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Neural Networks for Solving Differential Equations

Artificial Neural Networks for Solving Ordinary
and Partial Differential Equations

Isaac Elias Lagaris, Aristidis Likas, Member, IEEE, and Dimitrios I. Fotiadis

Published in IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, 1998.

Approach Construction of the trial functions
Solve a general differential equation subject to The trial functions explicitly satisfy the
boundary conditions boundary conditions:

G(x,V¥(x), V¥(x),V’¥U(x)) =0 inQ V. (x,0) = A(x) + F(x, N(x, 8))

by solving an optimization problem = N is a feedforward neural network with

minz G(xi, Vi(x:, 8), VW, (x;, 0) Vzlllt(x' 0))2 trainable parameters 6 and input x € R”
® ' 7 Y 7 = A and F are fixed functions, chosen s.t.:
= A satisfies the boundary conditions

Xi

where \llt(x7 0) is a trial function, x; sampling

. . . = F does not contribute to the
points inside the domain Q2 and 6 are o
adjustable parameters. Rolindunyjconcitons

A. Heinlein (TU Delft) Workshop on Scientific Computing and Learning



Neural Networks for Solving Differential Equations

Approach Construction of the trial functions
Solve a general differential equation subject to The trial functions explicitly satisfy the
boundary conditions boundary conditions:

G(x,¥(x), VV¥U(x),V’¥U(x)) =0 inQ V. (x,0) = A(x) + F(x, N(x,0))

by solving an optimization problem = N is a feedforward neural network with

minz G(xi, Ve(x:, 0), VW, (x;, 0), VWe(x;, ) trainable parameters 6 and input x € R”
0 ‘ ’ T T ’ = A and F are fixed functions, chosen s.t.:
= A satisfies the boundary conditions

Xj
where \Ilt(x, 0) is a trial function, x; sampling

points inside the domain Q2 and 6 are = F does not contribute to the

boundary conditions

adjustable parameters.

boundary conditions

A(x) + F(x, N(z, p))
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Physics-Informed Neural Networks (PINNs)

In the physics-informed neural network (PINN) approach

introduced by Raissi et al. (2019), a neural network is

employed to discretize a partial differential equation
Nul(x,t) = f(x8), (xt) € T]xQC R

It is based on the approach by Lagaris et al. (1998). The

main novelty of PINNs is the use of a hybrid loss function:

oL = WdatasLdata + WPDELPDE,

where wyata and wppe are weights and

1 Niata R . Hybrid loss
BCdata - Ndata : :i:I (LI(X,', ti) - U,‘) ) Small data Some data Big data
1 Nppe >
Lepe = E (NM[u](xi, t) — f(xi, ;)" -
Nppe i=1
Advantages Drawbacks
Lots of physics Some physics No physics
= “Meshfree” = Training cost and .
= Small data robustness = Known solution values can be
= Generalization properties = Convergence not included in Lyata
= High-dimensional problems well-understood . .
= Inverse and parameterized = Difficulties with scalability = Initial and boundary conditions
problems and multi-scale problems are also included in Lyata
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Available Theoretical Results for PINNs — An Example

Mishra and Molinaro. Estimates on the generalisation error of PINNs, 2022

Estimate of the generalization error

The generalization error (or total error) satisfies

8¢ < Crpe&7 + Crpe CL/P N~/P

quad

where
» &g =E¢(0; X) = |lu—u*||, (V Sobolev space, X training data set)
= &7 is the training error (/P loss of the residual of the PDE)
= Cppe and Cquaq constants depending on the PDE resp. the quadrature

= N number of the training points and « convergence rate of the quadrature

Rule of thumb:

“As long as the PINN is trained well, it also generalizes well”
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Scaling Issues in Neural Network Training

Spectral bias: neural networks prioritize learning lower frequency functions first

irrespective of their amplitude

0.0 0.2 04 0.6 0.8 10 0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 10 0.0 0.2 04 0.6 0.8 10

100 iterations 1000 iterations 10000 iterations 80000 iterations

Rahaman et al., On the spectral bias of neural networks, ICML (2019)

= Solving solutions on large domains and/or with multiscale features potentially requires
very large neural networks.
= Training may not sufficiently reduce the loss or take large numbers of iterations.

= Significant increase on the computational work

Convergence analysis of PINNs via the neural tangent kernel: Wang, Yu, Perdikaris,
When and why PINNs fail to train: A neural tangent kernel perspective, JCP (2022)
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Motivation — Some Observations on the Performance of PINNs

Solve
v = cos(wx),
u(0) = 0,

for different values of w
using PINNs with
varying network
capacities.

Scaling issues

= Large computational
domains

= Small frequencies

Cf. Moseley, Markham, and
Nissen-Meyer (2023)
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(a) PINN (w =1, 2 layers, 16 hidden units)

(b) PINN (w =15, 2 layers, 16 hidden units)
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(a) 321 free parameters
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(d) 66433 free parameters




Domain Decomposition Methods

Decomposing a large global problem into

smaller local problems:

= Better robustness and scalability of
numerical solvers

= Improved computational efficiency

Images based on Heinlein, Perego, Rajamanickam (2022)

= Introduce parallelism

Historical remarks: The alternating
Schwarz method is the earliest domain

decomposition method (DDM), which has Q
been invented by H. A. Schwarz and
published in 1870: 294 r o
= Schwarz used the algorithm to establish ’ oK,

the existence of harmonic functions
with prescribed boundary values on
regions with non-smooth boundaries.
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Machine Learning and Domain Decomposition Methods

A non-exhaustive overview:

Machine Learning for adaptive BDDC, FETI-DP, and AGDSW: Heinlein, Klawonn, Lanser, Weber
(2019, 2020, 2021, 2021, 2021, 2022); Klawonn, Lanser, Weber (preprint 2022)

Domain decomposition for CNNs: Gu, Zhang, Liu, Cai (2022); Lee, Park, Lee (2022); Klawonn,
Lanser, Weber (arXiv 2023)

D3M: Li, Tang, Wu, and Liao (2019)

DeepDDM: Li, Xiang, Xu (2020); Mercier, Gratton, Boudier (arXiv 2021); Li, Wang, Cui, Xiang, Xu
(2023); Sun, Xu, Yi (arXiv 2022, arXiv 2023)

FBPINNs: Moseley, Markham, and Nissen-Meyer (2023); Dolean, Heinlein, Mishra, Moseley (accepted
2023, submitted 2023 /arXiv:2306.05486)

Schwarz Domain Decomposition Algorithm for PINNs: Kim, Yang (2022, arXiv 2022)

cPINNs: Jagtap, Kharazmi, Karniadakis (2020)

XPINNSs: Jagtap, Karniadakis (2020)

An overview of the state-of-the-art in early 2021:

R A. Heinlein, A. Klawonn, M. Lanser, J. Weber.

Combining machine learning and domain decomposition methods for the solution of partial

differential equations — A review.
GAMM-Mitteilungen. 2021.

A. Heinlein (TU Delft) Workshop on Scientific Computing and Learning




Finite Basis Physics-Informed Neural Networks (FBPINNSs)

In the finite basis physics informed neural
network (FBPINNs) method introduced in
Moseley, Markham, and Nissen-Meyer (2023),
we solve the boundary value problem
Nnul(x) = f(x), xe€QcCR
Bi[u](x) = gi(x), xeTlxC.
using the PINN approach and hard enforcement

of the boundary conditions, similar to Lagaris
et al. (1998).

FBPINNSs use the network architecture

J
u(01, o ,OJ) = G Zj:1 w,-u,- (01)
and the loss function

N
L(61,...,0,) = % ST (1e > wulx, 0)~F(x))”.
i=1

X,‘EQJ'
. J
= Overlapping DD: Q = J_,
= Window functions w; with supp(w;) C Q;
J
and - jwj=1onQ

Hard enforcement of boundary conditions

Loss function N
£(0) = 5 > (N[Cul(x,0) — f(x))*,
i=1
with constraining operator C, which explicitly

enforces the boundary conditions.

— Often improves training performance

1
Window
function
0

Subdomain — — —
definition

OVerlapping | s s S s s
T

models

A. Heinlein (TU Delft) Workshop on Scientific Computing and Learning




Numerical Results for FBPINNSs

PINN Vs FBPINN (Moscley et al. (2023)) Scalability of FBPINNs
FBPINN | soluti Consider the simple 0z T T
,7050 ocal solutions p
l ‘ ( boundary value problem o
0.025 l . . .15 - R
0.000 —u’ =1 in [0, 1]7
0.1 4
-0.025 U(O) :U(l) = O,
0050 which has the solution 005 1
B 0 2 ‘ 6 u(x) = t/2x(1 — x). S S S|
FBPINN global solution 1 SkaktEddiion ( ) / ( ) % 02 04 06 08 1
0.050 ~—— FBPINN T T I
0.025 107! £ =
0.000 E E
-0.025 r —— 2 subdomains | |
~0.050 1072 ¢ — 4 subdomains |
' 5 t —— 8 subdomains |
-6 -4 -2 0 2 4 6 =) [ —— 16 subdomains | |
e —] FBPINN o FBPINN q:“ -3
TTAPINN —— PINN =10 E E
1072 W 1072 E E
= 107 =10 1074 | .
107* 10-* E I | 1 g
0 0.5 1 1.5 2
0 20000 0000 . . 4
Traming step 008 ks M i # iterations 10
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Two-Level FBPINN Algorithm

Coarse correction and spectral bias

—— Ground truth
—— Full solution

Questions:
= Scalability requires global transport of information.

This can be done via coarse global problem.
= What does this mean in the context of network

training?

Idea:
— Learn low frequencies using a small global network,

train high frequencies using local networks.

Two-level FBPINN network architecture:

u(80,0s,. .., 85) = € (uo (60) + Z}; wiu (6)))

Consider a simple model problem with two frequencies

v = wicos(wix) + w2 cos(wax)
u(0) = 0.

with w; =1, wp = 15.

Cf. Dolean, Heinlein, Mishra, Moseley (accepted 2023).
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Numerical Results for FBPINNs — One Versus Two Levels

. . - 0.2
Consider, again, the simple boundary value problem
—u” =1 in|[0,1], 015 ]
U(O) :u(l) = 07 0.1 i
which has the solution 005 1
u(x) = tx(1 — x). , S
0 0.2 0.4 0.6 0.8 1
One-Level FBPINNSs Two-Level FBPINNs
T T
“1L 4 1L A
10 5 4 107! 1
[ ] [ ]
. N | 4
H —— 2 subdomains |4 N --- 2 subdomains ||
1072 ¢ —— 4 subdomains || 1072 5 Y --- 4 subdomains |4
5 F ~—— 8 subdomains | 5 f: n \\\ -~~~ 8 subdomains ||
=] [ —— 16 subdomains || = Fio A --- 16 subdomains |-
< < v
2 -3 L ] o 1077
| 1 1074
107 g E
E 1 1 1 ] L 1 1 1 1
0 0.5 1 1.5 2 0 0.5 1 1.5 2
# iterations -10* # iterations 104
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Multi-Level FBPINN Algorithm

We introduce a hierarchy of L overlapping | Q 1

domain decompositions PR CEEE SR T R e e e !
level 1 § a® |
!

’ _______________________________________________ 1
= Q( B s
o=, - T |
I T T .
q I .
and corresponding window functions w} ) with
J
I I I
supp (w})) C QJ(.) and E wj() =1lon Q. o RS BRrE BRrE e Bere e B |
i1 level 41 ) I o l 9<4>l le o l n(4>l o l o !
ho L B BN Bl RS Rad

This yields the L-level FBPINN algorithm:

L-level network architecture Loss functlon
L NO
1 L) HDNOYAO O] (y _
u(6®,.60) = (303 uul (6 NZ ne S w0, 00) - F(x)?
I=1 i=1 xen(/)
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Multilevel FBPINNs — 2D Laplace

Let us consider the simple two-dimensional boundary value

Exact solution

problem 08
q 2
—Au=32(x(1—x)+y(l—-y)) inQ=]0,1], 0.6
u=20 on 01, 04
which has the solution 0.2
00 02 04 06 08 1000
u(x =16(x(1 — x)y(1 — .
(x,¥) (x( )y(1-y)) o
100 100 100
PINN [1, 2] levels FBPINN 1.1 overlap === PINN 3 layers 64 hidden units
FBPINN 1.5 overlap FBPINN 1 layer 2 hidden units
21071 4 4] levels 81071 4 ~— FBPINN 1.9 overlap | § 107! 4 FBPINN 1 layer 4 hidden units
o FBPINN [4] level ° —— FBPINN 2.3 overlap | £ ~— FBPINN 1 layer 8 hidden units
i ~— FBPINN [1, 2, 4, 8] lev i —— FBPINN 2.7 overlap | & —— FBPINN 1 layer 16 hidden units
£ 1072 4 —\— FBPINN [8] levels 210724 210724 FBPINN 1 layér 32 hidden units
i} ~— FBPINN[L,2, 4,8, 16] levels | T} hat
° FBPINN [16] levels s ® 10-
§ 10734 § 10734 10734
© © ©
E E E
S 107 4 S 10744 S 10744
=4 =4 =4
1075 4 107° 4 107° 4
0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000
Training step Training step Training step

Cf. Dolean, Heinlein, Mishra, Moseley (submitted 2023 /arXiv:2306.05486).
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Multi-Frequency Problem

Let us now consider the two-dimensional multi-frequency Laplace boundary value problem
~Au=2%"" (wm)sin (wimx)sin (wiry) in Q= [0,1]%,
i=1
u=0 on 09,
with w; = 2.

For increasing values of n, we obtain the analytical solutions:
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Multi-Level FBPINNSs for a Multi-Frequency Problem — Strong Scaling

FBPINN O FBPINN O FBPINN O FBPINN O  FBPINN
[1,2,4] [1,2,4,8] [1,2,4,8,16] [1,2,4,8,16,32] [1,2,4,8, 16,32, 64
(20, 20) (40, 40) (80, 80) (160, 160) (320, 320)

FBPINN

u] PINN FBPINN FBPINN
5-256 [1, 8, 64]
(320, 320) (320, 320)

[64]
(320, 320)

Cf. Dolean, Heinlein, Mishra, Moseley (submitted
2023 /arXiv:2306.05486).
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=
o
2
o
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[m]

0 5000 10000 15000 20000 25000 30000 102 103
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Multi-Level FBPINNSs for a Multi-Frequency Problem — Weak Scaling

FBPINN FBPINN O FBPINN O FBPINN O FBPINN O  FBPINN
[1,2] [1,2,4] [1,2,4,8] [1,2,4,8,16]  [1,2, 4,8, 16,32] [1,2,4,8,16, 32, 64

(10, 10) (20, 20) (40, 40) (80, 80) (160, 160) (320, 320)

Normalised L1 test loss
=
o
S
Normalised L1 test loss
=
o
o
(o)
(o)

5000 10000 15000 20000 25000 30000 102 2x10%7 3x10%4x10?
Training step Total time elapsed (s)

o

Cf. Dolean, Heinlein, Mishra, Moseley (submitted 2023 /arXiv:2306.05486).

kshop on Scientific Computing and Learning




Helmholtz Problem

Finally, let us consider the two-dimensional Helmholtz boundary value problem
Au—Ku=f inQ=][0,1],
u=0 on 99,
F(x) = e~ (Ik=05l1/o7
With k = 2'7/1.6 and o = 0.8/2", we obtain the solutions:

| =2
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Multilevel FBPINNs — 2D Helmholtz Problem

Let us consider the two-dimensional Helmholtz boundary ' FD solution 0.100
value problem 0.075
Au—Ku=f inQ=]0,1], 0.050
u=0 on 02, 0.025
f(x) = e~ 2(=051/2)° 0:000
-0.025
with k = 2*7/1.6 and o = 0.8/2".
~0.050
We compute a reference solution using finite differences with —0.075
a 5-point stencil on a 320 x 320 grid.

100 4 100 4 - -
FBPINN [1, 2] levels FBPINN 1.1 overlap == PINN 5 layers 256 hidden units
FBPINN [2] levels FBPINN 1.5 overlap Y FBPINN 1 layer 2 hidden units
a FBPINN [1, 2, 4] levels a ~— FBPINN 1.9 overlap | 3 “— FBPINN 1 layer 4 hidden units
o BPINN [4] levels o = FBPINN 2.3 overlap | 2 FBPINN 1 layer 8 hidden units
B N (1,2, 4, 8] levels o = FBPINN 2.7 overlap | @ INN 1 layer 16 hidden units
i3 1 ﬂ) . .
- + = 1 layer 32 hidden units
i 8,.16] levels i i
B oo1 ] FBPINN [16] levels RPN ° o]
10 310 10
© © ©
£ £ £
£ £ £
i<} o o
= = =
T T T T T T T T T T T T
0 50000 100000 150000 0 50000 100000 150000 0 50000 100000 150000
Training step Training step Training step

Cf. Dolean, Heinlein, Mishra, Moseley (submitted 2023 /arXiv:2306.05486).
A. Heinlein (TU Delft) kshop on Scientific C




Multi-Level FBPINNSs for the Helmholtz Problem — Weak Scaling

FBPINN FBPINN O FBPINN O FBPINN O FBPINN

[1,2,4, 8] [1, 24,8, 16] [1,2, 4,8, 16, 32]
(80, 80) (160, 160) (320, 320)
PINN
5-256
(320, 320)

I @
o 10°4 S 10° 4
% % © 0o -
£ 1071 2101 =
t o o o
el _ el —2
21071 2107
© ©
€ 1073 4 £ 1073 4
(=} [=}
=z z
0 25000 50000 75000100000L125000150000 103 104
Training step Total time elapsed (s)
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= Training of PINNs is often problematic when:
= scaling to large domains / high frequency solutions

= multiple loss terms have to be balanced

= Convergence of PINNs has yet to be understood better

(Multilevel) FBPINNs

= Schwarz domain decomposition approaches improve the scalability of PINNs to
large domains / high frequencies, keeping the complexity of the local networks low

= As classical domain decomposition methods, one-level FBPINNSs are not scalable to
large numbers of subdomains; multilevel FBPINNs enable scalability.

Outlook
= |nvestigate, e.g.,
= more complex / realistic geometries and boundary conditions
= unstructured domain decompositions
= three dimensional problems (already possible in the implementation)

= Theoretical convergence analysis

Thank you for your attention!
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