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Scientific Machine Learning in Computational Science and Engineering

Numerical methods Machine learning models

Based on physical models Driven by data
+ Robust and generalizable + Do not require mathematical models
— Require availability of mathematical — Sensitive to data, limited extrapolation
models capabilities

Scientific machine learning (SciML)

Combining the strengths and compensating the weaknesses of the individual approaches:
numerical methods improve machine learning techniques

machine learning techniques  assist numerical methods
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Scientific Machine Learning as a Standalone Field

Priority Research Directions
Foundational research themes:

= Domain-awareness
BASIC RESEARCH NEEDS FOR

Scientific Machine Learning
Core Technologies for Artificial Intelligence = Robustness

= |nterpretability

Capability research themes:
= Massive scientific data
analysis
= Machine learning-enhanced

o modeling and simulation
ENERGY

= [ntelligent automation and
\ N. Baker, A. Frank, T. Bremer, A. Hagberg, Y. Kevrekidis, H. decision-support for

Najm, M. Parashar, A. Patra, J. Sethian, S. Wild, K. Willcox, and
S. Lee.
Workshop Report on Basic Research Needs for Scientific
Machine Learning: Core Technologies for Artificial Intelligence.
USDOE Office of Science (SC), Washington, DC (United States),
2019.
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Development of the Field of Scientific Machine Learning
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500 1,000 1,500 2,000 2,500
# citations (Google Scholar)

¥ M. Raissi, P. Perdikaris, and G. E. Karniadakis.
Physics-informed neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations.
Journal of Computational physics, 378, 686-707. 2019.

(and the respective arXiv preprints)
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Scientific Machine Learning Examples

Many approaches in scientific machine learning have been developed in the past few years.

Data-driven
surrogate modeling

Hybrid modeling
and simulation
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Scientific Machine Learning Examples

Many approaches in scientific machine learning have been developed in the past few years. We
will focus on two types:

Data-driven
surrogate modeling

Physics-informed
machine learning

Data-driven
Replacing a surrogate modeling
computationally
expensive numerical
simulator by a fast

data-driven model.

Regularizing a
data-driven machine
learning model using a
physics-based model.

Hybrid modeling
and simulation
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Physics-informed machine learning

Domain decomposition-based network architectures for physics-informed
neural networks
Based on joint work with
Victorita Dolean (University of Strathclyde, University Céte d'Azur)
Ben Moseley and Siddhartha Mishra (ETH Ziirich)

Surrogate models for computational fluid dynamics simulations
Based on joint work with

Mattias Eichinger, Viktor Grimm, and Axel Klawonn (University of Cologne)



Physics-informed machine
learning



Neural Networks for Solving Differential Equations

Artificial Neural Networks for Solving Ordinary
and Partial Differential Equations

Isaac Elias Lagaris, Aristidis Likas, Member, IEEE, and Dimitrios I. Fotiadis

Published in IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, 1998.

Approach Construction of the trial functions
Solve a general differential equation subject to The trial functions explicitly satisfy the
boundary conditions boundary conditions:

G(x,¥(x), V¥(x), V*¥(x)) =0 in Q We(x,p) = A(x) + F(x, N(x,p))

by solving an optimization problem = N is a feedforward neural network with

minz G(xi, Vi(x:, 8), VW, (x;, 0) Vzlllt(x' 0))2 trainable parameters 6 and input x € R”
® ' 7 Y 7 = A and F are fixed functions, chosen s.t.:
= A satisfies the boundary conditions

Xi

where \llt(x7 0) is a trial function, x; sampling

. . . = F does not contribute to the
points inside the domain Q2 and 6 are o
adjustable parameters. Rolindunyjconcitons

A. Heinlein (TU Delft) NVIDIA/HLRS SciML GPU Bootcamp




Neural Networks for Solving Differential Equations

Approach Construction of the trial functions
Solve a general differential equation subject to The trial functions explicitly satisfy the
boundary conditions boundary conditions:

G(x,¥(x), VV¥U(x),V’¥U(x)) =0 inQ Vi(x,p) = A(x) + F(x, N(x,p))

by solving an optimization problem = N is a feedforward neural network with

minz G(xi, Ve(x:, 0), VW, (x;, 0), VWe(x;, ) trainable parameters 6 and input x € R”
0 ‘ ’ T T ’ = A and F are fixed functions, chosen s.t.:
= A satisfies the boundary conditions

Xj
where \Ilt(x, 0) is a trial function, x; sampling

points inside the domain Q2 and 6 are = F does not contribute to the

boundary conditions

adjustable parameters.

boundary conditions

A(x) + F(x, N(z, p))
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Physics-Informed Neural Networks (PINNs)

In the physics-informed neural network (PINN) approach

introduced by Raissi et al. (2019), a neural network is

employed to discretize a partial differential equation
Nul(x,t) = f(x8), (xt) € T]xQC R

It is based on the approach by Lagaris et al. (1998). The

main novelty of PINNs is the use of a hybrid loss function:

oL = WdatasLdata + WPDELPDE,

where wyata and wppe are weights and

1 Niata R . Hybrid loss
BCdata - Ndata : :i:I (LI(X,', ti) - U,‘) ) Small data Some data Big data
1 Nppe >
Lepe = E (NM[u](xi, t) — f(xi, ;)" -
Nppe i=1
Advantages Drawbacks
Lots of physics Some physics No physics
= “Meshfree” = Training cost and .
= Small data robustness = Known solution values can be
= Generalization properties = Convergence not included in Lyata
= High-dimensional problems well-understood . .
= Inverse and parameterized = Difficulties with scalability = Initial and boundary conditions
problems and multi-scale problems are also included in Lyata
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Available Theoretical Results for PINNs — An Example

Mishra and Molinaro. Estimates on the generalisation error of PINNs, 2022

Estimate of the generalization error

The generalization error (or total error) satisfies

8¢ < Crpe&7 + Crpe CL/P N~/P

quad

where
» &g =E¢(0; X) = |lu—u*||, (V Sobolev space, X training data set)
= &7 is the training error (/P loss of the residual of the PDE)
= Cppe and Cquaq constants depending on the PDE resp. the quadrature
= N number of the training points and « convergence rate of the quadrature

Rule of thumb:

“As long as the PINN is trained well, it also generalizes well”
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Scaling Issues in Neural Network Training

Spectral bias: neural networks prioritize learning lower frequency functions first

irrespective of their amplitude

0.0 0.2 04 0.6 0.8 10 0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 10 0.0 0.2 04 0.6 0.8 10

100 iterations 1000 iterations 10000 iterations 80000 iterations

Rahaman et al., On the spectral bias of neural networks, ICML (2019)

= Solving solutions on large domains and/or with multiscale features potentially requires
very large neural networks.
= Training may not sufficiently reduce the loss or take large numbers of iterations.

= Significant increase on the computational work

Convergence analysis of PINNs via the neural tangent kernel: Wang, Yu, Perdikaris,
When and why PINNs fail to train: A neural tangent kernel perspective, JCP (2022)
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Domain decomposition-based
network architectures for
physics-informed neural networks



Motivation — Some Observations on the Performance

cos (wx) ,
u(0) = 0,

for different values of w

using PINNs with

varying network
capacities.

Scaling issues

= Large computational
domains

= Small frequencies

Cf. Moseley, Markham, and
Nissen-Meyer (arXiv 2021)

A. Heinlein (TU Delft)

(a) PINN (w =1, 2 layers, 16 hidden units) (b) PINN (w =15, 2 layers, 16 hidden units)
0.075
10 —— Exact solution —— Exact solution
—— PINN 0050 —— PINN
05 0.025
s 00 5 0000
=0.025
-0 -0.050
10 ~0.075
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(c) PINN (w =15, 4 layers, 64 hidden units) (d) PINN (w =15, 5 layers, 128 hidden units)
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—— Exact solution —— Exact solution
0.050 ~—— PINN 0.050 ~—— PINN
0.025 0.025
0.000 s 0.000
—0.025 ~0.025
—0.050 —-0.050
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6 s =2 0 2 i 6 a Y 0 2 4 13
x
(e) Test loss
10°
1071
o —— PINN (w =1, 2 layers, 16 hidden units)
81072 —— PINN (w =15, 2 layers, 16 hidden units)
ai —— PINN (w =15, 4 layers, 64 hidden units)
1072 —— PINN (w = 15, 5 layers, 128 hidden units)
1074
0 10000 20000 30000 40000 50000
Training step

(a) 321 free parameters

(d) 66433 free parameters

NVIDIA/HLRS SciML GPU Bootcamp




Domain Decomposition Methods

Decomposing a large global problem into

smaller local problems:

= Better robustness and scalability of
numerical solvers

= Improved computational efficiency

Images based on Heinlein, Perego, Rajamanickam (2022)

= Introduce parallelism

Historical remarks: The alternating
Schwarz method is the earliest domain

decomposition method (DDM), which has Q
been invented by H. A. Schwarz and
published in 1870: 294 r o
= Schwarz used the algorithm to establish ’ oK,

the existence of harmonic functions
with prescribed boundary values on
regions with non-smooth boundaries.
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Machine Learning and Domain Decomposition Methods

A non-exhaustive overview:

= Machine Learning for adaptive BDDC, FETI-DP, and AGDSW: Heinlein, Klawonn, Lanser,
Weber (2019, 2020, 2021, 2021, 2021, 2022); Klawonn, Lanser, Weber (preprint 2022)

= Domain decomposition for CNNs: Gu, Zhang, Liu, Cai (2022); Lee, Park, Lee (2022);
Klawonn, Lanser, Weber (arXiv 2023)

= D3M: Li, Tang, Wu, and Liao (2019)

= DeepDDM: Li, Xiang, Xu (2020); Mercier, Gratton, Boudier (arXiv 2021); Li, Wang, Cui,
Xiang, Xu (2023)

= FBPINNs: Moseley, Markham, and Nissen-Meyer (arXiv 2021); Dolean, Heinlein, Mishra,
Moseley (accepted 2023, in preparation)

= Schwarz Domain Decomposition Algorithm for PINNs: Kim, Yang (2022, arXiv 2022)

= cPINNs: Jagtap, Kharazmi, Karniadakis (2020)

= XPINNSs: Jagtap, Karniadakis (2020)

An overview of the state-of-the-art in early 2021:
‘ A. Heinlein, A. Klawonn, M. Lanser, J. Weber.
Combining machine learning and domain decomposition methods for the solution of partial

differential equations — A review.
GAMM-Mitteilungen. 2021.
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Finite Basis Physics-Informed Neural Networks (FBPINNSs)

In the finite basis physics informed neural
network (FBPINNs) method introduced in
Moseley, Markham, and Nissen-Meyer (arXiv
2021), we solve the boundary value problem
Nnul(x) = f(x), xe€QcCR
Bi[u](x) = gi(x), xeTlxC.
using the PINN approach and hard enforcement

of the boundary conditions, similar to Lagaris
et al. (1998).

FBPINNSs use the network architecture

J
u(01, o ,OJ) = G Zj:1 w,-u,- (01)
and the loss function

N
L(61,...,0,) = % ST (1e > wulx, 0)~F(x))”.
i=1

X,‘EQJ'
. J
= Overlapping DD: Q = J_,
= Window functions w; with supp(w;) C Q;
J
and - jwj=1onQ

Hard enforcement of boundary conditions

Loss function N
£(0) = 5 > (N[Cul(x,0) — f(x))*,
i=1
with constraining operator C, which explicitly

enforces the boundary conditions.

— Often improves training performance

1
Window
function
0

Subdomain — — —
definition

OVerlapping | s s S s s
T

models
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Numerical Results for FBPINNSs

PINN Vs FBPINN (Moscley et al. (arxiv 2021))  Scalability of FBPINNs

[FBPINN local solutions Consider the simple ] |
0.050 [—uw=t-0-2]
l ‘ boundary value problem o
0.025 l 1 . .15 - R
—u’ =1 in|0,1
0.000 [ I’ ]7
0.1 4
-0.025 U(O) :U(l) = O,
0050 which has the solution 005 1
-6 -4 -2 0 2 4 6 1 o
u(x) = 1/2x(1 — x). 0 ! ! | |
FBPINN global solution 1 SkaktEddiion ( ) / ( ) 0 02 04 06 08 1
0.050 ~—— FBPINN T T I
0.025 107! & E
0.000 § ]
-0.025 r —— 2 subdomains | |
1072 F —— 4 subdomains |4
-0.050 £ i B
5 t —— 8 subdomains |
-6 -4 -2 0 2 4 6 =) [ —— 16 subdomains | |
10 FBPINN 10t -
— —— FBPINN =103 & E!
RPN —— PINN £ El
1072 W 1072 E E
8 2 F |
o 1073 =103 1074 £ -
107* 10-* E I | 1 g
0 0.5 1 1.5 2
0 20000 40000 00 05 10 15 20 : : 104
Training step FLops 1013 # iterations 10
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Two-Level FBPINN Algorithm

Coarse correction and spectral bias

—— Ground truth
—— Full solution

Questions:
= Scalability requires global transport of information.

This can be done via coarse global problem.
= What does this mean in the context of network

training?

Idea:
— Learn low frequencies using a small global network,

train high frequencies using local networks.

Two-level FBPINN network architecture:

u(80,0s,. .., 85) = € (uo (60) + Z}; wiu (6)))

Consider a simple model problem with two frequencies

v = wicos(wix) + w2 cos(wax)
u(0) = 0.

with w; =1, wp = 15.

Cf. Dolean, Heinlein, Mishra, Moseley (accepted 2023).
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Numerical Results for FBPINNs — One Versus Two Levels

. . - 0.2 T T
Consider, again, the simple boundary value problem
—u” =1 in|[0,1], 015 ]
U(O) :u(l) = 07 0.1 i
which has the solution 005 1
u(x) = tx(1 — x). , S
0 0.2 0.4 0.6 0.8 1
One-Level FBPINNSs Two-Level FBPINNs
T T
“1L 4 1L A
10 5 4 107! 1
[ ] [ ]
. N | 4
H —— 2 subdomains |4 N --- 2 subdomains ||
1072 ¢ —— 4 subdomains || 1072 5 Y --- 4 subdomains |4
5 F ~—— 8 subdomains | 5 f: \“\ \\\ -~~~ 8 subdomains ||
=] [ —— 16 subdomains || = Fio A --- 16 subdomains |-
< < v
2 -3 L ] o 1077
| 1 1074
107 g E
E 1 1 1 ] L 1 1 1 1
0 0.5 1 1.5 2 0 0.5 1 1.5 2
# iterations -10* # iterations 104
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Multi-Level FBPINN Algorithm

We introduce a hierarchy of L overlapping | Q 1

domain decompositions PR CEEE SR T R e e e !
level 1 § a® |
!

S |
)
=1 7 level 2 | o - o !
and corresponding window functions w}/) with
J
(O] (1 E : D —q0onO o E
supp (wj ) C QJ- and i w;’=1lon Q. S E 9(4)I o® l 9(4)1 9(4)1 a® l n(4)l o l oo !

This yields the L-level FBPINN algorithm:

L-level network architecture Loss functlon
L NO
1 L) HDNOYAO O] (y _
u(6®,.60) = (303 uul (6 NZ ne S w0, 00) - F(x)?
I=1 i=1 xen(/)
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Multilevel FBPINNs — 2D Laplace

Let us now consider the simple two-dimensional boundary value Exact solution
problem 0.8
q 2
~Au=32(x(1-x)+y(l—y)) inQ=[0,1,
u=20 on 09,
0.4
which has the solution
0.2
u(x,y) =16 (x(1 - x)y(1 - y)).
X 0.0
\ —— FBPINN 1 levels — FBPINN 1.1 overlap \ — PINN 3 layers 32 hidden units
1071 4 —— FBPINN 2 levels 1071 4 —— FBPINN 1.5 overlap 1071 4 —— FBPINN 2 hidden units
FBPINN 3 levels FBPINN 1.9 overlap —— FBPINN 4 hidden units
FBPINN 2.3 overlap FBPINN 8 hidden units
10-2 4 10-2 4 —— FBPINN 2.7 overlap 10-2 4 FBPINN 16 hidden units
] ] &
° ° k]
I I ﬁ
i I L
RS \ " ]
- - -
1074 § ,_\/ 1074 § 1074 §
0 2500 5000 7500 10000 12500 15000 0 2500 5000 7500 10000 12500 15000 0 2500 5000 7500 10000 12500 15000
Training step Training step Training step
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Multi-Level FBPINNSs for a Multi-Frequency Problem — Strong Scaling

—Au=2 Zn (wim)? sin (wirx) sin (wiTy)
=1

u=20

Strong scaling
Llevel FBPINN 2-level FBPINN ~ 3-level FBPINN

4-level FBPINN  5-level FBPINN  6-level FBPINN

FBPINN 1 levels (10, 10) points
FBPINN 2 levels (20, 20) points

H 2 FBPINN 3 levels (40, 40) poi
— , 40) points
in € [O’ 1] ) FBPINN 4 levels (80, 80) points
@ FBPINN 5 levels (160, 160) points
@ FBPINN 6 levels (320, 320) points
on 9Q. A FBPINN 1 levels, (64, 64) subdomains
A PINN 5 layers 256 hidden units
10! 4
w 1004
L
ﬁ
U
&
—_
= 10714
1024
T T T T T T T
4] 5000 10000 15000 20000 25000 30000
Training step

NVIDIA/HLRS SciML GPU Bootcamp



Multi-Level FBPINNSs for a Multi-Frequency Problem — Strong Scaling

FBPINN 1 levels (10, 10) points
n > P FBPINN 2 levels (20, 20) points
—AU =2 § (wiﬂ-) sin (w,-7rx) sin (wiﬂ-y) in Q — [O, 1] , FBPINN 3 levels (40, 40) points
i=1 FBPINN 4 |evels (80, 80) points
FBPINN 5 levels (160, 160) points
FBPINN 6 levels (320, 320) points
FBPINN 1 levels, (64, 64) subdomains
PINN 5 layers 256 hidden units

n =0 on 0f.

>roe

Weak scaling
I-level FBPINN 2-level FBPINN ~ 3-level FBPINN

1071

4-level FBPINN  5-level FBPINN  6-level FBPINN

1072 §

L1 test loss

1073

0 5000 10000 15000 20000 25000 30000
Training step
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Surrogate models for
computational fluid dynamics
simulations




Computational Fluid Dynamics (CFD) Simulations are Time Consuming

In Giese, Heinlein, Klawonn, Knepper, Sonnabend (2019), a benchmark for comparing MRI
measurements and CFD simulations of hemodynamics in intracranial aneurysms was proposed.

3D printed geometry Outflow 3D printed geometry Outflow
Inflow Inflow

To obtain accurate simulation results, a simulation with ~ 10 m d.o.f.s has been carried out. On
0O(100) MPI ranks, the computation of a steady state took O(1) h on CHEOPS supercomputer at UoC.

Slice position MRI

-~ ® @
L.
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Computational Fluid Dynamics (CFD) Simulations are Time Consuming

In Giese, Heinlein, Klawonn, Knepper, Sonnabend (2019), a benchmark for comparing MRI
measurements and CFD simulations of hemodynamics in intracranial aneurysms was proposed.

3D printed geometry Outflow 3D printed geometry Outflow

Inflow Inflow

To obtain accurate simulation results, a simulation with ~ 10 m d.o.f.s has been carried out. On
0O(100) MPI ranks, the computation of a steady state took O(1) h on CHEOPS supercomputer at UoC.

Slice position MRI CFD

300

200

What interested in an
accurate prediction of the whole flow field

but only in the qualitative flow pattern,

if we are not

— 100

velocity in cm/s

00
18.0

the wall shear stresses (rupture), or the

— 120
maximum velocity in a certain region

(blood clotting)?

— 6.0

L.

velocity in cm/s
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Operator Learning and Surrogate Modeling

Our approach is inspired by the work Guo, Li, lorio (2016), in which convolutional neural
networks (CNNs) are employed to predict the flow in channel with an obstacle.

In particular, we use a pixel image of the geometry as input and predict an image of the
resulting stationary flow field as output:

skip connections

bottleneck

encoder decoder

(scometry) (predietion)
Other related works: E.g.
= Guo, Li, lorio (2016) = Stender, Ohlsen, Geisler, Chabchoub,
= Niekamp, Niemann, Schroder (2022) Hoffmann, Schlaefer (2022)
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Operator Learning and Surrogate Modeling

skip connections

bottleneck

decoder

input output
(geometry) (prediction)

We learn the nonlinear map between a representation space of the geometry and the
solution space of the stationary Navier—Stokes equations — Operator learning.

Operator learning Other operator learning approaches

Learning maps between function spaces, e.g., = DeepOnet: Lu, Jin, and Karniadakis. (arXiv
preprint 2019).
= Neural operators: Kovachki, Li, Liu,
solution of a BVP. Azizzadenesheli, Bhattacharya, Stuart, and
Anandkumar (arXiv preprint 2021).

= between the right-hand side and the
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Model Problem — Flow Around an Obstacle in Two Dimensions

We propose a simple model problem to investigate predictions of a steady flow in a channel with an
obstacle; this setup is also inspired by Guo, Li, lorio (2016).

No-slip boundary
condition at the
side walls

Polygonal obstacle

Do-nothing outflow
% —pn=0

Constant inflow
u=23m/s

6m
Data: randomly generated geometries (star-shaped polygons with 3, 4, 5, 6, and 12 edges)

type | (50 k configurations) type Il (50 k configurations) type IIl

(transfer learning; cf. Eichinger,
90 k training data & 10k test data Heinlein, Klawonn (2022))
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Computation of the Flow Data Using OpenFOAM®

We solve the steady Navier—Stokes equations Input data
A_‘—l—( V)_‘—i—v 0in Q Binary
—vAL+ (u-V)d =0in Q,
P Q %
V-u=0inQ, ? &
= A . . 256 px
where U and p are the velocity and pressure fields and v is . . .
. . . . SDF (Signed Distance Function)
the viscosity. Furthermore, we prescribe the previously @ == 5
described boundary conditions. : g
Software pipeline 256 px

1. Define the boundary of the polygonal obstacle and

. Output data
create the corresponding STL (standard

triangulation language) file. - = )
2. Generate a hexahedral compute grid “ H §'
(snappyHexMesh). e -
3. Run the CFD simulation (simpleFoam). uy
4. Interpolate geometry information and flow field :%?D o =3
onto a pixel grid. e maas £ &
5. Train the CNN. ”2'5'épx
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Comparison CFD Vs NN (Relative Error 2 %)

u, CFD u, CNN u, ERR

U

==
=]

u, CFD u, CNN u, ERR

Cf. Eichinger, Heinlein, Klawonn (2021, 2022)
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Comparison CFD Vs NN (Relative Error 14 %)

u, CFD u, CNN u, ERR
e

u, CFD

Cf. Eichinger, Heinlein, Klawonn (2021, 2022)
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Comparison CFD Vs NN (Relative Error 31 %)

u, CFD u, CNN u, ERR

—— — 6

5

4

3

— 2

1

o 4 :
-1

u, ERR

Cf. Eichinger, Heinlein, Klawonn (2021, 2022)
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)

First Results (

We compare the relative error (RE) W averaged over all non-obstacle pixels and all validation data
configurations. Furthermore: MSE = mean squared error; MAE = mean absolute error.
Bottleneck CNN U-Net (Ronneberger,
(Guo, Li, lorio (2016)) Fischer, Brox (2015))

input ‘ # dec. ‘ loss total ‘ type | ‘ type Il total ‘ type | ‘ type Il
MSE 61.16 % | 110.46 % | 11.86 % || 17.04% | 29.42% | 4.66 %

1 MSE + RE 3.97% 331%| 4.63% || 2.67%| 2.11% | 3.23%

MAE 25.19% | 41.52% | 8.86% || 9.10%|13.89% | 4.32%

SDF MAE + RE 4.45% 384%| 5.05%| 248%| 1.87%|3.10%
MSE 49.82% | 89.12% | 10.51% || 13.01% | 21.59% | 4.42%

5 MSE+RE || 3.85% | 3.05% | 464% || 2.43% | 1.78% | 3.23%

MAE 4523% | 81.38% | 9.08% || 5.47% | 7.06% | 3.89%

MAE + RE 4.33% 374% | 491% | 257% | 1.98% | 3.17%

MSE 49.78% | 88.28% | 11.28% || 27.15% | 49.15% | 5.15%

1 MSE +RE || 10.12% | 11.44% | 8.80% || 549% | 6.25% | 4.74%

MAE 39.16% | 64.77% | 13.54 % || 15.69 % | 26.36 % | 5.02%

Binary MAE + RE || 10.61% | 12.34% | 8.87% || 4.48% | 5.05% | 3.90 %
MSE 51.34% | 91.20% | 11.48% || 24.00% | 43.14% | 4.85%

5 MSE + RE || 10.03% | 11.37% | 8.69% || 556% | 6.79% | 4.33%

MAE 37.16% | 62.01% |12.32% || 21.54 % | 38.12% | 4.96 %

MAE+RE || 9.53% | 10.91% | 8.15% || 6.04% | 7.88% | 4.20%
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Generalization Properties ( )

We test the generalization properties of our previously trained U-Net. In particular, we predict the flow for
new geometries of Type | and Type II; 1000 geometries each (500 Type | & 500 Type II).

# polygon SDF input Binary input

edges total ‘ type | ‘ type Il total ‘ type | ‘ type Il
7 271% | 1.89% | 3.53% 4.39 % 4.61% | 4.16%
8 2.82% | 1.98% | 3.65% 4.67 % 4.89% | 4.44%
10 321% | 2.32% | 4.10% 5.23% 551% | 4.94%
15 401% | 3.16% | 4.86% 7.76 % 7.85% | 6.66%

20 || 5.08% | 4.22% | 593% || 9.70% | 10.43% | 8.97%
ux ERR

O P N WHR OHNWAAUUTO
—

|
-

-2
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Generalization Issues — Type Ill Geometry (Relative Error 158 %)

u, CFD u, CNN uX ERR

7 — "‘ 8
6
4
2
0
-2
6
J .
2
0
-2

u, CFD u, CNN u, ERR

Cf. Eichinger, Heinlein, Klawonn (2022)
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Transfer Learning — Type Ill Geometries

The best model (U-Net, one decoder, MAE+RE loss) trained on type | and type Il geometries
performs poorly on 2500 type Il geometries:

SDF Input | binary Input
type Il | 22985.89 % 4134.69 %

We compare the following approaches to generalize to type Ill geometries:
= Approach 1: Train a new model from scratch on type Il geometries (2500 training + 2500
validation data)
= Approach 2: Train the previous model on type Ill geometries
= Approach 3: Train the previous model on a data set consisting of the old data (type | & type Il)

and type Ill data

type | & Il type Il
learning # training
approach epochs SDF input | binary input || SDF input | binary input
1 100 - - 98.02 % 111.75%
2 100 208.02% 105.43% 7.18% 11.81%
3 3 3.33% 7.06 % 4.94% 11.28 %

Neural networks forget if data is removed from the training data. However, new geometries (type
I1l: symmetric to Type |) can be learned quickly if they are added to the existing training data.
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Computing Times

Avg. Runtime per Case
(Serial)
- Create STL 0.15s
ata: snappyHexMesh 37s
simpleFoam 13s
‘ Total Time ‘ ~ 50s ‘
Bottleneck CNN U-Net
. # decoders 1 ‘ 2 1 2
Training:
# parameters || ~ 47Tm | ~85m || ~34m | =~ 53.5m
time/epoch 180s 245s 1955 270s

| CFD (CPU) | NN (CPU) | NN (GPU) |
Avg. Time || 50s | 0.092s |  0.0054s |

= Flow predictions using neural networks may be less accurate and the training phase expensive, but
the flow prediction is ~ 5 - 10°> — 10* times faster.

Comparison CFD Vs NN: ‘

CPU: AMD Threadripper 2950X (8 x 3.8 Ghz), 32GB RAM; GPU: GeForce RTX 2080Ti
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U-Net Revisited & Action of a Discrete Convolution

Skip Connections

Convolution

The action of a convolutional layer corresponds to
going over the image with a filter (matrix):

d11 d12 413

a1 d2 a3

431 d32 as3
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U-Net Revisited & Action of a Discrete Convolution

Skip Connections

Convolution

The action of a convolutional layer corresponds to
going over the image with a filter (matrix):

d11 d12 413

a1 d2 a3

431 d32 as3
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Unsupervised Learning Approach — PDE Loss Using Finite Differences

Minimization of the mean squared residual
of the Navier-Stokes equations

2 : Finom (UNN; PNN)
L,NN,,,NN #plxe|S Fnass (unn, PN

pixels

where uny and pyn are the output images of
our CNN and

From(u,p) := —vAl+ (u-V)i+ Vp,

Finass(u, p) == V - u.
We use a finite difference discretization on
the output pixel image by defining filters on
the last layer of the CNN-based on the
stencils:

H Fmom(uNN,PNN)

>> 0
Frass (UnN, PNN)

From (UNN;, PNN)
Frass (UnN, PNN)

Cf. Grimm, Heinlein, Klawonn
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Physics-Informed Approach & Boundary Conditions

The PDE loss can be minimized without using simulation results as training data.

— On a single geometry, this training of the neural network just corresponds to an
unconventional way of solving the Navier-Stokes equations using finite differences.

Boundary conditions

= Computing the correct

solution requires

- enforcing the correct
| boundary conditions.

= Therefore, we

additionally encode
flags for the different

boundary conditions

« Interior Nodes «  No-Slip Nodes  ---- Original Boundaries in the input image.
« Inflow Nodes «  Outflow Nodes
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Physics-Informed Approach — Single Geometry

u CFD u CNN u ERR

p CFD p CNN p ERR
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Physics-Informed Approach — Single Geometry

u CFD u CNN u ERR

p CFD p CNN p ERR

= We can solve the boundary value problem using a neural network. Let us briefly
discuss why, for a single geometry, this is not an efficient solver.
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Convergence Comparison — CNN Versus FDM

Solve
—Au="f
using
= classical finite = GD: gradient descent = SE: Ax =b
q . 2
differences = CG: conjugate = NE: ||Ax — b|
= ML: CNN gradient method
2 [l ]
[l el e
4 10° & =
10 10~ |- | E 3
1071 ¢ =
100 - 5l i § 3
10 102} ]
_ 1041 ]
108 oo v v v v vl vl vl vl 18 b el el s sl el e E I
10° 10t 10* 10® 10* 10° 100 10' 10%* 10 10* 10° 100 10' 10% 10 10* 10°

iterations

\ — GD-SE— CG-SE - GD-NE — CG-NE —— ML-GD —— ML-Adam \
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Convergence Comparison — CNN Versus FDM

1.0 0.0 . 1.0 0.0 0. 1.0 0.0 0. 1.0 0.0 0. 1.0 0.0

le-4

0 5e-5 0 5e-4 le-3 -2e-4 Ole4 -0.2

CG-SE GD-SE CG-NE GD-NE ML-GD ML-Adam

The results are in alignment with the spectral bias of neural networks. The neural network
approximations yield a low error norm compared with the residual (MSE loss).

Ae=Alu*—u)=b—-Au=r

Cf. Grimm, Heinlein, Klawonn (submitted 2022).
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Convergence Comparison — CNN Versus FDM

1.0 0.0 . 1.0 0.0 0. 1.0 0.0 0. 1.0 0.0 0. 1.0 0.0

le-4

0 5e-5 0 5e-4 le-3 -2e-4 Ole4 -0.2

CG-SE GD-SE CG-NE GD-NE ML-GD ML-Adam

The results are in alignment with the spectral bias of neural networks. The neural network
approximations yield a low error norm compared with the residual (MSE loss).

Ae=Alu*—u)=b—-Au=r

Cf. Grimm, Heinlein, Klawonn (submitted 2022). — Next: surrogate model for multiple geometries
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Results on ~ 5000 Type Il Geometries

training error Nuwn—ull2 | llpan—pll2 mean residual # epochs
data llull2 Pli2 momentum ‘ mass trained
train. 2.07% | 10.98% | 1.1-1071| 1.4.100
1 0,
% val. 448% | 1520%| 1.6-101| 1.7-10° 500
° train. 1.93% 8.45% | 9.1-1072| 1.2-100
Q 2 0,
8 B val. 3.49% | 10.70%| 1.2-10"!| 1.4.10° 500
T A —2 0
8 o train. 1.48% 8.75% | 9.0-10 1.1-10
3 S val. 2.70% | 10.09%| 1.1-107'| 1.2.10° 500
train. 1.43% 7.30%| 1.0-10~1| 1.5-10°
0,
T val. 252% | 8.67%| 1.2-107!| 1.5-10° 500
train. 5.35% | 12.95% | 3.5-1072|7.8-102
109 5000
3 % val 6.72% | 15.39% | 6.7-1072|2.0-10"!
g train. 5.03% | 12.26%| 3.2-1072|7.3-102
b 2 0,
£ %yl 5.78% | 13.38%| 5.3-1072|1.4-10"1 5000
T . 0, ) —2 —2
@ . train. 5.81% | 12.92% | 3.9-1072[9.3-10
i 50% val. 5.84% | 12.73%| 4.8-1072|1.2-107! 5000
s 5% train. 5.03% | 11.63%| 3.2-10 2|7.7-10 2 5000
° val. 5.18% | 11.60% | 4.2-10-2|1.1-10"1
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Results on ~ 5000 Type Il Geometries

training error Nuwn—ull2 | llpan—pll2 mean residual # epochs
data llull2 Pli2 momentum ‘ mass trained
train. 2.07% | 10.98% | 1.1-1071| 1.4.100
D% val. 448% | 1520%| 1.6-101| 1.7-10° 500
° train. 1.93% 8.45% | 9.1-1072| 1.2-100
g e val. 3.49% | 10.70%| 1.2-1071| 1.4-100 500
T A —2 0
8 o train. 1.48% 8.75% | 9.0-10 1.1-10
3 S val. 2.70% | 10.09%| 1.1-107'| 1.2.10° 500
train. 1.43% 7.30%| 1.0-10~1| 1.5-10°
0,
T val. 252% | 867%| 12.-107!'| 1.5-10° 500
train. 5.35% | 12.95% | 3.5-1072|7.8-102
0,
3 0% |yl 6.72% | 15.39% | 6.7-1072|2.0-10"! 2000
g train. 5.03% | 12.26%| 3.2-1072|7.3-102
b 2 0,
£ %yl 5.78% | 13.38%| 5.3-1072|1.4-10"1 5000
P . train. 5.81% | 12.92%| 3.9-1072[9.3-1072
i 50% val. 5.84% | 12.73%| 4.8-1072|1.2-107! 5000
£ . 0, 0, —2 —2
train. } 11. 2.1 77-1
= 75% rain 5.03% 63% | 3 072 071 5000
val. 5.18% | 11.60% | 4.2-102|1.1-10

— The results for the physics-informed approach are comparable to the data-based approach; the errors are
slightly higher. However, no reference data at all is needed for the training.
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Generalization

Now, consider an obstacle which is closer to the wall (~ 0.4 m) than the training data (> 0.75m).

Supervised approach

llunw — ull2
flull2

lpww — pllz _ 570,
llpll2

=23%

Unsupervised approach

llumww = ull2 _ 4 0,
llull2

lpww =Pl _ 570,
lIpll2

A. Heinlein (TU Delft)

Target Prediction Error
2 4 4 4
%3
K=}
5] 2 2 2
0 0 0
20 - 20 20
o . 15 a 15 | 15
2 - 10 ~ 10 10
0 5 5 5}
<4 0 0 0
& -5 -5 i -5
-10 -10 -10
Target Prediction Error
z 4 4 4
[%3
o
g 2 2 2
0 0 Ho
- 20 . 20 20
) 15 N 15| r 15
> B 10 10 10
2 5 5 5
v 0 0 0
& -5 -5 -5
-10 =1'0] -10
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Generalization

Now, consider an obstacle which is closer to the wall (~ 0.4 m) than the training data (> 0.75m).

Target Prediction ELror
Supervised approach z 4 4 4
i 2 2 2
— 0 0 0
lluww = ull2 _ 5o, i
el 1 B o . 2 - 2
llpvn — pll2 2 \ 5 \ o 1o
S =31% 8 0 0 o
llpll2 = 3 o i:io
Prediction Error
Unsupervised approach 2 4 4
§ 2 2
lluww —ull2 o 0 lo
flull2 - 1% 20 20 ] 20
: 5 ) i =
lpvn — pll2 Z 5 5 3
—_— " =27% 4 0 0 0
||P||2 = :51’0 :io :fl’o

— The unsupervised approach generalizes slightly better, and in particular, the prediction is
smoother and misses unphysical artifacts.
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Generalization With Respect to the Inflow Velocity

. . o4 .
Sos] | B |[[500| MRy 308 Sos

5 Ly 5 5 5 |
0.6 i 0.6 0.6 061 |
20 e : gl | sl
§04 . 1-i-..'|" §04 ¥ g 04 . 041 |

0.2 | 0.2 | 4 02| | i Hﬁ 02 : = a I7
o 1 2 - 3 4 5 o 1 2 3 4 5 00 1 2 3 4 5 o ! 2 3 4 5
inflow velocity inflow velocity inflow velocity inflow velocity
12 1 12 12 12
1.0 w 1.0 1.0 1.0
s # s s M s
508 1 - 508 gl || 508 1 508
E 0.6 IE E 0.6 -‘ﬁ #. E 0.6 L‘ E 0.6 E
g 04 N g 04 n g 04 a g 04 | 1
ol .~ | ol EEE | R S 0
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
inflow velocity inflow velocity inflow velocity inflow velocity
‘ order # data range inflow vel. | [0.5,1.0] [1.0,2.0] [2.0,3.0] [3.0,4.0] [4.0,5.0] ‘
[3.0,3.0] 555%  48.1%  311%  174%  615%
5 1000 [2.0,3.0] 89.3% 57.4% 4.0% 15.5% 59.1 %
[1.0,3.0] 40.2% 3.8% 43% 71%  20.4%
[1.0,4.0] 313%  40%  43% 5.8% 7.7%
[3.0,3.0] 186.8 % 87.1% 40.5% 36.9% 70.6 %
5 4500 [2.0,3.0] 78.4% 44.3% 3.2% 16.1% 68.2%
[1.0,3.0] 38.7% 2.9% 3.4% 6.7%  185%
[1.0,4.0] 27.7% 3.1% 3.4% 4.7% 72%
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Aneurysm

Geometries

Training: 500 geometries

Relative [2-error on the validation data set in u: 4.9%, in p: 9.5%.

u: 3.3%,

p: 7.4%

Target Prediction Error
0.10 0.10 0.10
0.08 0.08 0.08
2
3 0.06 0.06 0.06
o}
> 0.04 0.04 0.04
.02 .02 0.02
.00 .00 .00
0.012 0.012 0.012
.010 10.010 0.010
[T 0.008 | 0.008 0.008
2 0.006 .006 0.006
a
o/ .004 | .004 .004
4 0.002
f0.000
-0.002

u: 13.2%,

Validation: ~ 1200 geometries

p: 35.1%

Target Prediction Error

0.100 0.100

2 0075 0075

S

K3

] 0.050 0.050
0.025 0.025
0.000 ~0.000
0012 0.012
0.010 0.010

of = 0008 | _ 0.008

H 0.006 0.006

b 0.004 0.004

&l 0002 | 0.002
0.000 0.000
-0.002 ~0.002

4
A
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Summary

Scientific machine learning
= The field of scientific machine learning (SciML) deals with the combination of
scientific computing and machine learning techniques; physics-informed machine
learning models allow for the combination of physical models and data.

Finite basis physics-informed neural networks
= Schwarz domain decomposition methods can help to improve the performance of
PINNs, especially for (but not restricted to) large domains and/or multiscale problems.

Surrogate models
= CNNis yield an operator learning approach for predicting fluid flow inside varying
computational domains; the model can be trained using data and/or physics.

Acknowledgements
= The Helmholtz School for Data Science in Life, Earth and Energy (HDS-LEE)

Thank you for your attention!



	Physics-informed machine learning
	Domain decomposition-based network architectures for physics-informed neural networks [2mm] Based on joint work with  [1.5mm] Victorita Dolean (University of Strathclyde, University Côte d'Azur)   Ben Moseley and Siddhartha Mishra (ETH Zürich) 
	Surrogate models for computational fluid dynamics simulations  [2mm] Based on joint work with   Mattias Eichinger, Viktor Grimm, and Axel Klawonn (University of Cologne) 
	Appendix

