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Solving A Model Problem

a(x)=1 heterogeneous a(x)

Consider a diffusion model problem:
—V - (a(x)Va(x)) = f in Q=[0,1],
w=0 ondQ.

Discretization using finite elements yields a
sparse linear system of equations

Ku="f.

Alexander Heinlein (TU Delft)

Direct solvers

For fine meshes, solving the system using a direct
solver is not feasible due to superlinear
complexity and memory cost.

Iterative solvers

Iterative solvers are efficient for solving sparse
linear systems of equations, however, the
convergence rate generally depends on the
condition number x (A). It deteriorates, e.g., for

= fine meshes, that is, small element sizes h

maxy a(x)

= |arge contrasts miny ()
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Solving A Model Problem

Direct solvers

For fine meshes, solving the system using a direct
solver is not feasible due to superlinear
complexity and memory cost.

Iterative solvers

=1 heterogeneous . o .
o) (O EOS P Iterative solvers are efficient for solving sparse
Consider a diffusion model problem: linear systems of equations, however, the
—V - (a(x)Vu(x)) = f in Q=] 1]27 convergence rate generally depends on the
condition number x (A). It deteriorates, e.g., for
w=0 ondQ. (4) 5
Discretization using finite elements yields a = fine meshes, that is, small element sizes h
sparse linear system of equations = large contrasts ':I’:X—g((:))
Ku=f.

= We introduce a preconditioner M~! ~ A~! to improve the condition number:

M tAu= M"1f
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Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner

Overlap 6 = 1h Solution of local problem

Based on an overlapping domain decomposition, we
define a one-level Schwarz operator

N
=il _ Te—1
Mod K = _ RTKTIRIK,

where R; and R,.T are restriction and prolongation
operators corresponding to Q/, and K := R,-KR,.T.

Condition number estimate:
1
=i
K (Moe K) < C (1 + %)

with subdomain size H and overlap width 9.

Alexander Heinlein (TU Delft)

Lagrangian coarse space

Coarse triangulation Coarse solution

The two-level overlapping Schwarz operator reads

N

My, K= oK, 'oTK + E . RTK'RK,
i=

coarse level — global first level — local

where ® contains the coarse basis functions and

Ky := &7 K®; cf., e.g., Toselli, Widlund (2005).

The construction of a Lagrangian coarse basis requires
a coarse triangulation.

Condition number estimate:
H
=il
K (Mog,K) < C (1 + E)
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Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner Lagrangian coarse space

Coarse triangulation Coarse solution

Overlap 6 = 1h Solution of local problem

T T
—=—Mgg,, 8 =1h

Diffusion model problem in two dimensions,

H/h =100
400 | _ g pmrsl s =2n 0
—=— Mgg,, §=1h &

-B- Mgl,, 6=2h

200

# iterations

h

| | | |
400 600 800 1,000
# subdomains (= # MPI ranks)
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FROSch (Fast and Robust Overlapping Schwarz) Framework in Trilinos

Software

= Object-oriented C++ domain decomposition solver framework with
MPI-based distributed memory parallelization

= Part of TRILINOS with support for both parallel linear algebra packages
EPETRA and TPETRA

= Node-level parallelization and performance portability on CPU and GPU
architectures through KOKkkoS and KOKKOSKERNELS

= Accessible through unified TRILINOS solver interface STRATIMIKOS

Methodology

= Parallel scalable multi-level Schwarz domain decomposition
preconditioners

= Algebraic construction based on the parallel distributed system matrix

= Extension-based coarse spaces

Team (active)
= Alexander Heinlein (TU Delft) = Axel Klawonn (Uni Cologne)
= Siva Rajamanickam (Sandia) = Oliver Rheinbach (TUBAF)
= Friederike Rover (TUBAF) = Lea SaBmannshausen (Uni Cologne)
= Ichitaro Yamazaki (Sandia)
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Algorithmic Framework for FROSch Overlapping Domain Decompositions

Overlapping domain decomposition

In FROSch, the overlapping subdomains f, ..., Q) are constructed by recursively adding
layers of elements to the nonoverlapping subdomains; this can be performed based on the

sparsity pattern of K.

Nonoverlapping DD
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Overlapping domain decomposition

In FROSch, the overlapping subdomains f, ..., Q) are constructed by recursively adding
layers of elements to the nonoverlapping subdomains; this can be performed based on the

sparsity pattern of K.
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Algorithmic Framework for FROSch Overlapping Domain Decompositions

Overlapping domain decomposition

In FROSch, the overlapping subdomains f, ..., Q) are constructed by recursively adding
layers of elements to the nonoverlapping subdomains; this can be performed based on the

sparsity pattern of K.

Nonoverlapping DD Overlap § = 1h Overlap § = 2h

Computation of the overlapping matrices

The overlapping matrices
K; = RKR"

can easily be extracted from K since R; is just a global-to-local index mapping.
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Algorithmic Framework for FROSch Coarse Spaces

1. Identification interface components

K: =l

Identification from parallel distribution of matrix:
distributed map  overlapping map

repeated map

i

1l l

interface comp.

Alexander Heinlein (TU Delft)
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Algorithmic Framework for FROSch Coarse Spaces

2. Interface partition of unity (IPOU)

vertex & edge functions vertex functions

Based on the interface components,
ﬁ construct an interface partition of

= B unity:

£ + +
) 1 I mi=1lonl
; , E ;
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Algorithmic Framework for FROSch Coarse Spaces

3. Interface basis

null space basis
(e.g., linear elasticity: translations,
linearized rotation(s))

The interface values of the basis of the coarse space is
obtained by multiplication with the null space.

Alexander Heinlein (TU Delft) ICIAM 2023 Tokyo




Algorithmic Framework for FROSch Coarse Spaces

@
bP b +|$ b +|ﬁ ‘
e A R
R 5 e 6—o—0]

4. Extension into the interior
edge basis function vertex basis function

The values in the interior of the subdomains are
computed via the extension operator:

o % _ K, 'K or
Co|or| Or '

(For elliptic problems: energy-minimizing extension)
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Algorithmic Framework for FROSch Coarse Spaces

1. Identification interface components 2. Interface partition of unity (IPOU)
vertex & edge functions vertex functions

Identification from parallel distribution of matrix:

distributed map overlapping map repeated map interface comp. Beoed] e Uhe (e bee Copaiais.
>—4o >—¢ >—¢

i:j:i:._‘ m; i:i:i:,_. construct an interface partition of

‘ - unity: —

E mi=1lonTl ‘
i
3. Interface basis 4. Extension into the interior
null space basis edge basis function vertex basis function

(e.g., linear elasticity: translations,
linearized rotation(s)) )
_ - Mt
-. The values in the interior of the subdomains are

computed via the extension operator:

o [m,} [ K, lKTqﬂ
. . . ) (0]
The interface values of the basis of the coarse space is r J
obtained by multiplication with the null space. (For elliptic problems: energy-minimizing extension)
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Examples of FROSch Coarse Spaces

GDSW (Generalized Dryja—Smith—Widlund) RGDSW (Reduced dimension GDSW)

NN
N

= Dohrmann, Klawonn, Widlund (2008) = Dohrmann, Widlund (2017)
= Dohrmann, Widlund (2009, 2010, 2012) = H., Klawonn, Knepper, Rheinbach, Widlund (2022)

MsFEM (Multiscale Finite Element Method) Q1 Lagrangian / piecewise bilinear

= Hou (1997), Efendiev and Hou (2009) Piecewise linear interface partition of unity functions

* Buck, lliev, and Andri (2013) and a structured domain decomposition.
= H., Klawonn, Knepper, Rheinbach (2018)
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Examples of FROSch Coarse Spaces

GDSW (Generalized Dryja—Smith—Widlund)

NN

= Dohrmann, Klawonn, Widlund (2008)
= Dohrmann, Widlund (2009, 2010, 2012)

MsFEM (Multiscale Finite Element Method)

= Hou (1997), Efendiev and Hou (2009)
= Buck, lliev, and Andra (2013)
= H., Klawonn, Knepper, Rheinbach (2018)

Alexander Heinlein (TU Delft)

RGDSW (Reduced dimension GDSW)

= Dohrmann, Widlund (2017)
= H., Klawonn, Knepper, Rheinbach, Widlund (2022)

Q1 Lagrangian / piecewise bilinear

Piecewise linear interface partition of unity functions
and a structured domain decomposition.
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Monolithic (R)GDSW Preconditioners for CFD Simulations

Consider the discrete saddle point problem

SRR

Monolithic GDSW preconditioner

We construct a monolithic GDSW preconditioner

N
—1 —1.,T T z—1
Mepsw = 045 6T + ) R AT,

Stokes flow Navier—Stokes fl
with block matrices Ao = ¢7 A, A; = R AR, and aviermotoxes Tlow
R = Q(l);,i g:) . and ¢ = |:$u,ug iu,pg:| ; Related work:
b B (D = Original work on monolithic Schwarz
Using A to compute extensions: ¢; = —ﬂ,?lﬂ,rqbr; preconditioners: Klawonn and Pavarino (1998,
cf. Heinlein, Hochmuth, Klawonn (2019, 2020). 2000)

000 025 05 om el
—

= Other publications on monolithic Schwarz
preconditioners: e.g., Hwang and Cai (2006),
Barker and Cai (2010), Wu and Cai (2014),
and the presentation Dohrmann (2010) at the
Workshop on Adaptive Finite Elements and

Dy Dpup Dy po Dp o Domain Decomposition Methods in Milan.

o0 oz 05 oz i V8 03 07
- I
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Monolithic (R)GDSW Preconditioners for CFD Simulations

Consider the discrete saddle point problem

e

Monolithic GDSW preconditioner

We construct a monolithic GDSW preconditioner
m=1

N
—1,T T 7-1
eosw = ¢4y ¢ + Z',:l R A Ri,

with block matrices Ag = ¢ A, A; = @,—J’UR,T.

Block diagonal & triangular preconditioners

Block-diagonal preconditioner:

[K—l 0 ] - {MG_SSW(K) 0

myt =
0o s 0 M3S (M)

D

Block-triangular preconditioner:

K1 0
—il
my= = _s-1BK-1 51}
- lMG_DlSW(K)l 10
_Mgs-l(MP)BM(;DSW(K) M55_1(Mp)

Alexander Heinlein (TU Delft)

|

Monolithic vs. block prec. (Stokes)

o St
450 +Diagonal = | SN
§400‘/-/‘*
§950
300
250
w
@ 200
5150W 7 \4
100
50 1=t £
% 1000 2000 3000 4000
# cores
MPI
prec. 7 64 256 1024 4096
ranks
mono time 154.7s 170.0s 175.8s 188.7s
" | effic. 100% 91% 88% 82%
trian time 309.4s 329.1s 359.8s 396.7s
€| effic. 50% 47% 43%  39%
dia time 736.7s 859.4s 966.9s 1105.0s
& | effic. 21% 18% 16%  14%

Computations performed on magnitUDE (University
Duisburg-Essen).
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Consider the discrete saddle point problem

e

Monolithic GDSW preconditioner

We construct a monolithic GDSW preconditioner
N
=i —1,T T 7—1
Mmgle, = 645 ¢ +Z,~=1 RT AR,
with block matrices Ag = ¢ A, A; = !R,-J{GQI.T.

SIMPLE block preconditioner

We employ the SIMPLE (Semi-Implicit Method for
Pressure Linked Equations) block preconditioner
I -D'B Kt 0 |.
0 al -§-Bk-! &1}’
see Patankar and Spalding (1972). Here,

= §=_BD BT, with D = diagK

=« is an under-relaxation parameter
We approximate the inverses using (R)GDSW
preconditioners.

1 _
mSIMPLE -

Alexander Heinlein (TU Delft)

Monolithic (R)GDSW Preconditioners for CFD Simulations

Monolithic vs. SIMPLE preconditioner

velocity magnitude

Steady-state Navier—Stokes equations

prec. # MPI 243 1125 15562
ranks
Monolithic setup 39.6s 57.9s 955s
RGDSW solve 57.6s 69.2s 74.9s
(FROScH) total 97.2s 127.7s 170.4s
SIMPLE setup 39.2s 38.2s 68.6s
RGDSW (TEKO | solve 86.2s 106.6s 127.4s
& FROSCcH) total 125.4s 144.8s 196.0s

Computations on Piz Daint (CSCS). Implementation in the
finite element software FEDDLib.
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Monolithic Vs. Block (R)

SW Precondi

tioners for CFD Simulations

Problem: Monolithic GDSW preconditioner
Steady-state "
Navier—Stokes -1 -1 ,T T z-1
m = oA R AT R;
equations cosw = 0o "¢+ Zi:1 A
% Computationson  SIMPLE block preconditioner
g Fritz (FAU).
z Implementation in m-1 ! -D'B K1 0
° the finite element SIMPLE — [ ol _§-1gk-1 §-1
software FEDDLIB.
P1-P1 stabilized, H/h = 20 P2-P1, H/h=9
prec. # MPI 243 1125 4608 prec. # MP1 243 1125 4608
ranks ranks
Monolithic 7 its. 57.8(5) 71.6(5) 79.4(5) Monolithic # its. 84.2(6) 100.4(5) 108.6(5)
setup 39.6s 50.9s 49.8s setup 44.2s 48.5s 49.7s
RGDSW RGDSW
(FROSCH) solve 38.2s 58.7s 71.7s (FROSCH) solve 50.0s 63.9s 88.0s
total 77.8s 109.8s 121.5s total 94.2s 112.4s 137.7s
SIMPLE | #its. |168.4(5) 196.8(5) 200.0(5)| |SIMPLE |# its. |157.5(6) 161.8(5) 169.8(5)
RGDSW setup 21.2s 32.2s 26.9s RGDSW setup 26.8s 31.7s 28.5s
(TEKO & | solve 106.2s  156.0s 175.0s (TEKO & | solve 84.8s 90.4s 111.5s
FROScH) | total 127.4s 188.2s 201.9s FROScH) | total 111.6s 122.1s 140.0s

Heinlein, Klawonn, and SaBmannshausen (in preparation)
Alexander Heinlein (TU Delft)
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FROSch Preconditioners for Land Ice Simulations

Stationary velocity problem

We use a first-order (or Blatter-Pattyn)

approximation of the Stokes equations
=V -(2ué1) = —pilgl|oxs,
=V (2ué2) = —pilgl|oys,

with ice density pj, ice surface elevation s,

FROSch preconditioners

We compute the
nonoverlapping domain
decomposition based
on the surface mesh.

gravity acceleration g, and strain rates é;
and éy; cf. Blatter (1995) and Pattyn (2003).

1 l=n
Ice viscosity modeled by Glen's law: p = %A( T) né" . For the coupled problem,

we construct a monolithic

Stationary temperature problem two-level (R)GDSW preconditioner (Heinlein,
The enthalpy equation reads = w w w w Hochmuth, Klawonn (2019, 20[30))
—il _ —il 77 s
V-q(h)+u-Vh=4ué Mgpsw = A, ¢ + Zi:l R A Ri,
with the enthalpy flux ‘ where the linearized system is of the form
; #Vh, for cold ice (h < hpm), Ax = |:Au CuT:| |:Xu:| _ |:;u:| .,
q(h) = #th + pwlLj(h), for temperate ice. Cry At |xT rT
Set of complex boundary conditions: Dirichlet, Neumann, For single-physics problems, we employ a
Robin, and Stefan boundary and coupling conditions. standard (R)GDSW preconditioner.
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Antarctica Velocity Problem — Reuse Strategies (Strong Scaling)

We employ different reuse strategies to reduce the setup costs

of the two-level preconditioner T
1.0e+04

1000
- 100
~ 10

1
jo
1.0e-02

N
M(;[])-SW = (DKO_I(DT + Zi:l RiTKiilRi'

restriction operators + coarse basis + coarse matrix
reuse + symbolic fact. (1st level) | 4+ symbolic fact. (2nd level)
MPI avg. its avg. avg. avg. its avg. avg. its avg. its avg. avg.
ranks (nl its) setup solve (nl its) setup solve (nl its) setup solve
512 | 41.9 (11) 25.10s 12.29s | 42,6 (11) 14.99s 12.50s | 46.7 (11) 14.94s 13.81s

1024 | 43.3 (11) 9.18s 5.85s | 445 (11) 5.65s 6.08s | 49.2 (11) 5.75s 6.78s
2048 | 41.4 (11) 4.15s 2.63s | 42.7 (11) 3.11s 2.79s | 47.7 (11) 2.92s 3.10s
4006 | 41.2 (11) 1.66s 1.49s | 42,5 (11) 1.07s 1.54s | 48.9 (11) 0.95s 1.75s
8192 | 40.2 (11) 1.26s 1.06s | 42.0 (11) 1.20s 1.16s | 50.1 (11) 0.63s 1.35s
Problem: Velocity Mesh: Antarctica Size: 35.3m degrees Coarse space: RGDSW

4 km hor. resolution of freedom

20 vert. layers (P1 FE)

Cf. Heinlein, Perego, Rajamanickam (2022)
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Greenland Coupled Problem — Coarse Spaces

fully coupled extensions

no reuse reuse coarse basis
MPI avg. its avg. avg. avg. its avg. avg.
ranks | dim Vg (nlits) setup  solve (nlits)  setup  solve
256 1400 || 100.1 (27) 4.10s 6.40s | 18.5 (70) 2.28s 1.07s
512 2852 || 129.1 (28) 1.88s 4.20s | 24.6 (38) 1.04s 0.70s
1024 6036 || 191.2 (65) 1.21s 4.76s | 34.2 (32) 0.66s 0.70s
2048 | 12368 || 237.4 (30) 0.96s 4.06s | 37.3 (30) 0.60s 0.58s

decoupled extensions

no reuse reuse coarse basis
MPI avg. its avg. avg. avg. its avg. avg.
ranks | dim Vo (nl'its) setup  solve (nl'its)  setup  solve
256 1400 23.6 (29) 3.90s 1.32s | 21.5(34) 2.23s 1.18s
512 2852 27.5(30) 1.83s 0.78s | 26.4 (33) 1.13s 0.78s
1024 6036 30.1 (29) 1.19s 0.60s | 28.6 (43) 0.66s 0.61s
2048 | 12368 36.4 (30) 0.69s 0.56s | 31.2 (50) 0.57s 0.55s

Problem: Coupled Mesh: Greenland Size:  7.5m degrees Coarse space: RGDSW
3-30 km hor. resolution of freedom
20 vert. layers (P1 FE)
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Greenland Coupled Problem — Large Problem

2428 250 255 260 265 270 2731
| 1 I
—

decoupled fully coupled decoupled
(no reuse) (reuse coarse basis) (reuse 1st level symb. fact.
+ coarse basis)
MPI avg. its. avg. avg. avg. its avg. avg. avg. its avg. avg.
ranks (nl its) setup  solve (nl its) setup  solve (nl its) setup  solve
512 | 41.3 (36) 18.78s 4.99s | 453 (32) 11.84s 5.35s | 45.0(35) 10.53s 5.36s
1024 | 53.0 (29) 8.68s 4.22s | 47.8 (37) 5.36s 3.82s | 54.3 (32) 4.59s 4.3l1s
2048 | 62.2 (86) 4.47s 4.23s | 66.7 (38) 2.81s 4.53s | 59.1 (38) 2.32s  3.99s
4096 | 68.9 (40) 2.52s  2.86s | 79.1 (36) 1.61s 3.30s | 78.7 (38) 1.37s 3.30s
Problem: Coupled Mesh: Greenland Size: 68.6 m degrees Coarse space: RGDSW
1-10 km hor. resolution of freedom
20 vert. layers (P1 FE)

Cf. Heinlein, Perego, Rajamanickam (2022)
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Sparse Triangular Solver in KokkosKernels (Amesos2 — SuperLU/CHOLMOD)

The sparse triangular solver is an important kernel in many codes
(including FROSch) but is challenging to parallelize

= Factorization using a sparse direct solver typically leads to
triangular matrices with dense blocks called supernodes

= In supernodal triangular solvers, rows/columns with a similar
sparsity pattern are merged into a supernodal block, and the
solve is then performed block-wise

= The parallelization potential for the triangular solver is
determined by the sparsity pattern

o 05 1 15 2 25
nz = 13950798 x10*

Parallel supernode-based triangular solver:
Lower-triangular matrix — SuperLU

1. Supernode-based level-set scheduling, where all with METIS nested dissection ordering
leaf-supernodes within one level are solved in parallel

(batched kernels for hierarchical parallelism) Lovel#
Level 3
2. Partitioned inverse of the submatrix associated with each level: e
SpTRSV is transformed into a sequence of SpMVs evel 2
See Yamazaki, Rajamanickam, and Ellingwood (2020) for more details. ol 1
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Three-Dimensional Linear Elasticity — Weak Scalability

SUPERLU — weak scaling TACHO — weak scaling

102 T T T T T 10% T T T T T T
—— 42 MPI ranks / node
—8—6 GPUs & 6 MPI ranks / node
—E8— 6 GPUs & 12 MPI ranks / node
I 4 r —5— 6 GPUs & 24 MPI ranks / node
B

, &6 GPUs & 36 MPI ranks / node

~£ 6 GPUs & 42 MPI ranks / node

10 [ 10t

setup time

100 | L L | 1 1 1 100 | 1

10t — T T T T T T 10t — T T T T T T

—— 42 MPI ranks / node
—5-6 GPUs & 6 MPI ranks / node
—5— 6 GPUs & 12 MPI ranks / node
—5— 6 GPUs & 24 MPI ranks / node
~5-6 GPUs & 36 MPI ranks / node
[ [ ~5- 6 GPUs & 42 MPI ranks / node

solve time

# nodes # nodes

Computations on Summit (OLCF): 42 IBM Power9 CPU cores and 6 Yamazaki, Heinlein, Rajamanickam (2023)
NVIDIA V100 GPUs per node.
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Three-Dimensional Linear Elasticity — Weak Scalability

i e Y Sl e # nodes 1 2 4 8 16
[ # dofs 375K 750K 1.5M 3M 6M
SUPERLU solve
H CPUs 2.03 (75) 2.07 (69) 1.87 (61) 1.95 (58) 2.48 (69)
;72:7' np/gpu = 1| 1.43 (47) 1.52 (53) 2.82 (77) 2.44 (68) 2.61 (75)
/—e»// 2 1.03 (46) 1.36 (65) 1.37 (60) 1.52 (65) 1.98 (86)
g 4 0.93 (59) 0.91 (53) 0.98 (59) 1.33 (77) 1.21 (66)
/ 6 0.67 (46) 0.99 (65) 0.92 (57) 0.91 (57) 0.95 (57)
2 4 6 8 10 12 14 16 7 1.03 (75) 1.04 (69) 0.90 (61) 0.97 (58) 1.18 (69)
P speedup 2.0 2.0x 2.1x 2.0 2.1x
TACHO solve time
10! T T TACHO solve

T o /o CPUs 1.60 (75) 1.63 (69) 1.49 (61) 1.51 (58) 1.90 (69)
5~ GFU & 4 MFL s /v np/gpu = 1| 1.17 (47) 1.37 (53) 1.92 (77) 1.78 (68) 2.21 (75)
2 0.79 (46) 1.14 (65) 1.05 (60) 1.18 (65) 1.70 (86)
4 0.85 (59) 0.81 (53) 0.78 (59) 1.22 (77) 1.19 (66)
6 0.60 (46) 0.86 (65) 0.75 (57) 0.84 (57) 0.91 (57)
7 0.99 (75) 0.93 (69) 0.82 (61) 0.93 (58) 1.22 (69)
R speedup 1.6x 1.8x 1.8x 1.6x 1.6x

2 4 6 8 10 12 14 16

# nodes

Computations on Summit (OLCF): 42 IBM Power9 CPU cores and 6 Yamazaki, Heinlein, Rajamanickam (2023)

NVIDIA V100 GPUs per node.
Alexander Heinlein (TU Delft) ICIAM 2023 Tokyo




Three-Dimensional Linear Elasticity — ILU Subdomain Solver

[ ILU level 0 1 2 3]
setup
2 No 1.5 1.9 3.0 4.8
O | ND 1.6 2.6 4.4 7.4
KK(No) 1.4 15 1.8 24
2| KK(ND) 1.7 2.0 2.9 5.2
Q© | Fast(No) 1.5 1.6 2.1 3.2
Fast(ND) 1.5 1.7 2.5 45
speedup 1.0x 1.2x 1.4x 1.5x
solve
a No 2.55 (158) 3.60 (112) 5.28 (99) 6.85 (88)
G| ND 4.17 (227) 5.36 (134) 6.61 (105) 7.68 (88)
KK(No) | 3.81 (158) 4.12 (112) 4.77 (99) 5.65 (88)
S| KK(ND) | 2.89 (227) 4.27 (134) 557 (105) 6.36 (88)
O | Fast(No) | 1.14 (173) 1.11 (141) 1.26 (134) 1.43 (126)
Fast(ND) | 1.49 (227) 1.15 (137) 1.10 (109) 1.22 (100)
speedup 2.2x 3.2x 4.3x 4.8x

Computations on Summit (OLCF):
42 IBM Power9 CPU cores and 6 NVIDIA
V100 GPUs per node.

Alexander Heinlein (TU Delft)

Yamazaki, Heinlein,
Rajamanickam (2023)

ILU variants

= KOKKOSKERNELS ILU (KK)

= FASTILU (Fast); cf. Chow, Patel
(2015) and Boman, Patel, Chow,
Rajamanickam (2016)

No reordering (No) and nested dissection
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Three-Dimensional Linear Elasticity — Weak Scalability Using ILU

# nodes 1 2 4 8 16
# dofs 648 K 1.2M 2.6 M 5.2M 10.3M
setup
CPU 1.9 2.2 2.4 2.4 2.6
E KK 1.4 2.0 2.2 2.4 2.8
O | Fast 1.5 2.2 2.3 2.5 2.8
speedup 1.3x 1.0x 1.0x 1.0x 0.9x
solve
CPU 3.60 (112) 7.26 (84) 6.93 (78) 6.41 (75) 4.1 (109)
E KK 43(119) 3.9 (110) 4.8(105) 4.3 (97) 4.9 (109)
O | Fast 1.2 (154) 1.0 (133) 1.1 (130) 1.3 (117) 1.6 (131)
speedup 3.3x 3.8x 3.4x 2.5x% 2.6x
Computations on Summit (OLCF): 42 IBM Power9 CPU cores and 6 Yamazaki, Heinlein, Rajamanickam (2023)

NVIDIA V100 GPUs per node.

Alexander Heinlein (TU Delft) ICIAM 2023 Tokyo 16/16




Thank you for your attention!

= FROSCH is based on the Schwarz framework and energy-minimizing coarse spaces, which
provide numerical scalability using only algebraic information for a variety of applications
including nonlinear multi-physics problems
= For nonlinear problems,
= the reuse of components of the preconditioner and
= the speedup of the solver phase (e.g., using GPUs)

can significantly help to improve the solver performance.
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Thank you for your attention!

— Talk by Ichitaro Yamazaki on Tuesday (00911 (2/2)): Related nonlinear Schwarz methods
— Talk by Martin Lanser on Thursday (01054 (2/3)): FROSch on GPUs
— Talk by Friederike Rover on Friday (01054 (3/3)): FROSch for chemo-mechanics problems



