1: Iterate (left) and error (right) in iteration 5.
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The alternating Schwarz algorithm is sequential because each local boundary value
problem depends on the solution of the previous Dirichlet problem:

(D1)


−∆un+1/2 = f in Ω′

1,

un+1/2 = un on ∂Ω′
1

un+1/2 = un on Ω \ Ω′
1

(D2)


−∆un+1 = f in Ω2,

un+1 = un+1/2 on ∂Ω′
2

un+1 = un+1/2 on Ω \ Ω′
2

???

Idea: For all red terms, we use the values from the previous iteration. Then, the both
Dirichlet problem can be solved at the same time.
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3 The Parallel Schwarz Algorithm

The parallel Schwarz algorithm has been introduced by Lions (1988). Here, we solve the
local problems

(D1)
{

−∆un+1
1 = f in Ω′

1,

un+1
1 = un

2 on ∂Ω′
1,

(D2)
{

−∆un+1
2 = f in Ω2,

un+1
2 = un

1 on ∂Ω′
2.

Ω

Γ2

Γ1
Ω′

1

∂Ω′
1

Ω′
2

∂Ω′
2

Since un
1 and un

2 are both computed in the previous iteration, the problems can be solved
independent of each other.

This method is suitable for parallel computing!

!!!
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Let us again consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform the parallel Schwarz iteration:

Figure 2: Iterate (left) and error (right) in iteration 0.
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Let us again consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform the parallel Schwarz iteration:

Figure 2: Iterate (left) and error (right) in iteration 1.
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Let us again consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform the parallel Schwarz iteration:

Figure 2: Iterate (left) and error (right) in iteration 2.

Alexander Heinlein (TU Delft) DCSE Summerschool 10/37



Let us again consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform the parallel Schwarz iteration:

Figure 2: Iterate (left) and error (right) in iteration 3.
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Let us again consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform the parallel Schwarz iteration:

Figure 2: Iterate (left) and error (right) in iteration 4.
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Let us again consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform the parallel Schwarz iteration:

Figure 2: Iterate (left) and error (right) in iteration 5.
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4 Comparison of the two Methods

Next, we compare the convergence of the two methods using the error plots:

Alternating Schwarz iteration

Figure 3: Error in iteration 0.

Parallel Schwarz iteration

Figure 4: Error in iteration 0.

The alternating Schwarz method converges twice as fast as the parallel Schwarz method.
However, the local solutions have to be computed sequentially.
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5 Effect of the Size of the Overlap

We investigate the convergence of the methods (using the alternating method as an example)
depending on the size of the overlap:

0 Ω 1Ω′
1

γ1

Ω′
2

γ2

Overlap 0.05

0 Ω 1Ω′
1

γ1

Ω′
2

γ2

Overlap 0.1

⇒ A larger overlap leads to faster convergence.
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5 Effect of the Size of the Overlap

Overlap 0.05 Overlap 0.1

Figure 5: Error in iteration 0.

⇒ A larger overlap leads to faster convergence.
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5 Effect of the Size of the Overlap

Overlap 0.05 Overlap 0.1

Figure 5: Error in iteration 2.

⇒ A larger overlap leads to faster convergence.
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5 Effect of the Size of the Overlap

Overlap 0.05 Overlap 0.1

Figure 5: Error in iteration 3.

⇒ A larger overlap leads to faster convergence.
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5 Effect of the Size of the Overlap

Overlap 0.05 Overlap 0.1

Figure 5: Error in iteration 5.

⇒ A larger overlap leads to faster convergence.

Alexander Heinlein (TU Delft) DCSE Summerschool 12/37



5 Effect of the Size of the Overlap

Overlap 0.05 Overlap 0.1

Figure 5: Error in iteration 5.

⇒ A larger overlap leads to faster convergence.

Alexander Heinlein (TU Delft) DCSE Summerschool 12/37



Part II — Schwarz Domain Decomposition Preconditioners

6. Model Problem

7. One-Level Overlapping Schwarz Preconditioners

8. Two-Level Overlapping Schwarz Preconditioners

9. A Brief Overview Over the Theoretical Framework

10. Some Comments on Constructing Schwarz Preconditioners



6 Model Problem

Let us consider the simple diffusion model problem:

−∆u = f in Ω = [0, 1]2,

u = 0 on ∂Ω.

Discretization using finite elements yields the linear equation system

Au = f .
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Ω

ϕi(xi) = 1

ϕi(xj) = 0

• Due to the local support of the finite element basis functions, the resulting system is
sparse.

• However, due to the superlinear complexity and memory cost, the use of direct solvers
becomes infeasible for fine meshes, that is, for the resulting large sparse equation
systems.

→ We will employ iterative solvers:
For our elliptic model problem, the system matrix is symmetric positive definite, such that
we can use the preconditioner gradient descent (PCG) method.
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Goal – Numerical & Parallel (Weak) Scalability
Increase the problem size while keeping

# degrees of freedom
# processors

fixed.

# degrees of freedom | # processors

#
ite

ra
tio

ns
|t

im
e
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Preconditioned Conjugate Gradient (PCG) Method

Algorithm 1: Preconditioned conjugate gradient (PCG) method
Result: Approximate solution of the linear equation system Ax = b
Given: Initial guess x(0) ∈ Rn and tolerance ε > 0
r (0) := b − Ax(0)

p(0) := y (0) := M−1r (0)

while
∥∥r (k)∥∥ ≥ ε

∥∥r (0)∥∥ do
αk := (p(k),r (k))

(Ap(k),p(k))
x(k+1) := x(k) + αky (k)

r (k+1) := r (k) − αkAp(k)

y (k+1) := M−1r (k+1)

βk := (y (k+1),Ap(k))
(p(k),Ap(k))

p(k+1) := r (k+1) − βkp(k)

end
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Theorem 6.1
Let A ∈ Rn×n be symmetric positive definite. Then the PCG method converges and the
following error estimate holds:

∥∥∥e(k)
∥∥∥

A
≤ 2

(√
κ (M−1A) − 1√
κ (M−1A) + 1

)k ∥∥∥e(0)
∥∥∥

A
,

where κ
(
M−1A

)
= λmax(M−1A)

λmin(M−1A) is condition number of the preconditioned matrix M−1A.

Do we need a preconditioner?
The condition number of the stiffness matrix K for the diffusion problem behaves as follows:

κ (K) ≤ C (maxT∈τh hT )d

(minT∈τh hT )d+2
quasi uniform

≡ C 1
h2 ,

where τh is the triangulation and d is the problem dimension (for instance, d = 2, 3).

⇒ Convergence of the PCG method will deteriorate when refining the mesh.
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7 One-Level Overlapping Schwarz Preconditioners

Overlapping domain decomposition
As the classical alternating and parallel Schwarz method (overlapping) Schwarz
preconditioners are based on overlapping decompositions of the computational domain

Ω =
N⋃

i=1
Ω′

i .

Nonoverlap. DD

Overlap δ = 1h Overlap δ = 2h
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Overlap δ = 1h Function on Ω Restriction Ri to Ω′
i

Based on an overlapping domain decomposition, we define an additive one-level Schwarz
preconditioner

M−1
OS-1 =

∑N

i=1
RT

i K−1
i Ri ,

where Ri and RT
i are restriction and prolongation operators corresponding to Ω′

i , and
Ki := RiKRT

i . The Ki correspond to local Dirichlet problems on the overlapping
subdomains.

Condition number bound:
κ
(
M−1

OS-1K
)

≤ C
(

1 + 1
Hδ

)
where the constant C is independent of the subdomain size H and the width of the
overlap δ.
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Numerical scalability

# subdomains = 1/Hd

#
ite

ra
tio

ns
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Solving a local subdomain problem

Overlap δ = 2h Solution on Ω2 Corresponding residual

→ Zero residual only inside this subdomain but particularly large residual inside the
overlap.
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Convergence of the PCG method with a one-level Schwarz preconditioner

Initial guess 5 PCG iterations Converged (13 its)

→ Fast convergence of the preconditioned gradient decent (PCG) method (low number of
subdomains).
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8 Two-Level Overlapping Schwarz Preconditioners
Coarse triangulation Nodal bilinear basis function

The additive two-level Schwarz preconditioner reads

M−1
OS-2 = ΦK−1

0 ΦT︸ ︷︷ ︸
coarse level – global

+
∑N

i=1
RT

i K−1
i Ri︸ ︷︷ ︸

first level – local

,

where Φ contains the coarse basis functions and K0 := ΦT KΦ.

Condition number bound:
κ
(
M−1

OS-2K
)

≤ C
(

1 + H
δ

)
where the constant C is independent of h, δ, and H; cf., e.g., Toselli, Widlund (2005).
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+
∑N

i=1
RT

i K−1
i Ri︸ ︷︷ ︸

first level – local

,

where Φ contains the coarse basis functions and K0 := ΦT KΦ.

Condition number bound:
κ
(
M−1

OS-2K
)

≤ C
(

1 + H
δ

)
where the constant C is independent of h, δ, and H; cf., e.g., Toselli, Widlund (2005).

Numerical scalability

# subdomains = 1/Hd

#
ite

ra
tio

ns
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One- Vs Two-Level Schwarz Preconditioners

Diffusion model problem in two dimensions, # subdomains = # cores, H/h = 100

200 400 600 800 1,000
0

200

400

# subdomains (= # MPI ranks)

#
it
er
at
io
n
s

M−1
OS-1, δ = 1h

M−1
OS-1, δ = 2h

M−1
OS-2, δ = 1h

M−1
OS-2, δ = 2h

→ We only obtain numerical scalability if a coarse level is used.
→ Convergence is faster for larger overlaps.
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9 A Brief Overview Over the Theoretical Framework
In order to establish a condition number bound for κ

(
M−1

ad K
)

based on the abstract Schwarz framework, we
have to verify the following three assumptions:

Assumption 1: Stable Decomposition
There exists a constant C0 such that, for every u ∈ V , there exists a decomposition u =

∑N
i=0 RT

i ui , ui ∈ Vi ,
with

N∑
i=0

ai (ui , ui ) ≤ C2
0 a(u, u).

Assumption 2: Strengthened Cauchy-Schwarz Inequality
There exist constants 0 ≤ ϵij ≤ 1, 1 ≤ i , j ≤ N, such that∣∣a(RT

i ui , RT
j uj )

∣∣ ≤ ϵij
(

a(RT
i ui , RT

i ui )
)1/2 (a(RT

j uj , RT
j uj )

)1/2

for ui ∈ Vi and uj ∈ Vj . (Consider E = (εij ) and ρ (E) its spectral radius)

Assumption 3: Local Stability
There exists ω < 0, such that

a(RT
i ui , RT

i ui ) ≤ ωai (ui , ui ), ui ∈ range
(

P̃i
)

, 0 ≤ i ≤ N.
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General Condition Number Bound
With Assumption 1–3, we have

κ
(

M−1
ad K

)
≤ C2

0 ω (ρ (E) + 1)
for

M−1
ad =

N∑
i=0/1

RT
i K−1

i Ri ;

see, e.g., Toselli, Wildund (2005).

To obtain a condition number bound for a
specific additive Schwarz preconditioner, we
have to bound ω, ρ (E), and C2

0 .

The constants ω and ρ (E) can often be handled
easily.

Exact Solvers
If we choose the local bilinear forms as

ai (ui , ui ) := a(RT
i ui , RT

i ui ),

we obtain Ki = Ri KRT
i and ω = 1.

→ For exact exact local and coarse solvers, ω

does not depend on the coefficient.

Coloring Constant

The spectral radius ρ (E) is bounded by the number of
colors Nc of the domain decomposition.
→ Nc depends only on the domain decomposition but not
on the coefficient function.
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Assumption 3 is typically proved by constructing functions ui ∈ Vi , i = 0, . . . , N, such that

u =
N∑

i=0

RT
i ui and

N∑
i=0

ai (ui , ui ) ≤ C2
0 a(u, u)

for any given function u ∈ V . Let us sketch the difference between the one- and two-level preconditioners.

One-level Schwarz preconditioner
During the proof of the condition number, we have to
use an L2-norm using Friedrich’s inequality globally on
Ω: ∑N

i=1
∥u∥2

L2(Ωi ) = ∥u∥2
L2(Ω) ≤ C |u|2H1(Ω) ,

This results in
N∑

i=1

ai (ui , ui ) ≤ C
(

1 + H
δ

)
a (u, u) + C

1
Hδ

a (u, u)

Since H
δ

≤ 1
Hδ

, we obtain∑N

i=1
ai (ui , ui ) ≤ C

(
1 + 1

Hδ

)
a (u, u) .

Two-level Schwarz preconditioner
In contrast to the one-level method, we can estimate
the L2-norm locally since we instead have the term
u − u0∑N

i=1
∥u − u0∥2

L2(Ω′
i )

≤
N∑

i=1

CH2 |u|2
H1
(

ωΩi

) .

Different from the one-level preconditioner, we obtain
an H2 term in the final estimate:

N∑
i=1

ai (ui , ui ) ≤ C
(

1 + H
δ

)
a (u, u) + C

1
Hδ

H2a (u, u)

≤ C
(

1 + H
δ

)
a (u, u)
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10 Some Comments on Constructing Schwarz Preconditioners

Restricted Schwarz Preconditioner (Cai and Sarkis (1999))

Replace the prolongation RT
i by R̃T

i ,

M−1
OS-1 =

∑N

i=1
R̃T

i K−1
i Ri ,

where ∑N

i=1
R̃T

i = I.

Therefore, we can just introduce a diagonal scaling matrix D, such that

R̃T
i = DRT

i ,

for example based on a nonoverlapping domain decomposition or an
inverse multiplicity scaling.
This often improves the convergence, however, the preconditioner
becomes unsymmetric.

Ri

R̃T
i
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Changing the local and coarse solvers
For solving

K−1
i , i = 0, . . . , N,

we can employ inexact solvers instead of direct solvers, such as
• iterative solvers
• preconditioners

to speedup the computing times. Of course, convergence might slow down a bit a the
same time.

Choose another coarse basis
As it turns out, the choice of a suitable
coarse basis is one of the more important
ingredients for a scalable and robust
domain decomposition solver.

We will discuss this again in a few slides.

16 Examples of FROSch Coarse Spaces

GDSW (Generalized Dryja–Smith–Widlund)

• Dohrmann, Klawonn, Widlund (2008)
• Dohrmann, Widlund (2009, 2010, 2012)

RGDSW (Reduced dimension GDSW)

• Dohrmann, Widlund (2017)
• Heinlein, Klawonn, Knepper, Rheinbach (2022)

MsFEM (Multiscale Finite Element Method)

• Hou (1997), Efendiev and Hou (2009)
• Heinlein, Klawonn, Knepper, Rheinbach (2018)

Q1 Lagrangian / piecewise bilinear

Piecewise linear interface partition of unity functions
and a structured domain decomposition.

Alexander Heinlein (TU Delft) June 8, 2022 35/46
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11 Wishlist for a Parallel Schwarz Preconditioning Package

Parallel distributed system

Ax = b

with

A =


• •
• • •

• • •
• • •

• • •
• • •

• • •
• •

 b =


•
•
•
•
•
•
•
•


Wishlist:

• Parallel scalability (includes numerical scalability)
• Usability → algebraicity
• Generality
• Robustness
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12 FROSch (Fast and Robust Overlapping Schwarz) Framework in Trilinos

Software
• Object-oriented C++ domain decomposition solver framework with

MPI-based distributed memory parallelization
• Part of Trilinos with support for both parallel linear algebra packages

Epetra and Tpetra
• Node-level parallelization and performance portability on CPU and GPU

architectures through Kokkos and KokkosKernels
• Accessible through unified Trilinos solver interface Stratimikos

Methodology
• Parallel scalable multi-level Schwarz domain decomposition

preconditioners
• Algebraic construction based on the parallel distributed system matrix
• Extension-based coarse spaces

Team (active)
• Alexander Heinlein (TU Delft)
• Siva Rajamanickam (Sandia)
• Friederike Röver (TUBAF)

• Axel Klawonn (Uni Cologne)
• Oliver Rheinbach (TUBAF)
• Ichitaro Yamazaki (Sandia)
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Algorithmic Framework for FROSch Overlapping Domain Decompositions

Overlapping domain decomposition
In FROSch, the overlapping subdomains Ω′

1, ..., Ω′
N are constructed by recursively adding

layers of elements to the nonoverlapping subdomains; this can be performed based on the
sparsity pattern of K .

Nonoverlapping DD

Overlap δ = 1h Overlap δ = 2h

Computation of the overlapping matrices
The overlapping matrices

Ki = RiKRT
i

can easily be extracted from K since Ri is just a global-to-local index mapping.
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13 Algorithmic Framework for FROSch Coarse Spaces
1. Identification interface components

K =


• •
• • •

• • •
• • •

• • •
• • •

• • •
• •

 f =


•
•
•
•
•
•
•
•


Identification from parallel distribution of matrix:

distributed map overlapping map repeated map interface comp.

2. Interface partition of unity (IPOU)
vertex & edge functions vertex functions

Based on the interface components,
construct an interface partition of
unity: ∑

i
πi = 1 on Γ

3. Interface basis

×

null space basis
(e.g., linear elasticity: translations,

linearized rotation(s))

The interface values of the basis of the coarse space is
obtained by multiplication with the null space.

4. Extension into the interior
edge basis function vertex basis function

The values in the interior of the subdomains are
computed via the extension operator:

Φ =
[

ΦI
ΦΓ

]
=
[

−K−1
II KT

ΓI ΦΓ
ΦΓ

]
.

(For elliptic problems: energy-minimizing extension)
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14 Examples of FROSch Coarse Spaces
GDSW (Generalized Dryja–Smith–Widlund)

• Dohrmann, Klawonn, Widlund (2008)
• Dohrmann, Widlund (2009, 2010, 2012)

RGDSW (Reduced dimension GDSW)

• Dohrmann, Widlund (2017)
• H., Klawonn, Knepper, Rheinbach, Widlund (2022)

MsFEM (Multiscale Finite Element Method)

• Hou (1997), Efendiev and Hou (2009)
• Buck, Iliev, and Andrä (2013)
• H., Klawonn, Knepper, Rheinbach (2018)

Q1 Lagrangian / piecewise bilinear

Piecewise linear interface partition of unity functions
and a structured domain decomposition.
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Weak Scalability up to 64 k MPI ranks / 1.7 b Unknowns (3D Poisson; Juqueen)

GDSW vs RGDSW (reduced dimension)
Heinlein, Klawonn, Rheinbach, Widlund (2019).

Two-level vs three-level GDSW
Heinlein, Klawonn, Rheinbach, Röver (2019, 2020).
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Exemplary Applications

Elliptic problems

Diffusion Elasticity

Fluid flow problems

Stokes flow Navier–Stokes flow

Heterogeneous problems

Dual-phase steel Groundwater flow

Multi-physics problems

Fluid–structure
interaction

Land ice simulations
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16 Exercises

All the material for the exercises of this session can be found in the folder lab2 of the GitHub
repository of the summer school: https://github.com/jthies/dcse-summerschool

Important are the last two exercises

• exercise 3 – Implementing a One-Level Schwarz Preconditioner Using FROSch
• exercise 4 – Implementing a GDSW Preconditioner Using FROSch

and the corresponding solutions (in the subfolder solution ),

Each exercise has two parts:

1. Implement the missing code; step-by-step explanations in the README.md files.
2. Perform numerical experiments to investigate the behavior of the methods.

Parallelization
The code assumes a one-to-one correspondence of MPI ranks and subdomains. In order
to run with > 1 subdomains, you have to increase the number of MPI ranks. For instance, for
4 MPI ranks / subdomains: mpirun −n 4 ./main.x
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Thank you for your attention!

Questions?
Want to try out FROSch at home?

→ https://github.com/searhein/frosch-demo for a demo with simple installation via Docker.
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