

Advanced Domain Decomposition Methods

Parallel Schwarz Preconditioning and an Introduction to FROSch

Alexander Heinlein ${ }^{1}$
DCSE Summerschool: Numerical Linear Algebra on High Performance Computers, TU Delft, June 5-9, 2023
${ }^{1}$ TU Delft

Contents

1. Classical Schwarz algorithms
2. Extending the ideas to linear preconditioning
3. A parallel Schwarz domain decomposition solver package: FROSch (Fast and Robust Overlapping Schwarz)
4. Exercises

1. Literature on Domain Decomposition Methods

2. The Alternating Schwarz Algorithm

3. The Parallel Schwarz Algorithm
4. Comparison of the two Methods
5. Effect of the Size of the Overlap

1 Literature on Domain Decomposition Methods

Alfio Quarteroni and Alberto Valli
Domain decomposition methods for partial differential equations
Oxford University Press, 1999
Barry Smith, Petter Bjorstad, and William Gropp
Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations
Cambridge University Press, 2004
Andrea Toselli, and Olof Widlund
Domain decomposition methods-algorithms and theory.
Springer Science \& Business Media, 2006

- Victorita Dolean, Pierre Jolivet, Frédéric Nataf

An Introduction to Domain Decomposition Methods: Algorithms, Theory, and Parallel Implementation
Society for Industrial and Applied Mathematics, 2016

Domain Decomposition Methods

Idea

Decomposition of a large global problem into smaller local problems.

Graphics based on Heinlein, Perego, Rajamanickam (2022)

Parallel solvers

Coupled problems

2 The Alternating Schwarz Algorithm

Historical remarks: The alternating Schwarz method is the earliest domain decomposition method (DDM), which has been invented by H. A. Schwarz and published in 1870 :

- Schwarz used the algorithm to establish the existence of harmonic functions with prescribed boundary values on regions with nonsmooth boundaries.
- The regions are constructed recursively by forming unions of pairs of regions starting with "simple" regions for which existence can be established by more elementary means.
- At the core of Schwarz's work is a proof that this iterative method converges in the maximum norm at a geometric rate.

Classical "doorknob" geometry

Overlapping domain decomposition

We solve the Poisson equation

$$
\begin{aligned}
&-\Delta u=1 \\
& \text { in } \Omega, \\
& u=0 \\
& \text { on } \partial \Omega .
\end{aligned}
$$

on the classical "doorknob" geometry.

The alternating Schwarz iteration corresponds to solving alternatingly solving the local problems

$$
\begin{aligned}
& \left(D_{1}\right)\left\{\begin{aligned}
-\Delta u^{n+1 / 2} & =f & \text { in } \Omega_{1}^{\prime}, \\
u^{n+1 / 2} & =u^{n} & \text { auf } \Gamma_{1} \\
u^{n+1 / 2} & =u^{n} & \text { on } \Omega \backslash \overline{\Omega_{1}^{\prime}}
\end{aligned}\right. \\
& \left(D_{2}\right)\left\{\begin{aligned}
-u^{n+1^{\prime \prime}} & =f & & \text { in } \Omega_{2}^{\prime}, \\
u^{n+1} & =u^{n+1 / 2} & & \text { auf } \Gamma_{2} \\
u^{n+1} & =u^{n+1 / 2} & & \text { on } \Omega \backslash \overline{\Omega_{2}^{\prime}}
\end{aligned}\right.
\end{aligned}
$$

Overlapping domain decomposition

We solve the Poisson equation

$$
\begin{aligned}
& -\Delta u=1 \quad \text { in } \Omega, \\
& u=0 \quad \text { on } \partial \Omega \text {. }
\end{aligned}
$$

on the classical "doorknob" geometry.

The alternating Schwarz iteration corresponds to solving alternatingly solving the local problems

$$
\begin{aligned}
& \left(D_{1}\right)\left\{\begin{aligned}
-\Delta u^{n+1 / 2} & =f & \text { in } \Omega_{1}^{\prime}, \\
u^{n+1 / 2} & =u^{n} & \text { auf } \Gamma_{1} \\
u^{n+1 / 2} & =u^{n} & \text { on } \Omega \backslash \overline{\Omega_{1}^{\prime}}
\end{aligned}\right. \\
& \left(D_{2}\right)\left\{\begin{aligned}
-u^{n+1^{\prime \prime}} & =f & & \text { in } \Omega_{2}^{\prime}, \\
u^{n+1} & =u^{n+1 / 2} & & \text { auf } \Gamma_{2} \\
u^{n+1} & =u^{n+1 / 2} & & \text { on } \Omega \backslash \overline{\Omega_{2}^{\prime}}
\end{aligned}\right.
\end{aligned}
$$

Overlapping domain decomposition

We solve the Poisson equation

$$
\begin{aligned}
&-\Delta u=1 \\
& \text { in } \Omega, \\
& u=0 \\
& \text { on } \partial \Omega .
\end{aligned}
$$

on the classical "doorknob" geometry.

The alternating Schwarz iteration corresponds to solving alternatingly solving the local problems

$$
\begin{aligned}
& \left(D_{1}\right)\left\{\begin{aligned}
-\Delta u^{n+1 / 2} & =f & \text { in } \Omega_{1}^{\prime}, \\
u^{n+1 / 2} & =u^{n} & \text { auf } \Gamma_{1} \\
u^{n+1 / 2} & =u^{n} & \text { on } \Omega \backslash \overline{\Omega_{1}^{\prime}}
\end{aligned}\right. \\
& \left(D_{2}\right)\left\{\begin{aligned}
-u^{n+1^{\prime \prime}} & =f & & \text { in } \Omega_{2}^{\prime}, \\
u^{n+1} & =u^{n+1 / 2} & & \text { auf } \Gamma_{2} \\
u^{n+1} & =u^{n+1 / 2} & & \text { on } \Omega \backslash \overline{\Omega_{2}^{\prime}}
\end{aligned}\right.
\end{aligned}
$$

Overlapping domain decomposition

We solve the Poisson equation

$$
\begin{aligned}
& -\Delta u=1 \quad \text { in } \Omega, \\
& u=0 \quad \text { on } \partial \Omega \text {. }
\end{aligned}
$$

on the classical "doorknob" geometry.

The alternating Schwarz iteration corresponds to solving alternatingly solving the local problems

$$
\begin{aligned}
& \left(D_{1}\right)\left\{\begin{aligned}
-\Delta u^{n+1 / 2} & =f & \text { in } \Omega_{1}^{\prime}, \\
u^{n+1 / 2} & =u^{n} & \text { auf } \Gamma_{1} \\
u^{n+1 / 2} & =u^{n} & \text { on } \Omega \backslash \overline{\Omega_{1}^{\prime}}
\end{aligned}\right. \\
& \left(D_{2}\right)\left\{\begin{aligned}
-u^{n+1^{\prime \prime}} & =f & & \text { in } \Omega_{2}^{\prime}, \\
u^{n+1} & =u^{n+1 / 2} & & \text { auf } \Gamma_{2} \\
u^{n+1} & =u^{n+1 / 2} & & \text { on } \Omega \backslash \overline{\Omega_{2}^{\prime}}
\end{aligned}\right.
\end{aligned}
$$

For the sake of simplicity, instead of the two-dimensional geometry,

we consider the one-dimensional Poisson equation

$$
\begin{aligned}
& -u^{\prime \prime}=1 \quad \text { in }[0,1] \\
& u(0)=u(1)=0
\end{aligned}
$$

Domain decomposition:

Solution: $\quad u(x)=-\frac{1}{2} x(x-1)$.

Let us consider the simple boundary value problem: Find u such that

$$
-u^{\prime \prime}=1, \text { in }[0,1], \quad u(0)=u(1)=0
$$

We perform an alternating Schwarz iteration:

Figure 1: Iterate (left) and error (right) in iteration 0.

Let us consider the simple boundary value problem: Find u such that

$$
-u^{\prime \prime}=1, \text { in }[0,1], \quad u(0)=u(1)=0
$$

We perform an alternating Schwarz iteration:

Figure 1: Iterate (left) and error (right) in iteration 1.

Let us consider the simple boundary value problem: Find u such that

$$
-u^{\prime \prime}=1, \text { in }[0,1], \quad u(0)=u(1)=0
$$

We perform an alternating Schwarz iteration:

Figure 1: Iterate (left) and error (right) in iteration 2.

Let us consider the simple boundary value problem: Find u such that

$$
-u^{\prime \prime}=1, \text { in }[0,1], \quad u(0)=u(1)=0
$$

We perform an alternating Schwarz iteration:

Figure 1: Iterate (left) and error (right) in iteration 3.

Let us consider the simple boundary value problem: Find u such that

$$
-u^{\prime \prime}=1, \text { in }[0,1], \quad u(0)=u(1)=0
$$

We perform an alternating Schwarz iteration:

Figure 1: Iterate (left) and error (right) in iteration 4.

Let us consider the simple boundary value problem: Find u such that

$$
-u^{\prime \prime}=1, \text { in }[0,1], \quad u(0)=u(1)=0
$$

We perform an alternating Schwarz iteration:

Figure 1: Iterate (left) and error (right) in iteration 5.

The alternating Schwarz algorithm is sequential because each local boundary value problem depends on the solution of the previous Dirichlet problem:

$$
\begin{aligned}
& \left(D_{1}\right)\left\{\begin{array}{rll}
-\Delta u^{n+1 / 2} & =f & \text { in } \Omega_{1}^{\prime}, \\
u^{n+1 / 2} & =\mathbf{u}^{\mathbf{n}} & \text { on } \partial \Omega_{1}^{\prime} \\
u^{n+1 / 2} & =\mathbf{u}^{\mathbf{n}} & \text { on } \Omega \backslash \overline{\Omega_{1}^{\prime}}
\end{array}\right. \\
& \left(D_{2}\right)\left\{\begin{array}{rll}
-\Delta u^{n+1} & =f & \text { in } \Omega_{2}, \\
u^{n+1} & =\mathbf{u}^{\mathbf{n}+1 / 2} & \text { on } \partial \Omega_{2}^{\prime} \\
u^{n+1} & =\mathbf{u}^{\mathbf{n}+1 / 2} & \text { on } \Omega \backslash \overline{\Omega_{2}^{\prime}}
\end{array}\right.
\end{aligned}
$$

Idea: For all red terms, we use the values from the previous iteration. Then, the both Dirichlet problem can be solved at the same time.

The alternating Schwarz algorithm is sequential because each local boundary value problem depends on the solution of the previous Dirichlet problem:

$$
\begin{aligned}
& \left(D_{1}\right)\left\{\begin{array}{rll}
-\Delta u^{n+1 / 2} & =f & \text { in } \Omega_{1}^{\prime}, \\
u^{n+1 / 2} & =\mathbf{u}^{\mathbf{n}} & \text { on } \partial \Omega_{1}^{\prime} \\
u^{n+1 / 2} & =\mathbf{u}^{\mathbf{n}} & \text { on } \Omega \backslash \overline{\Omega_{1}^{\prime}}
\end{array}\right. \\
& \left(D_{2}\right)\left\{\begin{array}{rll}
-\Delta u^{n+1} & =f & \text { in } \Omega_{2}, \\
u^{n+1} & =\mathbf{u}^{\mathbf{n}+1 / 2} & \text { on } \partial \Omega_{2}^{\prime} \\
u^{n+1} & =\mathbf{u}^{\mathbf{n}+1 / 2} & \text { on } \Omega \backslash \overline{\Omega_{2}^{\prime}}
\end{array}\right.
\end{aligned}
$$

Idea: For all red terms, we use the values from the previous iteration. Then, the both Dirichlet problem can be solved at the same time.

3 The Parallel Schwarz Algorithm

The parallel Schwarz algorithm has been introduced by Lions (1988). Here, we solve the local problems

$$
\begin{aligned}
& \left(D_{1}\right)\left\{\begin{array}{rll}
-\Delta u_{1}^{n+1} & =f & \text { in } \Omega_{1}^{\prime}, \\
u_{1}^{n+1} & = & u_{2}^{n}
\end{array} \text { on } \partial \Omega_{1}^{\prime},\right. \\
& \left(D_{2}\right)\left\{\begin{array}{rll}
-\Delta u_{2}^{n+1} & =f & \text { in } \Omega_{2}, \\
u_{2}^{n+1} & = & u_{1}^{n}
\end{array} \quad \text { on } \partial \Omega_{2}^{\prime} .\right.
\end{aligned}
$$

Since u_{1}^{n} and u_{2}^{n} are both computed in the previous iteration, the problems can be solved independent of each other.

3 The Parallel Schwarz Algorithm

The parallel Schwarz algorithm has been introduced by Lions (1988). Here, we solve the local problems

$$
\begin{aligned}
& \left(D_{1}\right)\left\{\begin{array}{rll}
-\Delta u_{1}^{n+1} & = & f \\
u_{1}^{n+1} & = & u_{2}^{n}
\end{array} \quad \text { in } \Omega_{1}^{\prime},\right. \\
& \left(D_{2}\right)\left\{\begin{array}{rll}
-\Delta \Omega_{1}^{n+1} & = & f \\
\text { in } \Omega_{2}, \\
u_{2}^{n+1} & = & u_{1}^{n}
\end{array}\right. \\
& \text { on } \partial \Omega_{2}^{\prime} .
\end{aligned}
$$

Since u_{1}^{n} and u_{2}^{n} are both computed in the previous iteration, the problems can be solved independent of each other.

This method is suitable for parallel computing!

Let us again consider the simple boundary value problem: Find u such that

$$
-u^{\prime \prime}=1, \text { in }[0,1], \quad u(0)=u(1)=0
$$

We perform the parallel Schwarz iteration:

Figure 2: Iterate (left) and error (right) in iteration 0.

Let us again consider the simple boundary value problem: Find u such that

$$
-u^{\prime \prime}=1, \text { in }[0,1], \quad u(0)=u(1)=0
$$

We perform the parallel Schwarz iteration:

Figure 2: Iterate (left) and error (right) in iteration 1.

Let us again consider the simple boundary value problem: Find u such that

$$
-u^{\prime \prime}=1, \text { in }[0,1], \quad u(0)=u(1)=0
$$

We perform the parallel Schwarz iteration:

Figure 2: Iterate (left) and error (right) in iteration 2.

Let us again consider the simple boundary value problem: Find u such that

$$
-u^{\prime \prime}=1, \text { in }[0,1], \quad u(0)=u(1)=0
$$

We perform the parallel Schwarz iteration:

Figure 2: Iterate (left) and error (right) in iteration 3.

Let us again consider the simple boundary value problem: Find u such that

$$
-u^{\prime \prime}=1, \text { in }[0,1], \quad u(0)=u(1)=0
$$

We perform the parallel Schwarz iteration:

Figure 2: Iterate (left) and error (right) in iteration 4.

Let us again consider the simple boundary value problem: Find u such that

$$
-u^{\prime \prime}=1, \text { in }[0,1], \quad u(0)=u(1)=0
$$

We perform the parallel Schwarz iteration:

Figure 2: Iterate (left) and error (right) in iteration 5.

4 Comparison of the two Methods

Next, we compare the convergence of the two methods using the error plots:

Alternating Schwarz iteration

Figure 3: Error in iteration 0.

Parallel Schwarz iteration

Figure 4: Error in iteration 0.

4 Comparison of the two Methods

Next, we compare the convergence of the two methods using the error plots:

Alternating Schwarz iteration

Figure 3: Error in iteration 1.

Parallel Schwarz iteration

Figure 4: Error in iteration 1.

4 Comparison of the two Methods

Next, we compare the convergence of the two methods using the error plots:

Alternating Schwarz iteration

Figure 3: Error in iteration 1.

Parallel Schwarz iteration

Figure 4: Error in iteration 2.

4 Comparison of the two Methods

Next, we compare the convergence of the two methods using the error plots:

Alternating Schwarz iteration

Figure 3: Error in iteration 1.

Parallel Schwarz iteration

Figure 4: Error in iteration 2.

4 Comparison of the two Methods

Next, we compare the convergence of the two methods using the error plots:

Alternating Schwarz iteration

Figure 3: Error in iteration 2.

Parallel Schwarz iteration

Figure 4: Error in iteration 3.

4 Comparison of the two Methods

Next, we compare the convergence of the two methods using the error plots:

Alternating Schwarz iteration

Figure 3: Error in iteration 2.

Parallel Schwarz iteration

Figure 4: Error in iteration 4.

4 Comparison of the two Methods

Next, we compare the convergence of the two methods using the error plots:

Alternating Schwarz iteration

Figure 3: Error in iteration 2.

Parallel Schwarz iteration

Figure 4: Error in iteration 4.

4 Comparison of the two Methods

Next, we compare the convergence of the two methods using the error plots:

Alternating Schwarz iteration

Figure 3: Error in iteration 2.

Parallel Schwarz iteration

Figure 4: Error in iteration 4.

The alternating Schwarz method converges twice as fast as the parallel Schwarz method. However, the local solutions have to be computed sequentially.

5 Effect of the Size of the Overlap

We investigate the convergence of the methods (using the alternating method as an example) depending on the size of the overlap:

Overlap 0.05

Overlap 0.1

5 Effect of the Size of the Overlap

Overlap 0.05

Overlap 0.1

Figure 5: Error in iteration 0.

5 Effect of the Size of the Overlap

Overlap 0.05

Overlap 0.1

Figure 5: Error in iteration 1.

5 Effect of the Size of the Overlap

Overlap 0.05

Overlap 0.1

Figure 5: Error in iteration 2.

5 Effect of the Size of the Overlap

Overlap 0.05

Overlap 0.1

Figure 5: Error in iteration 3.

5 Effect of the Size of the Overlap

Overlap 0.05

Overlap 0.1

Figure 5: Error in iteration 4.

5 Effect of the Size of the Overlap

Overlap 0.05

Figure 5: Error in iteration 5.

5 Effect of the Size of the Overlap

Overlap 0.05

Overlap 0.1

Figure 5: Error in iteration 5.
\Rightarrow A larger overlap leads to faster convergence.

6. Model Problem

7. One-Level Overlapping Schwarz Preconditioners
8. Two-Level Overlapping Schwarz Preconditioners
9. A Brief Overview Over the Theoretical Framework
10. Some Comments on Constructing Schwarz Preconditioners

6 Model Problem

Let us consider the simple diffusion model problem:

$$
\begin{aligned}
-\Delta u=f & \text { in } \Omega=[0,1]^{2} \\
u=0 & \text { on } \partial \Omega
\end{aligned}
$$

Discretization using finite elements yields the linear equation system

$$
\boldsymbol{A} \boldsymbol{u}=\boldsymbol{f}
$$

- Due to the local support of the finite element basis functions, the resulting system is sparse.
- However, due to the superlinear complexity and memory cost, the use of direct solvers becomes infeasible for fine meshes, that is, for the resulting large sparse equation systems.
\rightarrow We will employ iterative solvers:
For our elliptic model problem, the system matrix is symmetric positive definite, such that we can use the preconditioner gradient descent (PCG) method.

Goal - Numerical \& Parallel (Weak) Scalability

Increase the problem size while keeping

$$
\frac{\# \text { degrees of freedom }}{\# \text { processors }}
$$

fixed.

Preconditioned Conjugate Gradient (PCG) Method

Algorithm 1: Preconditioned conjugate gradient (PCG) method
Result: Approximate solution of the linear equation system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$
Given: Initial guess $\boldsymbol{x}^{(0)} \in \mathbb{R}^{n}$ and tolerance $\varepsilon>0$
$\boldsymbol{r}^{(0)}:=\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}^{(0)}$
$\boldsymbol{p}^{(0)}:=\boldsymbol{y}^{(0)}:=\boldsymbol{M}^{-1} \boldsymbol{r}^{(0)}$
while $\left\|\boldsymbol{r}^{(k)}\right\| \geq \varepsilon\left\|\boldsymbol{r}^{(0)}\right\|$ do
$\alpha_{k}:=\frac{\left(\boldsymbol{p}^{(k)}, \boldsymbol{r}^{(k)}\right)}{\left(\boldsymbol{A p}^{(k)}, \boldsymbol{p}^{(k)}\right)}$
$\boldsymbol{x}^{(k+1)}:=\boldsymbol{x}^{(k)}+\alpha_{k} \boldsymbol{y}^{(k)}$
$\boldsymbol{r}^{(k+1)}:=\boldsymbol{r}^{(k)}-\alpha_{k} \boldsymbol{A} \boldsymbol{p}^{(k)}$
$\boldsymbol{y}^{(k+1)}:=\boldsymbol{M}^{-1} \boldsymbol{r}^{(k+1)}$
$\beta_{k}:=\frac{\left(\boldsymbol{y}^{(k+1)}, \boldsymbol{A p}^{(k)}\right)}{\left(\boldsymbol{p}^{(k)}, \boldsymbol{A} \boldsymbol{p}^{(k)}\right)}$
$\boldsymbol{p}^{(k+1)}:=\boldsymbol{r}^{(k+1)}-\beta_{k} \boldsymbol{p}^{(k)}$
end

Theorem 6.1

Let $A \in \mathbb{R}^{n \times n}$ be symmetric positive definite. Then the PCG method converges and the following error estimate holds:

$$
\left\|e^{(k)}\right\|_{\boldsymbol{A}} \leq 2\left(\frac{\sqrt{\kappa\left(\boldsymbol{M}^{-1} \boldsymbol{A}\right)}-1}{\sqrt{\kappa\left(\boldsymbol{M}^{-1} \boldsymbol{A}\right)}+1}\right)^{k}\left\|\boldsymbol{e}^{(0)}\right\|_{\boldsymbol{A}},
$$

where $\kappa\left(\boldsymbol{M}^{-1} \boldsymbol{A}\right)=\frac{\lambda_{\max }\left(\boldsymbol{M}^{-1} \boldsymbol{A}\right)}{\lambda_{\min }\left(\boldsymbol{M}^{-1} \boldsymbol{A}\right)}$ is condition number of the preconditioned matrix $\boldsymbol{M}^{-1} \boldsymbol{A}$.

Do we need a preconditioner?
The condition number of the stiffness matrix K for the diffusion problem behaves as follows

where τ_{h} is the triangulation and d is the problem dimension (for instance, $d=2,3$)
\Rightarrow Convergence of the PCG method will deteriorate when refining the mesh

Theorem 6.1

Let $A \in \mathbb{R}^{n \times n}$ be symmetric positive definite. Then the PCG method converges and the following error estimate holds:

$$
\left\|\boldsymbol{e}^{(k)}\right\|_{\boldsymbol{A}} \leq 2\left(\frac{\sqrt{\kappa\left(\boldsymbol{M}^{-1} \boldsymbol{A}\right)}-1}{\sqrt{\kappa\left(\boldsymbol{M}^{-1} \boldsymbol{A}\right)}+1}\right)^{k}\left\|\boldsymbol{e}^{(0)}\right\|_{\boldsymbol{A}},
$$

where $\kappa\left(\boldsymbol{M}^{-1} \boldsymbol{A}\right)=\frac{\lambda_{\max }\left(\boldsymbol{M}^{-1} \boldsymbol{A}\right)}{\lambda_{\min }\left(\boldsymbol{M}^{-1} \boldsymbol{A}\right)}$ is condition number of the preconditioned matrix $\boldsymbol{M}^{-1} \boldsymbol{A}$.

Do we need a preconditioner?

The condition number of the stiffness matrix \boldsymbol{K} for the diffusion problem behaves as follows:

$$
\kappa(\boldsymbol{K}) \leq C \frac{\left(\max _{T \in \tau_{h}} h_{T}\right)^{d}}{\left(\min _{T \in \tau_{h}} h_{T}\right)^{d+2}} \stackrel{\text { quasi uniform }}{\equiv} C \frac{1}{h^{2}},
$$

where τ_{h} is the triangulation and d is the problem dimension (for instance, $d=2,3$).
\Rightarrow Convergence of the PCG method will deteriorate when refining the mesh.

Theorem 6.1

Let $A \in \mathbb{R}^{n \times n}$ be symmetric positive definite. Then the PCG method converges and the following error estimate holds:

$$
\left\|\boldsymbol{e}^{(k)}\right\|_{\boldsymbol{A}} \leq 2\left(\frac{\sqrt{\kappa\left(\boldsymbol{M}^{-1} \boldsymbol{A}\right)}-1}{\sqrt{\kappa\left(\boldsymbol{M}^{-1} \boldsymbol{A}\right)}+1}\right)^{k}\left\|\boldsymbol{e}^{(0)}\right\|_{\boldsymbol{A}},
$$

where $\kappa\left(\boldsymbol{M}^{-1} \boldsymbol{A}\right)=\frac{\lambda_{\max }\left(\boldsymbol{M}^{-1} \boldsymbol{A}\right)}{\lambda_{\min }\left(\boldsymbol{M}^{-1} \boldsymbol{A}\right)}$ is condition number of the preconditioned matrix $\boldsymbol{M}^{-1} \boldsymbol{A}$.

Do we need a preconditioner?

The condition number of the stiffness matrix \boldsymbol{K} for the diffusion problem behaves as follows:

$$
\kappa(\boldsymbol{K}) \leq C \frac{\left(\max _{T \in \tau_{h}} h_{T}\right)^{d}}{\left(\min _{T \in \tau_{h}} h_{T}\right)^{d+2}} \stackrel{\text { quasi uniform }}{\equiv} C \frac{1}{h^{2}},
$$

where τ_{h} is the triangulation and d is the problem dimension (for instance, $d=2,3$).
\Rightarrow Convergence of the PCG method will deteriorate when refining the mesh.

7 One-Level Overlapping Schwarz Preconditioners

Overlapping domain decomposition

As the classical alternating and parallel Schwarz method (overlapping) Schwarz preconditioners are based on overlapping decompositions of the computational domain

$$
\Omega=\bigcup_{i=1}^{N} \Omega_{i}^{\prime}
$$

Nonoverlap. DD

7 One-Level Overlapping Schwarz Preconditioners

Overlapping domain decomposition

As the classical alternating and parallel Schwarz method (overlapping) Schwarz preconditioners are based on overlapping decompositions of the computational domain

$$
\Omega=\bigcup_{i=1}^{N} \Omega_{i}^{\prime}
$$

Nonoverlap. DD

Overlap $\delta=1 h$

7 One-Level Overlapping Schwarz Preconditioners

Overlapping domain decomposition

As the classical alternating and parallel Schwarz method (overlapping) Schwarz preconditioners are based on overlapping decompositions of the computational domain

$$
\Omega=\bigcup_{i=1}^{N} \Omega_{i}^{\prime}
$$

Nonoverlap. DD

Overlap $\delta=1 h$

Overlap $\delta=2 h$

Function on Ω

Restriction R_{i} to Ω_{i}^{\prime}

Based on an overlapping domain decomposition, we define an additive one-level Schwarz preconditioner

$$
\boldsymbol{M}_{\mathrm{OS}-1}^{-1}=\sum_{i=1}^{N} \boldsymbol{R}_{i}^{T} \boldsymbol{K}_{i}^{-1} \boldsymbol{R}_{i}
$$

where \boldsymbol{R}_{i} and \boldsymbol{R}_{i}^{T} are restriction and prolongation operators corresponding to Ω_{i}^{\prime}, and $\boldsymbol{K}_{i}:=\boldsymbol{R}_{i} \boldsymbol{K} \boldsymbol{R}_{i}^{T}$. The \boldsymbol{K}_{i} correspond to local Dirichlet problems on the overlapping subdomains.

Condition number bound:

$$
\kappa\left(\boldsymbol{M}_{\mathrm{OS}-1}^{-1} \boldsymbol{K}\right) \leq C\left(1+\frac{1}{H \delta}\right)
$$

where the constant C is independent of the subdomain size H and the width of the overlap δ.

Based on an ove preconditioner
where \boldsymbol{R}_{i} and \boldsymbol{R}_{i}
 subdomains.

Condition number bound:

$$
\kappa\left(\boldsymbol{M}_{\mathrm{OS}-1}^{-1} \boldsymbol{K}\right) \leq C\left(1+\frac{1}{H \delta}\right)
$$

where the constant C is independent of the subdomain size H and the width of the overlap δ.

Solving a local subdomain problem

\rightarrow Zero residual only inside this subdomain but particularly large residual inside the overlap.

Convergence of the PCG method with a one-level Schwarz preconditioner

\rightarrow Fast convergence of the preconditioned gradient decent (PCG) method (low number of subdomains).

8 Two-Level Overlapping Schwarz Preconditioners

Coarse triangulation

Nodal bilinear basis function

The additive two-level Schwarz preconditioner reads

$$
\boldsymbol{M}_{\mathrm{OS}-2}^{-1}=\underbrace{\boldsymbol{\Phi} \boldsymbol{K}_{0}^{-1} \boldsymbol{\Phi}^{T}}_{\text {coarse level - global }}+\underbrace{\sum_{i=1}^{N} \boldsymbol{R}_{i}^{T} \boldsymbol{K}_{i}^{-1} \boldsymbol{R}_{\boldsymbol{i}}}_{\text {first level - local }},
$$

where $\boldsymbol{\Phi}$ contains the coarse basis functions and $\boldsymbol{K}_{0}:=\boldsymbol{\Phi}^{\top} \boldsymbol{K} \boldsymbol{\Phi}$.
Condition number bound:

$$
\kappa\left(\boldsymbol{M}_{\mathrm{OS}-2}^{-1} \boldsymbol{K}\right) \leq \boldsymbol{C}\left(1+\frac{H}{\delta}\right)
$$

where the constant C is independent of h, δ, and H; cf., e.g., Toselli, Widlund (2005).

8 Two-Level Overlapping Schwarz Preconditioners

Coarse triangulation Nodal bilinear basis function

where $\boldsymbol{\Phi}$ contains the coarse basis functions and $\boldsymbol{K}_{0}:=\boldsymbol{\Phi}^{\top} \boldsymbol{K} \boldsymbol{\Phi}$.
Condition number bound:

$$
\kappa\left(\boldsymbol{M}_{\mathrm{OS}-2}^{-1} \boldsymbol{K}\right) \leq C\left(1+\frac{H}{\delta}\right)
$$

where the constant C is independent of h, δ, and H; cf., e.g., Toselli, Widlund (2005).

One- Vs Two-Level Schwarz Preconditioners

Diffusion model problem in two dimensions, \# subdomains = \# cores, $H / h=100$

\rightarrow We only obtain numerical scalability if a coarse level is used.
\rightarrow Convergence is faster for larger overlaps.

One- Vs Two-Level Schwarz Preconditioners

Diffusion model problem in two dimensions, \# subdomains = \# cores, $H / h=100$

\rightarrow We only obtain numerical scalability if a coarse level is used.
\rightarrow Convergence is faster for larger overlaps.

One- Vs Two-Level Schwarz Preconditioners

Diffusion model problem in two dimensions, \# subdomains = \# cores, $H / h=100$

\rightarrow We only obtain numerical scalability if a coarse level is used.
\rightarrow Convergence is faster for larger overlaps.

9 A Brief Overview Over the Theoretical Framework

In order to establish a condition number bound for $\kappa\left(M_{\mathrm{ad}}^{-1} K\right)$ based on the abstract Schwarz framework, we have to verify the following three assumptions:

Assumption 1: Stable Decomposition

There exists a constant C_{0} such that, for every $u \in V$, there exists a decomposition $u=\sum_{i=0}^{N} R_{i}^{T} u_{i}, u_{i} \in V_{i}$, with

$$
\sum_{i=0}^{N} a_{i}\left(u_{i}, u_{i}\right) \leq C_{0}^{2} a(u, u)
$$

Assumption 2: Strengthened Cauchy-Schwarz Inequality

There exist constants $0 \leq \epsilon_{i j} \leq 1,1 \leq i, j \leq N$, such that

$$
\left|a\left(R_{i}^{T} u_{i}, R_{j}^{T} u_{j}\right)\right| \leq \epsilon_{i j}\left(a\left(R_{i}^{T} u_{i}, R_{i}^{T} u_{i}\right)\right)^{1 / 2}\left(a\left(R_{j}^{T} u_{j}, R_{j}^{T} u_{j}\right)\right)^{1 / 2}
$$

for $u_{i} \in V_{i}$ and $u_{j} \in V_{j}$. (Consider $\mathcal{E}=\left(\varepsilon_{i j}\right)$ and $\rho(\mathcal{E})$ its spectral radius)

Assumption 3: Local Stability

There exists $\omega<0$, such that

$$
a\left(R_{i}^{T} u_{i}, R_{i}^{T} u_{i}\right) \leq \omega a_{i}\left(u_{i}, u_{i}\right), \quad u_{i} \in \operatorname{range}\left(\tilde{P}_{i}\right), \quad 0 \leq i \leq N .
$$

General Condition Number Bound

With Assumption 1-3, we have

$$
\kappa\left(M_{\mathrm{ad}}^{-1} K\right) \leq C_{0}^{2} \omega(\rho(\mathcal{E})+1)
$$

for

$$
M_{\mathrm{ad}}^{-1}=\sum_{i=0 / 1}^{N} R_{i}^{T} K_{i}^{-1} R_{i}
$$

see, e.g., Toselli, Wildund (2005).

To obtain a condition number bound for a specific additive Schwarz preconditioner, we have to bound $\omega, \rho(\varepsilon)$, and C_{0}^{2}.

The constants ω and $\rho(\mathcal{E})$ can often be handled easily.

Exact Solvers

If we choose the local bilinear forms as

$$
a_{i}\left(u_{i}, u_{i}\right):=a\left(R_{i}^{T} u_{i}, R_{i}^{T} u_{i}\right),
$$

we obtain $K_{i}=R_{i} K R_{i}^{T}$ and $\omega=1$.
\rightarrow For exact exact local and coarse solvers, ω does not depend on the coefficient.

Coloring Constant

The spectral radius $\rho(\mathcal{E})$ is bounded by the number of colors N^{c} of the domain decomposition.
$\rightarrow N^{c}$ depends only on the domain decomposition but not on the coefficient function.

Assumption 3 is typically proved by constructing functions $u_{i} \in V_{i}, i=0, \ldots, N$, such that

$$
u=\sum_{i=0}^{N} R_{i}^{T} u_{i} \text { and } \sum_{i=0}^{N} a_{i}\left(u_{i}, u_{i}\right) \leq C_{0}^{2} a(u, u)
$$

for any given function $u \in V$. Let us sketch the difference between the one- and two-level preconditioners.

One-level Schwarz preconditioner

During the proof of the condition number, we have to use an L^{2}-norm using Friedrich's inequality globally on Ω :

$$
\sum_{i=1}^{N}\|u\|_{L_{2}\left(\Omega_{i}\right)}^{2}=\|u\|_{L_{2}(\Omega)}^{2} \leq C|u|_{H^{1}(\Omega)}^{2}
$$

This results in

$$
\sum_{i=1}^{N} a_{i}\left(u_{i}, u_{i}\right) \leq C\left(1+\frac{H}{\delta}\right) a(u, u)+C \frac{1}{H \delta} a(u, u)
$$

Since $\frac{H}{\delta} \leq \frac{1}{H \delta}$, we obtain

$$
\sum_{i=1}^{N} a_{i}\left(u_{i}, u_{i}\right) \leq C\left(1+\frac{1}{\mathbf{H} \delta}\right) a(u, u) .
$$

Two-level Schwarz preconditioner

In contrast to the one-level method, we can estimate the L^{2}-norm locally since we instead have the term $u-u_{0}$

$$
\sum_{i=1}^{N}\left\|u-u_{0}\right\|_{L_{2}\left(\Omega_{i}^{\prime}\right)}^{2} \leq \sum_{i=1}^{N} C H^{2}|u|_{H^{1}\left(\omega_{\Omega_{i}}\right)}^{2}
$$

Different from the one-level preconditioner, we obtain an H^{2} term in the final estimate:

$$
\begin{aligned}
\sum_{i=1}^{N} a_{i}\left(u_{i}, u_{i}\right) & \leq C\left(1+\frac{H}{\delta}\right) a(u, u)+C \frac{1}{H \delta} H^{2} a(u, u) \\
& \leq C\left(1+\frac{H}{\delta}\right) a(u, u)
\end{aligned}
$$

10 Some Comments on Constructing Schwarz Preconditioners

Restricted Schwarz Preconditioner (Cai and Sarkis (1999))

Replace the prolongation \boldsymbol{R}_{i}^{T} by $\widetilde{\boldsymbol{R}}_{i}{ }^{T}$,

$$
\boldsymbol{M}_{\mathrm{OS}-1}^{-1}=\sum_{i=1}^{N} \tilde{\boldsymbol{R}}_{i}^{T} \boldsymbol{K}_{i}^{-1} \boldsymbol{R}_{i}
$$

where

$$
\sum_{i=1}^{N} \tilde{\boldsymbol{R}}_{i}^{T}=\boldsymbol{I}
$$

Therefore, we can just introduce a diagonal scaling matrix \boldsymbol{D}, such that

$$
\tilde{\boldsymbol{R}}_{i}^{T}=\boldsymbol{D} \boldsymbol{R}_{i}^{T},
$$

for example based on a nonoverlapping domain decomposition or an inverse multiplicity scaling.
This often improves the convergence, however, the preconditioner becomes unsymmetric.

Changing the local and coarse solvers

For solving

$$
\boldsymbol{K}_{i}^{-1}, \quad i=0, \ldots, N,
$$

we can employ inexact solvers instead of direct solvers, such as

- iterative solvers
- preconditioners
to speedup the computing times. Of course, convergence might slow down a bit a the same time.

Choose another coarse basis

As it turns out, the choice of a suitable coarse basis is one of the more important ingredients for a scalable and robust domain decomposition solver.

We will discuss this again in a few slides.

11. Wishlist for a Parallel Schwarz Preconditioning Package

12. FROSch (Fast and Robust Overlapping Schwarz) Framework in Trilinos
13. Algorithmic Framework for FROSch Coarse Spaces
14. Examples of FROSch Coarse Spaces
15. Some Numerical Results
16. Exercises

11 Wishlist for a Parallel Schwarz Preconditioning Package

Parallel distributed system

$$
A x=b
$$

with

Wishlist:

- Parallel scalability (includes numerical scalability)
- Usability \rightarrow algebraicity
- Generality
- Robustness

12 FROSch (Fast and Robust Overlapping Schwarz) Framework in Trilinos

Software

- Object-oriented C++ domain decomposition solver framework with MPI-based distributed memory parallelization
- Part of Trilinos with support for both parallel linear algebra packages Epetra and Tpetra
- Node-level parallelization and performance portability on CPU and GPU architectures through Kokкos and KokкosKernels
- Accessible through unified Trilinos solver interface Stratimikos

Methodology

- Parallel scalable multi-level Schwarz domain decomposition preconditioners
- Algebraic construction based on the parallel distributed system matrix
- Extension-based coarse spaces

Team (active)

- Alexander Heinlein (TU Delft)
- Axel Klawonn (Uni Cologne)
- Siva Rajamanickam (Sandia)
- Oliver Rheinbach (TUBAF)
- Friederike Röver (TUBAF)
- Ichitaro Yamazaki (Sandia)

Algorithmic Framework for FROSch Overlapping Domain Decompositions

Overlapping domain decomposition

In FROSch, the overlapping subdomains $\Omega_{1}^{\prime}, \ldots, \Omega_{N}^{\prime}$ are constructed by recursively adding layers of elements to the nonoverlapping subdomains; this can be performed based on the sparsity pattern of K.

Nonoverlapping DD

Algorithmic Framework for FROSch Overlapping Domain Decompositions

Overlapping domain decomposition

In FROSch, the overlapping subdomains $\Omega_{1}^{\prime}, \ldots, \Omega_{N}^{\prime}$ are constructed by recursively adding layers of elements to the nonoverlapping subdomains; this can be performed based on the sparsity pattern of K.

Nonoverlapping DD

Overlap $\delta=1 h$

Algorithmic Framework for FROSch Overlapping Domain Decompositions

Overlapping domain decomposition

In FROSch, the overlapping subdomains $\Omega_{1}^{\prime}, \ldots, \Omega_{N}^{\prime}$ are constructed by recursively adding layers of elements to the nonoverlapping subdomains; this can be performed based on the sparsity pattern of K.

Nonoverlapping DD

Overlap $\delta=1 h$

Overlap $\delta=2 h$

Algorithmic Framework for FROSch Overlapping Domain Decompositions

Overlapping domain decomposition

In FROSch, the overlapping subdomains $\Omega_{1}^{\prime}, \ldots, \Omega_{N}^{\prime}$ are constructed by recursively adding layers of elements to the nonoverlapping subdomains; this can be performed based on the sparsity pattern of K.

Nonoverlapping DD

Overlap $\delta=1 h$

Overlap $\delta=2 h$

Computation of the overlapping matrices

The overlapping matrices

$$
\boldsymbol{K}_{i}=\boldsymbol{R}_{i} \boldsymbol{K} \boldsymbol{R}_{i}^{T}
$$

can easily be extracted from K since R_{i} is just a global-to-local index mapping.

13 Algorithmic Framework for FROSch Coarse Spaces

1. Identification interface components

Identification from parallel distribution of matrix:

3. Interface basis

2. Interface partition of unity (IPOU)

Based on the interface components
construct an interface partition of
unity:
4. Extension into the interior

The values in the interior of the subdomains are computed via the extension operator:

,

(For elliptic problems: energy-minimizing extension)

The interface values of the basis of the coarse space is
obtained by multiplication with the null space.

13 Algorithmic Framework for FROSch Coarse Spaces

13 Algorithmic Framework for FROSch Coarse Spaces

13 Algorithmic Framework for FROSch Coarse Spaces

3. Interface basis

The interface values of the basis of the coarse space is obtained by multiplication with the null space

4. Extension into the interior

edge basis function vertex basis function

The values in the interior of the subdomains are computed via the extension operator:

$$
\Phi=\left[\begin{array}{c}
\Phi_{/} \\
\Phi_{\Gamma}
\end{array}\right]=\left[\begin{array}{c}
-K_{I I}^{-1} \boldsymbol{K}_{\Gamma,}^{T} \Phi_{\Gamma} \\
\Phi_{\Gamma}
\end{array}\right]
$$

(For elliptic problems: energy-minimizing extension)

13 Algorithmic Framework for FROSch Coarse Spaces

1. Identification interface components

Identification from parallel distribution of matrix:

3. Interface basis

null space basis
(e.g., linear elasticity: translations, linearized rotation(s))

The interface values of the basis of the coarse space is obtained by multiplication with the null space.

2. Interface partition of unity (IPOU)

vertex \& edge functions

Based on the interface components, construct an interface partition of unity:

$$
\sum_{i} \pi_{i}=1 \text { on } \Gamma
$$

4. Extension into the interior

 edge basis function vertex basis function

The values in the interior of the subdomains are computed via the extension operator:

$$
\Phi=\left[\begin{array}{c}
\Phi_{I} \\
\Phi_{\Gamma}
\end{array}\right]=\left[\begin{array}{c}
-K_{I I}^{-1} K_{\Gamma /}^{T} \Phi_{\Gamma} \\
\Phi_{\Gamma}
\end{array}\right]
$$

(For elliptic problems: energy-minimizing extension)

14 Examples of FROSch Coarse Spaces

GDSW (Generalized Dryja-Smith-Widlund)

- Dohrmann, Klawonn, Widlund (2008)
- Dohrmann, Widlund $(2009,2010,2012)$

MsFEM (Multiscale Finite Element Method)

- Hou (1997), Efendiev and Hou (2009)
- Buck, lliev, and Andrä (2013)
- H., Klawonn, Knepper, Rheinbach (2018)

RGDSW (Reduced dimension GDSW)

- Dohrmann, Widlund (2017)
- H., Klawonn, Knepper, Rheinbach, Widlund (2022)

Q1 Lagrangian / piecewise bilinear

Piecewise linear interface partition of unity functions and a structured domain decomposition.

Weak Scalability up to 64 k MPI ranks / 1.7 b Unknowns (3D Poisson; Juqueen)

GDSW vs RGDSW (reduced dimension)

Heinlein, Klawonn, Rheinbach, Widlund (2019).

Two-level vs three-level GDSW
Heinlein, Klawonn, Rheinbach, Röver (2019, 2020).

Exemplary Applications

Fluid flow problems

Stokes flow

Navier-Stokes flow

Multi-physics problems

Fluid-structure interaction

Land ice simulations

16 Exercises

All the material for the exercises of this session can be found in the folder lab2 of the GitHub repository of the summer school: https://github.com/jthies/dcse-summerschool

Important are the last two exercises

- exercise 3 - Implementing a One-Level Schwarz Preconditioner Using FROSch
- exercise 4 - Implementing a GDSW Preconditioner Using FROSch
and the corresponding solutions (in the subfolder solution),
Each exercise has two parts:

1. Implement the missing code; step-by-step explanations in the README.md files.
2. Perform numerical experiments to investigate the behavior of the methods.

Parallelization

The code assumes a one-to-one correspondence of MPI ranks and subdomains. In order to run with >1 subdomains, you have to increase the number of MPI ranks. For instance, for 4 MPI ranks / subdomains: mpirun -n 4 ./main.x

Thank you for your attention!

Questions?

Want to try out FROSch at home?
\rightarrow https://github.com/searhein/frosch-demo for a demo with simple installation via Docker.

