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Scientific Machine Learning in Computational Science and Engineering

Numerical methods
Based on physical models

+ Robust and generalizable
– Require availability of mathematical

models

Machine learning models
Driven by data

+ Do not require mathematical models
– Sensitive to data, limited extrapolation

capabilities

Scientific machine learning (SciML)
Combining the strengths and compensating the weaknesses of the individual approaches:

numerical methods improve machine learning techniques
machine learning techniques assist numerical methods
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Scientific Machine Learning as a Standalone Field

N. Baker, A. Frank, T. Bremer, A. Hagberg, Y. Kevrekidis, H. Najm,
M. Parashar, A. Patra, J. Sethian, S. Wild, K. Willcox, and S. Lee.
Workshop Report on Basic Research Needs for Scientific Machine
Learning: Core Technologies for Artificial Intelligence.
USDOE Office of Science (SC), Washington, DC (United States),
2019.

Priority Research Directions
Foundational research themes:

• Domain-awareness

• Interpretability

• Robustness

Capability research themes:

• Massive scientific data
analysis

• Machine learning-enhanced
modeling and simulation

• Intelligent automation and
decision-support for
complex systems
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Development of the Field of Scientific Machine Learning
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M. Raissi, P. Perdikaris, and G. E. Karniadakis.
Physics-informed neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations.
Journal of Computational physics, 378, 686-707. 2019.

(and the respective arXiv preprints)
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Scientific Machine Learning Examples

Many approaches in scientific machine learning have been developed in the past few years.

We
will focus on two types:

Data-driven
surrogate modeling
Replacing a
computationally
expensive numerical
simulator by a fast
data-driven model.

Physics-informed
machine learning

ML-enhanced
model discovery

Data-driven
surrogate modeling

Hybrid modeling
and simulation

. . .

Physics-informed
machine learning
Regularizing a
data-driven machine
learning model using a
physics-based model.
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Outline

1 Physics-informed machine learning

2 Domain decomposition-based training strategies for PINNs
Based on joint work with Victorita Dolean (University of Strathclyde) and Ben Moseley and Siddhartha
Mishra (ETH Zürich)

3 Surrogate models for computational fluid dynamics simulations – Data-driven
approach
Based on joint work with Mattias Eichinger and Axel Klawonn (University of Cologne)

4 Surrogate models for computational fluid dynamics simulations – GAN-based
training
Based on joint work with Mirko Kemna and Kees Vuik (TU Delft)

5 Surrogate models for computational fluid dynamics simulations –
Physics-aware approach
Based on joint work with Viktor Grimm and Axel Klawonn (University of Cologne)



Physics-informed machine
learning



Neural Networks for Solving Differential Equations

Published in IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, 1998.

Idea: Solve a general differential equation subject to boundary conditions

G(x, Ψ(x),∇Ψ(x),∇2Ψ(x)) = 0 in Ω

by solving an optimization problem

min
p

∑
xi

G(xi , Ψt(xi , p),∇Ψt(xi , p),∇2Ψt(xi), p)2

where Ψt(x, p) is a trial function, xi sampling points inside the domain Ω and p are
adjustable parameters.
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Main Features of the Method

Construction of the trial functions
The trial functions explicitly satisfy the
boundary conditions:

Ψt(x, p) = A(x) + F (x, N(x, p)),

where
• N(x, p) is a trainable feedforward

neural network with parameters p and
input x ∈ Rn and

• the functions A and F are fixed
functions, chosen such that

• A satisfies the boundary conditions,
and

• F does not contribute to the
boundary conditions.

From the conclusion of the paper:

“The success of the method can
be attributed to two factors. The
first is the employment of neural
networks that are excellent function
approximators and the second is
the form of the trial solution
that satisfies by construction the
BC’s and therefore the constrained
optimization problem becomes a
substantially simpler unconstrained
one.”
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Sketch of the Approach by Lagaris et al. (1998)
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N(x, p) Ψt
∑

G(xi , Ψt)2

boundary conditions
A(x) + F (x, N(x, p))

∇Ψ,
∇2Ψ,
. . .
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Physics-Informed Neural Networks (PINNs)

In Raissi, Perdikaris, Karniadakis (2019), the authors have revisited and modified the
approach by Lagaris et al. (1998), denoting their method as physics-informed neural
networks (PINNs). Consider the generic partial differential equation

N[u](x, t) = f (x, t), (x, t) ∈ [0, T ]× Ω ⊂ Rd .

The main novelty of PINNs is that a hybrid loss function is used for training the feedforward
neural network:

L = ωdataLdata + ωPDELPDE,

where ωdata and ωPDE are weights and

Ldata = 1
Ndata

Ndata∑
i=1

(u(xi , ti)− ui)2
,

LPDE = 1
NPDE

Ndata∑
i=1

(N[u](x, t)− f (x, t))2
.

Small data Some data Big data

Lots of physics Some physics No physics

• Known solution values can be included
in Ldata

• Initial and boundary conditions are
also included in Ldata
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Sketch of the PINN approach by Raissi et al.
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Advantages and Drawbacks of PINNs

Advantages
• “Meshfree”.
• Mostly unsupervised and work with

incomplete models (e.g., we learn only
the missing physics) and imperfect
data.

• Strong generalization properties with
small data due to embedded physics.

• High-dimensional problems (PDEs like
Black-Scholes, Allen-Cahn).

• Solve inverse and forward problems,
stationary and time-dependent,
assimilate data in the same way.

Drawbacks
• Large computational cost associated

with the training of the neural networks.
• Generally, the training process is not

robust and depends heavily on
well-chosen weights

• Convergence properties not
well-understood yet.

• Poor scaling to large domains.
• Learning high frequencies (spectral

bias) / multi-scale solutions is difficult.
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Epidemic Parameter Identification Using Physics-Informed Neural Networks

SEIR model

βSI/N κEExposed
(E)

γISusceptible
(S)

Infectious
(I)

Removed
(R)

N

We consider the system of ODEs
dS
dt

= −β
S I
N

dE
dt

= β
S I
N

− κ E

dI
dt

= κ E − γ I

dR
dt

= γ I

with initial values S(t0) ≥ 0, E(t0) ≥ 0, I(t0) ≥ 0, and
R(t0) ≥ 0 at some initial time t0. The infective period
γ and the exposed period 1/κ are given.

→ Identify the time-dependent contact rate β from
given data for S, E , and I.

Parameter identification using PINNs

t
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pt

pf

U1
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Um
p

MSEu

MSEF

∂Up
∂t

trainable parameters

fixed parameters

neural network data loss

residual loss

Training the weights W and bias b of the the neural
work and the contact rate β by minimizing the
mean-squared data error (MSDE) and the
mean-squared residual error (MSRE):

arg min
W ,b,β

(
Ldata (W , b, β)︸ ︷︷ ︸

MSDE

+LODE (W , b, β)︸ ︷︷ ︸
MSRE

)
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Epidemic Parameter Identification Using PINNS – Results

Results for synthetic data

synth data and sim data are obtained by simulating the SEIR model with synth β and learned β, respectively.

Cf. Grimm, Heinlein, Klawonn, Lanser, Weber (2022).
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Epidemic Parameter Identification Using PINNS – Results

Results for real data for COVID-19 (Germany)

real data and sim data are obtained by simulating the SEIR model with real β and learned β, respectively.

Cf. Grimm, Heinlein, Klawonn, Lanser, Weber (2022).
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Available Theoretical Results for PINNs – an Example

Mishra and Molinaro. Estimates on the generalisation error of PINNs, 2022

Estimate of the generalization error
The generalization error (or total error) satisfies

EG ≤ CPDEET + CPDEC1/p
quadN−α/p

where
• EG = EG (θ; X) := ∥u− u∗∥V (V Sobolev space, X training data set)
• ET is the training error (lp loss of the residual of the PDE)
• CPDE and Cquad constants depending on the PDE resp. the quadrature
• N number of the training points and α convergence rate of the quadrature

The devil is in the details:
“As long as the PINN is trained well, it also generalizes well”
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Scaling Issues in Neural Network Training

• Spectral bias: Neural networks prioritize learning lower frequency functions first
irrespective of their amplitude.

100 iterations 1 000 iterations 10 000 iterations 80 000 iterations
Rahaman, N., et al, On the spectral bias of neural networks. 36th International Conference

on Machine Learning, ICML (2019)

• Solving solutions on large domains and/or with multiscale features potentially requires
very large neural networks.

• Training may not sufficiently reduce the loss or take large numbers of iterations.
• Significant increase on the computational work
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When PINNs Fail to Train?
Perdikaris et al, When and why PINNs fail to train: A neural tangent kernel perspective, JCP (2022)

Neural tangent kernel (NTK) theory in a nutshell
• Write the gradient descent method at the continuous level (L is the loss function)

dθ

dt = −∇L(θ), L(θ) = ωdata
∑

i

Rdata(x i
data, θ(t))2 + ωPDE

∑
i

RPDE(x i
PDE, θ(t))2

• Residual vectors in the collocation points obey an ODE

d
dt

[
Rdata(xdata, θ(t))
RPDE(xPDE, θ(t))

]
= −

[
Kdata,data(t) Kdata,PDE(t)
KPDE,data(t) KPDE,PDE(t)

][
Rdata(xdata, θ(t))
RPDE(xPDE, θ(t))

]
• The NTK K(t) → K∗ (convergence of the expectation) for infinitely wide and shallow networks

• Spectral properties of K∗ explain the speed of training

“To provide further insight, we analyze the training dynamics of fully-connected PINNs
through the lens of their NTK and show that not only they suffer from spectral bias,
but they also exhibit a discrepancy in the convergence rate among the different loss
components contributing to the total training error”
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Domain decomposition-based
training strategies for PINNs



Domain Decomposition Methods

Images based on Heinlein, Perego, Rajamanickam (2022)

Idea
Decomposing a large global problem into
smaller local problems:

• Better robustness and scalability of
numerical solvers

• Improved computational efficiency
• Introduce parallelism

Historical remarks: The alternating
Schwarz method is the earliest domain
decomposition method (DDM), which has
been invented by H. A. Schwarz and
published in 1870:

• Schwarz used the algorithm to establish
the existence of harmonic functions
with prescribed boundary values on
regions with non-smooth boundaries.
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Machine Learning and Domain Decomposition Methods

A non-exhaustive overview:
• Machine Learning-enhanced adaptive FETI–DP (finite element tearing and interconnecting –

dual primal): Heinlein, Klawonn, Lanser, Weber (2019)
• D3M (deep domain decomposition method): Li, Tang, Wu, and Liao (2019)
• DeepDDM (deep-learning-based domain decomposition method): Li, Xiang, Xu (2020)
• Two-Level DeepDDM: Mercier, Gratton (arXiv 2021)
• cPINNs (conservative physics-informed neural networks): Jagtap, Kharazmi, and Karniadakis

(2020)
• XPINNs (extended physics-informed neural networks): Jagtap, Karniadakis (2020)
• FBPINNs (finite basis physics-informed neural networks): Moseley, Markham, and

Nissen-Meyer (arXiv 2021)

An overview of the state-of-the-art in early 2021:
A. Heinlein, A. Klawonn, M. Lanser, J. Weber.
Combining machine learning and domain decomposition methods for the solution
of partial differential equations — A review.
GAMM-Mitteilungen. 2021.
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DeepDDM (deep-learning-based domain decomposition method)
Li, Xiang, Xu. Deep domain decomposition method: Elliptic problems. Mathematical and Scientific

Machine Learning (2020)
Train local networks hs by batch stochastic gradient
descent (SGD) and transmitting only interface values to the
neighboring subdomains.
Local loss functions contain volume, boundary, and
interface jump terms:

Ls (θs ; Xs ) := LΩs (θs ; Xs ) + L∂Ωs \Γs (θs ; Xs ) + LΓs (θs ; Xs ) ,

where

LΩs (θ; Xfs ) := 1
Nfs

Nfs∑
i=1

∣∣N (hs
(

x i
fs ; θs
))

− f
(

x i
fs

)∣∣2 ,

L∂Ωs \Γs (θs ; Xgs ) := 1
Ngs

Ngs∑
i=1

∣∣B (hs
(

x i
gs ; θs

))
− g
(

x i
gs

)∣∣2 ,

LΓs (θs ; XΓs ) := 1
NΓs

NΓs∑
i=1

∣∣D (hs
(

x i
Γs ; θs

))
− D
(

hr
(

x i
Γs ; θs

))∣∣2 .

Advantages
• The outer-iteration depends on

the size overlap and the number
of subdomains

• DeepDDM can “easily” handle
PDEs with curved interfaces
and heterogeneities.

Drawbacks
• No quantitative estimates of

the convergence rate of deep
learning solving PDE.

• What is the standard to design
the best network architecture?
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DeepDDM for Helmholtz
Li, Wang, Cui, Xiang, Xu. Deep domain decomposition method: Helmholtz equation. Advances in

Applied Mathematics and Mechanics (2023)

Train local networks hs by transmitting only Robin interface
values to the neighboring subdomains.
Use of NNs with plane wave (PW) activation to account for
oscillatory nature of the solution. The loss function reads

Ls (θs ; Xs ) := LΩs (θs ; Xs ) + L∂Ωs \Γs (θs ; Xs ) + LΓs (θs ; Xs ) ,

where

LΩs (θs ; Xfs ) := 1
Nfs

Nfs∑
i=1

∣∣N (hs
(

x i
fs ; θs
))

− f
(

x i
fs

)∣∣2 ,

L∂Ωs \Γs (θs ; Xgs ) := 1
Ngs

Ngs∑
i=1

∣∣B (hs
(

x i
gs ; θs

))
− g
(

x i
gs

)∣∣2 ,

LΓs (θs ; XΓs ) := 1
NΓs

NΓs∑
i=1

∣∣∣∣∣∂hs
(

x i
gΓs

; θs
)

∂ns
+ γs hs

(
x i

Γs ; θs
)

− gs
(

x i
Γs

)∣∣∣∣∣
2

.

Advantages
• Number of outer iterations

comparable to the use of FDM
with DDM

• Competitive solution
time/iteration when the wave
number increases.

Drawbacks
• Comparison done with an

iterative Schwarz method –
what about Krylov
acceleration?

• All relies on PW activation
function – number of
parameters dependent on k.
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Two-level DeepDDM Acceleration

Mercier, Gratton, Boudier. A coarse space acceleration of DeepDDM (arXiv 2021)
Add a second level by training a coarse network hc on the
top of DeepDDM in order to achieve scalability. Loss of the
coarse network:

Lc (θc ) := LΩ (θc ) + L∂Ω (θc ) + Lf (θc ) ,

where

LΩ (θc ) := 1
Nf

Nf∑
i=1

∣∣N (hc
(

x i,c
f ; θc

))
− f
(

x i
f

)∣∣2 ,

L∂Ωs \Γs (θc ) := 1
Ng

Ng∑
i=1

∣∣B (hc
(

x i,c
g ; θc

))
− g
(

x i
g

)∣∣2 ,

LΓs (θc ) := 1
Nf ,c

Nf ,c∑
i=1

∣∣∣∣∣hc
(

x i,c
f ; θc

)
−
∑

s

Es
(

χs hs
(

x i,c
f ; θs

))∣∣∣∣∣
2

.

• χs partition of unity

• Es extension by zero operator

Ongoing work & open questions
• What is the best accuracy that

one can obtain for a given
number of subdomains?

• How does the performance
depend on the capacities of the
local and coarse problem
networks?

• How does the size of the overlap
influence the convergence?

• How does the performance
depend on how the collocation
points are distributed?
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XPINNs (extended physics-informed neural networks)
Jagtap, Karniadakis. Extended physics-informed neural networks (XPINNs): A generalized space-time

domain decomposition based deep learning framework for nonlinear partial differential equations.
Communications in Computational Physics (2020)

Ls (θs , Xs ) = ωus Lus (θs , Xus ) + ωFs LFs (θs , XFs ) + ωIs Luavg (θs , XIs )︸ ︷︷ ︸
interface condition

+ωIFq
LR (θs , XIs )︸ ︷︷ ︸

interface condition

+ additional interface conditions︸ ︷︷ ︸
optional

,

where

Lus (θs , Xus ) = 1
Nus

Nus∑
i=1

∣∣hs
(

x i,c
us ; θs

)
− u
(

x i,c
us ; θs

)∣∣2 ,

LFs (θs , XFs ) = 1
NFq

NFs∑
i=1

∣∣L (hs
(

x i
fs ; θs
))

− f
(

x i
fs

)∣∣2 ,

Luavg (θs , XIs ) =
∑
∀s+

(
1

NIs

NIs∑
i=1

∣∣hs
(

x i,c
Is

; θs
)

−
{{

hs+
(

x i,c
Is

; θs
)}}∣∣2) ,

LR (θs , XIs ) =
∑
∀s+

(
1

NIs

NIs∑
i=1

∣∣L (hs
(

x i
Is ; θs
))

− L
(

hs+
(

x i
Is ; θs
))∣∣2) .

Advantages
• Separate NN for each

subdomain

• Allows PINN to be trained in
parallel

Drawbacks
• Multiple terms in the loss

function can slow training if
the weights are not well chosen

• Do not mimic completely the
DD behavior
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A Motivation for the FBPINN Approach

The FBPINN (finite basis physics-informed neural networks) approach has been proposed in
Moseley, Markham, and Nissen-Meyer (arXiv 2021).

Solve

du
dx = cos(ωx),

u(0) = 0,

for different values of ω.

Scaling issues
• Size of the

computational domain
• Size of frequencies

(a) 321 free parameters (d) 66 433 free parameters
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Finite Basis Physics-Informed Neural Networks (FBPINNs)
In the finite basis physics informed neural network (FBPINNs) method introduced in Moseley,
Markham, and Nissen-Meyer (arXiv 2021), we solve the boundary value problem

N[u](x) = f (x), x ∈ Ω ⊂ Rd ,

Bk [u](x) = gk(x), x ∈ Γk ⊂ ∂Ω.

using neural networks, we employ the PINN approach and enforce the boundary conditions using a
constraining operator, similar to Lagaris et al. (1998).

Weak enforcement of boundary conditions
Loss function

L(θ) = ωPDELPDE + ωBCLBC,

where

LPDE(θ) = 1
NPDE

∑NPDE

i=1
(N[u](xi , θ) − f (xi ))2,

LBC(θ) = 1
NBC

∑NBC

i=1
(Bk [u](xi , θ) − gk(xi ))2.

Hard enforcement of boundary conditions
Loss function

L(θ) =
NI∑
i=1

(N[Cu](xi , θ) − f (xi ))2,

with constraining operator C, which explicitly
enforces the boundary conditions.

→ Often improves training performance
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FBPINNs – Overlapping Domain Decomposition

• Domain decomposition: Ω = ∪J
j=1Ωj

• Collocation points (global): {xi }N
i=1

• Overlapping/interior parts Ω◦
j and Ωint

j

• Local solutions uj , window functions wj

• Global solution Cu = C
∑

j,xi ∈Ωj
ωjuj

Global loss function
L(θ1, . . . , θJ ) =

1
N

∑
x∈X int

(
N[C

∑
l,x∈Xl

ωl ul ](x, θl ) − f (x)

)2

︸ ︷︷ ︸
=:L◦(θ1,...,θJ )

+ 1
N

∑
x∈X◦

(
N[C

∑
l,x∈Xl

ωl ul ](x, θl ) − f (x)

)2

︸ ︷︷ ︸
=:Lint (θ1,...,θJ )

.

Since X int
i ∩ X int

j = ∅ for i ̸= j,

Lint(θ1, . . . , θJ ) = 1
N

J∑
j=1

∑
xi ∈X int

j

(N[Cωj uj ](xi , θj ) − f (xi ))2

• The subdomains can be split into active
(trained in parallel) and inactive (fixed)

• This corresponds to classical parallel (all
active) or multiplicative (one active at a time)
Schwarz methods
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FBPINN With Flexible Scheduling

Algorithm 1: FBPINN training step
if j ∈A (Ωj is an active domain) then

Perform p iterations of gradient descent on θk
j (θk

i
where i ̸= j are kept fixed):

θk+l
j = θk+l−1

j −λ∇θjL(θk
1 , ..., θk

j−1, θk+l−1
j , θk

j+1, ..., θk
J ), l = 1, .., p.

Update the solution in the overlapping regions
(communicate with neighbours):

∀x ∈ Ω◦
j , u(x, θk+p

j )←
∑

l,x∈Ωl

ωlul(x, θk+p
l ).

end

Summary
• Communication every p

iterations (better for
overall efficiency)

• Multiplication with a
window function : a way
to restrict to the local
domain.

• The set of active domains
can be changed after the
local training is
completed.

→ We only consider parallel (all active) iterations for now.
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FBPINNs – Weak Scaling Study

8 subdomains

16 subdomains

32 subdomains

Solve, for ω = 15,
du
dx = cos(ωx), u(0) = 0.

• Fixed local network size and number of local
collocation points. Then, we increase the
number of subdomains.

• We choose all subdomains as active and test the
influence of

Observations
• Convergence get worse with an increasing

number of subdomains
• No noticeable difference depending on how often

we update, unless we update every iteration

Let us focus updating each iteration for now.
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Laplace Problem

Let us now consider the simple boundary value
problem

−∆u =1 in [0, 1],
u(0) =u(1) = 0,

which has the solution

u(x) = 1
2x(1− x).

0 0.2 0.4 0.6 0.8 1
0

5 · 10−2

0.1

0.15

0.2

x

Laplace solution

u(x) = 1
2
x(1− x)

1 level, 2 subdomains 1 level, 32 subdomains
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Weak Scaling – Effect of the Overlap

0 0.5 1 1.5 2 2.5 3

·104

10−4

10−3
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# iterations
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2 subd., overlap 25%

4 subd, overlap 10%

4 subd., overlap 25%

8 subd., overlap 10%

8 subd., overlap 25%

16 subd., overlap 10%

16 subd., overlap 25%

→ Larger overlap improves convergence.
→ No scalability with respect to increasing number of subdomains.
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Weak Scaling – Effect of the Overlap
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Two-Level FBPINN Algorithm

Coarse correction and spectral bias
Questions:

• Scalability requires global transport of information.
In domain decomposition, this is typically done using
a coarse global problem.

• What does this mean in the context of network
training?

Idea:
→ Learn low frequencies using a small global network,

train high frequencies using local networks.
Investigate this for a simple model problem with two
frequencies{ du

dx = ω1 cos(ω1x) + ω2 cos(ω2x)
u(0) = 0.

with ω1 = 1, ω2 = 15,

1 000 iterations

2 000 iterations

3 000 iterations

4 000 iterations
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Coarse and Local Training

Now, learn the error (higher frequencies) using the one-level FBPINN model using local
models on 30 subdomains.

Overlapping domain decomposition into 30 subdomains

Local and coarse models Two-level model
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Laplace Problem

Let us, again, consider the boundary value
problem

−∆u =1 in [0, 1],
u(0) =u(1) = 0,

which has the solution

u(x) = 1
2x(1− x).

0 0.2 0.4 0.6 0.8 1
0

5 · 10−2

0.1

0.15

0.2

x

Laplace solution

u(x) = 1
2
x(1− x)

1 level, 16 subdomains 2 levels, 16 subdomains
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Weak Scaling – Comparison One and Two Levels
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→ Adding a second level improves scalability.
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Multi-Frequency Laplace Problem

Let us now consider the boundary value problem

−∆u =π2 sin(πx) + (20π)2 sin(20πx)
+ (50π)2 sin(50πx) in [0, 1],

u(0) =u(1) = 0,

which has the solution

u(x) = sin(πx) + sin(20πx) + sin(50πx).
0 0.2 0.4 0.6 0.8 1

−4

−2

0

2

4

x

Multi-frequency Laplace solution

u(x) = sin(πx) + sin(20πx) + sin(50πx)

1 level, 2 subdomains 1 level, 32 subdomains
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Let us now consider the boundary value problem

−∆u =π2 sin(πx) + (20π)2 sin(20πx)
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which has the solution
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Multi-frequency Laplace solution

u(x) = sin(πx) + sin(20πx) + sin(50πx)
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Weak Scaling – Comparison One and Two Levels
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Surrogate models for
computational fluid dynamics
simulations
Data-driven approach



Computational Fluid Dynamics (CFD) Simulations are Time Consuming

In Giese, Heinlein, Klawonn, Knepper, Sonnabend (2019), a benchmark for comparing MRI
measurements and CFD simulations of hemodynamics in intracranial aneurysms was proposed.

Inflow

Outflow3D printed geometry

Inflow

Outflow3D printed geometry

To obtain accurate simulation results, simulations with ≈ 10 m d.o.f.s were carried out. On
O(100) MPI ranks, the computation of a steady state took O(1) h on CHEOPS supercomputer at UoC.

Slice position MRI CFD
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In Giese, Heinlein, Klawonn, Knepper, Sonnabend (2019), a benchmark for comparing MRI
measurements and CFD simulations of hemodynamics in intracranial aneurysms was proposed.

Inflow

Outflow3D printed geometry

Inflow

Outflow3D printed geometry

To obtain accurate simulation results, simulations with ≈ 10 m d.o.f.s were carried out. On
O(100) MPI ranks, the computation of a steady state took O(1) h on CHEOPS supercomputer at UoC.

Slice position MRI CFD

What if we are not interested in an
accurate prediction of the whole flow field
but only in the qualitative flow pattern,
the wall shear stresses (rupture), or the
maximum velocity in a certain region
(blood clotting)? ��

��
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Using PINNs as Surrogate Models

Learning the solution of one specific boundary value problem (BVP), for instance, using PINNs

N[u](x) = f (x), x ∈ Ω ⊂ Rd ,

Bk [u](x) = gk(x), x ∈ Γk ⊂ ∂Ω,

generally requires re-training the model once the boundary problem changes.
Geometry

Boundary conditions

Flow field

Neural network

Instead, we are interested in a single surrogate model that can predict the solution for a
variety of

• geometries,
• initial and boundary conditions, and/or
• material parameters.
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Operator Learning and Surrogate Modeling

Our approach is inspired by the work Guo, Li, Iorio (2016), in which convolutional neural
networks (CNNs) are employed to predict the flow in channel with an obstacle.

In particular, we use a pixel image of the geometry as input and predict an image of the
resulting stationary flow field as output:

input
(geometry)

encoder

bottleneck

decoder

output
(prediction)

skip connections

Other related works: E.g.
• Guo, Li, Iorio (2016)
• Niekamp, Niemann, Schröder (2022)

• Stender, Ohlsen, Geisler, Chabchoub,
Hoffmann, Schlaefer (2022)
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Operator Learning and Surrogate Modeling

input
(geometry)

encoder

bottleneck

decoder

output
(prediction)

skip connections

We learn the nonlinear map between a representation space of the geometry and the
solution space of the stationary Navier–Stokes equations → Operator learning.

Operator learning
Learning maps between function spaces, e.g.,

• between the right-hand side and the
solution of a BVP.

Other operator learning approaches
• DeepOnet: Lu, Jin, and Karniadakis. (arXiv

preprint 2019).
• Neural operators: Kovachki, Li, Liu,

Azizzadenesheli, Bhattacharya, Stuart, and
Anandkumar (arXiv preprint 2021).
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Model Problem – Flow Around an Obstacle in Two Dimensions
We propose a simple model problem to investigate predictions of a steady flow in a channel with an
obstacle; this setup is also inspired by Guo, Li, Iorio (2016).

3m

6m

Polygonal obstacle

Constant inflow
u = 3m/s

No-slip boundary
condition at the
side walls

Do-nothing outflow
∂u
∂n − pn = 0

In particular, we restrict ourselves to
→ a simple rectangular basic geometry and
→ fixed boundary conditions.

However, we vary the geometry of the polygonal obstacle.
In addition, we interpolate the input and output data to a
structured tensor product mesh to impose a structure.

128

256
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Type I – III Geometries (Eichinger, Heinlein, Klawonn (2021, 2022))
We first consider obstacles of the following three types; see also Guo, Li, Iorio (2016) for a similar
approach. In particular, we randomly generate star-shaped polygons with 3, 4, 5, 6, and 12 edges.

type I type II type III

First, we consider 100 000 pairs of geometry and flow data (90 000 training; 10 000 validation) for
Type I (50 000) & Type II (50 000). Later, we will also consider Type III.
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Computation of the Flow Data Using OpenFOAM®
We solve the steady Navier-Stokes equations

−ν∆u⃗ + (u · ∇) u⃗ + ∇p = 0 in Ω,

∇ · u = 0 in Ω,

where u⃗ and p are the velocity and pressure fields and ν is
the viscosity. Furthermore, we prescribe the previously
described boundary conditions.

Software pipeline
1. Define the boundary of the polygonal obstacle and

create the corresponding STL (standard
triangulation language) file.

2. Generate a hexahedral compute grid
(snappyHexMesh).

3. Run the CFD simulation (simpleFoam).
4. Interpolate geometry information and flow field

onto a pixel grid.
5. Train the CNN.

Input data
Binary

256 px

1
2
8
p
x0

1

SDF (Signed Distance Function)

256 px

1
2
8
p
x< 0

> 0

Output data
ux

256 px

1
2
8
p
x

uy

256 px

1
2
8
p
x
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Neural Network Architectures

Bottleneck CNN (Guo, Li, Iorio (2016))

25
6
× 1

28

input
(Binary/SDF)

128
16
× 1

6

encoder

512
4
× 4

1024 1

bottleneck
fully connected layer

512
8
× 8

256
64
×
32

decoder
32
12
8
×
64

2
×
25
6
×
12
8

output
u = (ux, uy)

U-Net (Ronneberger, Fischer, Brox (2015))

25
6
× 1

28

input
(Binary/SDF)

64
64
×
64

128
32
× 32

256
16
× 1

6

encoder

512
8
× 8

1024
4
× 4

1024 1

bottleneck
convolutional layer

1024
4
× 4

512
8
× 8

256

decoder

16
× 1

6

128
32
× 32

64
64
×
64

2
×
25
6
×
12
8

output
u = (ux, uy)

skip connections

One decoder

25
6
×
12
8

input
(Binary/SDF)

encoder decoder

2
×
25
6
×
12
8

output
u = (ux, uy)

Two decoders

25
6
×
12
8

input
(Binary/SDF)

encoder

decoder x

decoder y

25
6
×
12
8

output ux

25
6
×
12
8

output uy
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Comparison CFD Vs NN (Relative Error 2 %)

ux CFD ux CNN ux ERR

uy CFD uy CNN uy ERR

Cf. Eichinger, Heinlein, Klawonn (2021, 2022)
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Comparison CFD Vs NN (Relative Error 14 %)

ux CFD ux CNN ux ERR

uy CFD uy CNN uy ERR

Cf. Eichinger, Heinlein, Klawonn (2021, 2022)
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Comparison CFD Vs NN (Relative Error 31 %)

ux CFD ux CNN ux ERR

uy CFD uy CNN uy ERR

Cf. Eichinger, Heinlein, Klawonn (2021, 2022)
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First Results (Eichinger, Heinlein, Klawonn (2021, 2022))
We compare the relative error (RE) ∥ui,j −ûi,j ∥2

∥ui,j ∥2+10−4 averaged over all non-obstacle pixels and all validation data
configurations. Furthermore: MSE = mean squared error; MAE = mean absolute error.

Bottleneck CNN U-Net (Ronneberger,
(Guo, Li, Iorio (2016)) Fischer, Brox (2015))

input # dec. loss total type I type II total type I type II

SDF

1

MSE 61.16 % 110.46 % 11.86 % 17.04 % 29.42 % 4.66 %
MSE + RE 3.97 % 3.31 % 4.63 % 2.67 % 2.11 % 3.23 %
MAE 25.19 % 41.52 % 8.86 % 9.10 % 13.89 % 4.32 %
MAE + RE 4.45 % 3.84 % 5.05 % 2.48 % 1.87 % 3.10 %

2

MSE 49.82 % 89.12 % 10.51 % 13.01 % 21.59 % 4.42 %
MSE + RE 3.85 % 3.05 % 4.64 % 2.43 % 1.78 % 3.23 %
MAE 45.23 % 81.38 % 9.08 % 5.47 % 7.06 % 3.89 %
MAE + RE 4.33 % 3.74 % 4.91 % 2.57 % 1.98 % 3.17 %

Binary

1

MSE 49.78 % 88.28 % 11.28 % 27.15 % 49.15 % 5.15 %
MSE + RE 10.12 % 11.44 % 8.80 % 5.49 % 6.25 % 4.74 %
MAE 39.16 % 64.77 % 13.54 % 15.69 % 26.36 % 5.02 %
MAE + RE 10.61 % 12.34 % 8.87 % 4.48 % 5.05 % 3.90 %

2

MSE 51.34 % 91.20 % 11.48 % 24.00 % 43.14 % 4.85 %
MSE + RE 10.03 % 11.37 % 8.69 % 5.56 % 6.79 % 4.33 %
MAE 37.16 % 62.01 % 12.32 % 21.54 % 38.12 % 4.96 %
MAE + RE 9.53 % 10.91 % 8.15 % 6.04 % 7.88 % 4.20 %
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Generalization Properties (Eichinger, Heinlein, Klawonn (2021, 2022))
We test the generalization properties of our previously trained U-Net. In particular, we predict the flow for
new geometries of Type I and Type II; 1 000 geometries each (500 Type I & 500 Type II).

# polygon
edges

SDF input Binary input
total type I type II total type I type II

7 2.71 % 1.89 % 3.53 % 4.39 % 4.61 % 4.16 %
8 2.82 % 1.98 % 3.65 % 4.67 % 4.89 % 4.44 %

10 3.21 % 2.32 % 4.10 % 5.23 % 5.51 % 4.94 %
15 4.01 % 3.16 % 4.86 % 7.76 % 7.85 % 6.66 %
20 5.08 % 4.22 % 5.93 % 9.70 % 10.43 % 8.97 %

ux CFD ux CNN ux ERR

uy CFD uy CNN uy ERR
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Generalization Issues – Type III Geometry (Relative Error 158 %)

ux CFD ux CNN ux ERR

uy CFD uy CNN uy ERR

Cf. Eichinger, Heinlein, Klawonn (2022)
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Transfer Learning – Type III Geometries
The best model (U-Net, one decoder, MAE+RE loss) trained on type I and type II geometries
performs poorly on 2 500 type III geometries:

SDF Input binary Input
type III 22 985.89 % 4 134.69 %

We compare the following approaches to generalize to type III geometries:
• Approach 1: Train a new model from scratch on type III geometries (2 500 training + 2 500

validation data)
• Approach 2: Train the previous model on type III geometries
• Approach 3: Train the previous model on a data set consisting of the old data (type I & type II)

and type III data
type I & II type III

learning
approach

# training
epochs SDF input binary input SDF input binary input

1 100 - - 98.02 % 111.75 %
2 100 208.02 % 105.43 % 7.18 % 11.81 %
3 3 3.33 % 7.06 % 4.94 % 11.28 %

Neural networks forget if data is removed from the training data. However, new geometries (type
III: symmetric to Type I) can be learned quickly if they are added to the existing training data.
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Computing Times

Data:

Avg. Runtime per Case
(Serial)

Create STL 0.15 s
snappyHexMesh 37 s
simpleFoam 13 s
Total Time ≈ 50 s

Training:

Bottleneck CNN U-Net
# decoders 1 2 1 2
# parameters ≈ 47 m ≈ 85 m ≈ 34 m ≈ 53.5 m
time/epoch 180 s 245 s 195 s 270 s

Comparison CFD Vs NN:
CFD (CPU) NN (CPU) NN (GPU)

Avg. Time 50 s 0.092 s 0.0054 s

⇒ Flow predictions using neural networks may be less accurate and the training phase expensive, but
the flow prediction is ≈ 5 · 102 – 104 times faster.

CPU: AMD Threadripper 2950X (8 × 3.8 Ghz), 32GB RAM; GPU: GeForce RTX 2080Ti
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Surrogate models for
computational fluid dynamics
simulations
GAN-based training



Training the Surrogate Model via GANs
Cf. Kemna, Heinlein, Vuik (accepted 2022).

• Generative adversarial networks (GANs) based on Goodfellow et al. (2014) consist of two
independent neural networks that are trained concurrently in an adversarial setting:

• Generator is trained to fool the discriminator into classifying its outputs as training data
• Discriminator is trained to distinguish between generated samples and training data
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GANs for Fluid Prediction – Bifurcation Example

1
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2

256×85

3

256×85

64

128×43

128

64×22

256

32×11

512

31×10

1

30×9

Generator Discriminator

For investigating the effect of training the surrogate model as a generator of a GAN, consider
the following sudden expansion scenario (see, e.g., Mullin et al. (2009)), which leads to a
bifurcation if the inlet is centered.
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GANs for Fluid Prediction – Overall Performance
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GANs for Fluid Prediction – Divergence Error

Let us investigate how well the predictions satisfy the continuity equation in the Navier–Stokes
equations:

−ν∆u⃗ + (u · ∇) u⃗ +∇p = 0 in Ω,

∇ · u = 0 in Ω.

→ The GAN loss seems to help learning the physics of the system.
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Surrogate models for
computational fluid dynamics
simulations
Physics-aware approach



U-Net (Ronneberger, Fischer, Brox (2015)) Revisited

→ We further improved the U-Net architecture for our application.

I

Input

64 I

128 I/
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256 I/
4

512 I/
8

1024 I/
16

Bottleneck

512 1024 512 I/
8
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convolution
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convolution
w. activaton
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w. activaton
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up-sampling.
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U-Net (Ronneberger, Fischer, Brox (2015)) Revisited

I

Input

64 I

128 I/
2

256 I/
4

512 I/
8

1024 I/
16

Bottleneck

512 1024 512 I/
8

256 512 256 I/
4

128 256 128 I/
2

64 128 64 I I

Output

Skip Connections

Convolution
The action of a convolutional layer corresponds to
going over the image with a filter (matrix):a11 a12 a13

a21 a22 a23
a31 a32 a33


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Unsupervised Learning Approach – PDE Loss Using Finite Differences

∥∥∥ Fmom(uNN, pNN)
Fmass(uNN, pNN)

∥∥∥2
>> 0

Cf. Grimm, Heinlein, Klawonn

Minimization of the mean squared residual
of the Navier-Stokes equations

min
uNN,pNN

1
#pixels

∑
pixels

∥∥∥ Fmom(uNN, pNN)
Fmass(uNN, pNN)

∥∥∥2

where uNN and pNN are the output images of
our CNN and

Fmom(u, p) := −ν∆u⃗ + (u · ∇) u⃗ + ∇p,

Fmass(u, p) := ∇ · u.

We use a finite difference discretization on
the output pixel image by defining filters on
the last layer of the CNN-based on the
stencils:

0 0 0
-1 0 1
0 0 0

∂
∂x

0 1 0
0 0 0
0 -1 0

∂
∂y

0 0 0
1 -2 1
0 0 0

∂2

∂x2

0 1 0
0 -2 0
0 1 0

∂2

∂y2

∥∥∥ Fmom(uNN, pNN)
Fmass(uNN, pNN)

∥∥∥2
≈ 0
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Convergence Comparison – CNN Versus FDM

Solve
−∆u = f

using
• classical finite

differences
• ML: CNN

• GD: gradient descent
• CG: conjugate

gradient method

• SE: Ax = b
• NE: ∥Ax − b∥2
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Convergence Comparison – CNN Versus FDM

CG-SE GD-SE CG-NE GD-NE ML-GD ML-Adam

The results are in alignment with the spectral bias of neural networks. The neural network
approximations yield a low error norm compared with the residual (MSE loss).

Ae = A(u∗ − u) = b − Au = r

Cf. Grimm, Heinlein, Klawonn (submitted 2022).
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Physics-Aware Approach – Boundary Conditions

The PDE loss can be minimized without using simulation results as training data.
Therefore, we also call this physics-aware approach unsupervised.

→ On a single geometry, this training of the neural network just corresponds to an
unconventional way of discretizing the Navier-Stokes equations using finite differences.

Hence, we also have to enforce the boundary conditions of our boundary value problem:
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Physics-Aware Approach – Single Geometry

u CFD u CNN u ERR

p CFD p CNN p ERR

⇒ We can solve the boundary value problem using a neural network.

→ Now, we again build a surrogate model for multiple geometries.
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Results on ≈ 5 000 Type II Geometries

training error ∥uNN −u∥2
∥u∥2

∥pNN −p∥2
∥p∥2

mean residual # epochs
data momentum mass trained

da
ta

-b
as

ed

10% train. 2.07% 10.98% 1.1 · 10−1 1.4 · 100
500val. 4.48 % 15.20 % 1.6 · 10−1 1.7 · 100

25% train. 1.93% 8.45% 9.1 · 10−2 1.2 · 100
500val. 3.49 % 10.70 % 1.2 · 10−1 1.4 · 100

50% train. 1.48% 8.75% 9.0 · 10−2 1.1 · 100
500val. 2.70 % 10.09 % 1.1 · 10−1 1.2 · 100

75% train. 1.43% 7.30% 1.0 · 10−1 1.5 · 100
500val. 2.52 % 8.67 % 1.2 · 10−1 1.5 · 100

ph
ys

ic
s-

aw
ar

e

10% train. 5.35% 12.95% 3.5 · 10−2 7.8 · 10−2
5 000val. 6.72% 15.39% 6.7 · 10−2 2.0 · 10−1

25% train. 5.03% 12.26% 3.2 · 10−2 7.3 · 10−2
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50% train. 5.81% 12.92% 3.9 · 10−2 9.3 · 10−2
5 000val. 5.84 % 12.73 % 4.8 · 10−2 1.2 · 10−1

75% train. 5.03% 11.63% 3.2 · 10−2 7.7 · 10−2
5 000val. 5.18 % 11.60 % 4.2 · 10−2 1.1 · 10−1

→ The results for the physics-aware approach are comparable to the data-based approach; the errors are
slightly higher. However, no reference data at all is needed for the training.
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Results on ≈ 5 000 Type II Geometries
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→ The results for the physics-aware approach are comparable to the data-based approach; the errors are
slightly higher. However, no reference data at all is needed for the training.
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Generalization
Now, consider an obstacle which is closer to the wall (≈ 0.4 m) than the training data (≥ 0.75 m).

Supervised approach

∥uNN − u∥2
∥u∥2

= 23%

∥pNN − p∥2
∥p∥2

= 31%

Unsupervised approach

∥uNN − u∥2
∥u∥2

= 14%

∥pNN − p∥2
∥p∥2

= 27%

→ The unsupervised approach generalizes slightly better, and in particular, the prediction is
smoother and misses unphysical artifacts.
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Generalization With Respect to the Inflow Velocity

order # data range inflow vel. [0.5, 1.0] [1.0, 2.0] [2.0, 3.0] [3.0, 4.0] [4.0, 5.0]

2 1 000

[3.0, 3.0] 55.5 % 48.1 % 31.1 % 17.4 % 61.5 %
[2.0, 3.0] 89.3 % 57.4 % 4.0 % 15.5 % 59.1 %
[1.0, 3.0] 40.2 % 3.8 % 4.3 % 7.1 % 20.4 %
[1.0, 4.0] 31.3 % 4.0 % 4.3 % 5.8 % 7.7 %

2 4 500

[3.0, 3.0] 186.8 % 87.1 % 40.5 % 36.9 % 70.6 %
[2.0, 3.0] 78.4 % 44.3 % 3.2 % 16.1 % 68.2 %
[1.0, 3.0] 38.7 % 2.9 % 3.4 % 6.7 % 18.5 %
[1.0, 4.0] 27.7 % 3.1 % 3.4 % 4.7 % 7.2 %
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Aneurysm Geometries

Training: 500 geometries Validation: ≈ 1 200 geometries

Relative L2-error on the validation data set in u: 4.9 %, in p: 9.5 %.

u: 3.3%, p: 7.4% u: 13.2%, p: 35.1%
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Thank you for your attention!

Summary
• The new field of scientific machine learning (SciML) deals with the combination of

scientific computing and machine learning techniques; physics-informed machine
learning models allow for the combination of physical models and data.

• Domain decomposition methods can help to improve the training process for
PINNs, especially for (but not restricted to) large domains and/or multiscale problems.

• The FBPINN method integrates domain decomposition approaches into PINN
training in a natural way; it can also be extended to a two-level method.

• Using CNNs on image data yields an operator learning approach for predicting fluid
flow inside varying computational domains; again, the model training can be
enhanced by using physics.
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