Domain decomposition for physics-informed neural networks

Alexander Heinlein ${ }^{1}$
ANCS Seminar, Laboratoire de Mathématiques, Besançon, France, February 15, 2024
${ }^{1}$ Delft University of Technology

Scientific Machine Learning in Computational Science and Engineering

Numerical methods

Based on physical models

+ Robust and generalizable
- Require availability of mathematical models

Machine learning models

Driven by data

+ Do not require mathematical models
- Sensitive to data, limited extrapolation capabilities

Scientific machine learning (SciML)

Combining the strengths and compensating the weaknesses of the individual approaches: numerical methods improve machine learning techniques machine learning techniques assist numerical methods

Outline

1 Physics-informed machine learning \& motivation
2 Deep learning-based domain decomposition method
Based on joint work with
Victorita Dolean (TU Eindhoven)
Serge Gratton and Valentin Mercier (IRIT Computer Science Research Institute of Toulouse)
3 Multilevel domain decomposition-based architectures for physics-informed neural networks

Based on joint work with
Victorita Dolean (University of Strathclyde, University Côte d'Azur)
Ben Moseley and Siddhartha Mishra (ETH Zürich)
4 Multifidelity domain decomposition-based physics-informed neural networks for time-dependent problems

Based on joint work with
Damien Beecroft (University of Washington)
Amanda A. Howard and Panos Stinis (Pacific Northwest National Laboratory)

Physics-informed machine learning \& motivation

Neural Networks for Solving Differential Equations

Artificial Neural Networks for Solving Ordinary and Partial Differential Equations

Isaac Elias Lagaris, Aristidis Likas, Member, IEEE, and Dimitrios I. Fotiadis
Published in IEEE Transactions on Neural Networks, Vol. 9, No. 5, 1998.

Approach

Solve a general differential equation subject to boundary conditions

$$
G\left(x, \Psi(x), \nabla \Psi(x), \nabla^{2} \Psi(x)\right)=0 \quad \text { in } \Omega
$$

by solving an optimization problem

$$
\min _{\theta} \sum_{\boldsymbol{x}_{i}} G\left(\boldsymbol{x}_{i}, \Psi_{t}\left(\boldsymbol{x}_{i}, \boldsymbol{\theta}\right), \nabla \Psi_{t}\left(\boldsymbol{x}_{i}, \boldsymbol{\theta}\right), \nabla^{2} \Psi_{t}\left(\boldsymbol{x}_{i}, \boldsymbol{\theta}\right)\right)^{2}
$$

where $\Psi_{t}(\boldsymbol{x}, \boldsymbol{\theta})$ is a trial function, \boldsymbol{x}_{i} sampling points inside the domain Ω and θ are adjustable parameters.

Construction of the trial functions

The trial functions explicitly satisfy the boundary conditions:

$$
\Psi_{t}(\boldsymbol{x}, \boldsymbol{\theta})=A(\boldsymbol{x})+F(\boldsymbol{x}, N(\boldsymbol{x}, \boldsymbol{\theta}))
$$

- N is a feedforward neural network with trainable parameters θ and input $x \in \mathbb{R}^{n}$
- A and F are fixed functions, chosen s.t.:
- A satisfies the boundary conditions
- F does not contribute to the boundary conditions

Neural Networks for Solving Differential Equations

Approach

Solve a general differential equation subject to boundary conditions

$$
G\left(x, \Psi(x), \nabla \Psi(x), \nabla^{2} \Psi(x)\right)=0 \quad \text { in } \Omega
$$

by solving an optimization problem

$$
\min _{\theta} \sum_{x_{i}} G\left(\boldsymbol{x}_{i}, \Psi_{t}\left(\boldsymbol{x}_{i}, \boldsymbol{\theta}\right), \nabla \Psi_{t}\left(\boldsymbol{x}_{i}, \boldsymbol{\theta}\right), \nabla^{2} \Psi_{t}\left(\boldsymbol{x}_{i}, \boldsymbol{\theta}\right)\right)^{2}
$$

where $\Psi_{t}(\boldsymbol{x}, \boldsymbol{\theta})$ is a trial function, \boldsymbol{x}_{i} sampling points inside the domain Ω and θ are adjustable parameters.

Construction of the trial functions

The trial functions explicitly satisfy the boundary conditions:

$$
\Psi_{t}(\boldsymbol{x}, \boldsymbol{\theta})=A(\boldsymbol{x})+F(\boldsymbol{x}, N(\boldsymbol{x}, \boldsymbol{\theta}))
$$

- N is a feedforward neural network with trainable parameters θ and input $x \in \mathbb{R}^{n}$
- A and F are fixed functions, chosen s.t.:
- A satisfies the boundary conditions
- F does not contribute to the boundary conditions

Lagaris et. al's Method - Motivation

Solve the boundary value problem

$$
\begin{aligned}
\Delta \Psi_{t}(\boldsymbol{x}, \boldsymbol{\theta})+1 & =0 \text { on }[0,1] \\
\Psi_{t}(0, \boldsymbol{\theta})=\Psi_{t}(1, \boldsymbol{\theta}) & =0
\end{aligned}
$$

via a collocation approach:

$$
\min _{\boldsymbol{\theta}} \sum_{x_{i}}\left(1-\Delta \Psi_{t}\left(\boldsymbol{x}_{i}, \boldsymbol{\theta}\right)\right)^{2}
$$

Boundary conditions

The boundary conditions can be enforced explicitly, for instance, via the ansatz:

$$
\Psi_{t}(x, \theta)=\sin (\pi x) \cdot F(x, N(x, \theta)
$$

Physics-Informed Neural Networks (PINNs)

In the physics-informed neural network (PINN) approach introduced by Raissi et al. (2019), a neural network is employed to discretize a partial differential equation

$$
n[u](\boldsymbol{x}, \boldsymbol{t})=f(\boldsymbol{x}, \boldsymbol{t}), \quad(\boldsymbol{x}, \boldsymbol{t}) \in[0, T] \times \Omega \subset \mathbb{R}^{d}
$$

It is based on the approach by Lagaris et al. (1998). The main novelty of PINNs is the use of a hybrid loss function:

$$
\mathcal{L}=\omega_{\mathrm{data}} \mathcal{L}_{\mathrm{data}}+\omega_{\mathrm{PDE}} \mathcal{L}_{\mathrm{PDE}}
$$

where $\omega_{\text {data }}$ and $\omega_{\text {PDE }}$ are weights and

$$
\begin{aligned}
& \mathcal{L}_{\text {data }}=\frac{1}{N_{\text {data }}} \sum_{i=1}^{N_{\text {data }}}\left(u\left(\hat{\boldsymbol{x}}_{i}, \hat{\boldsymbol{t}}_{i}\right)-u_{i}\right)^{2}, \\
& \mathcal{L}_{\mathrm{PDE}}=\frac{1}{N_{\mathrm{PDE}}} \sum_{i=1}^{N_{\mathrm{PDE}}}\left(n[u]\left(\boldsymbol{x}_{i}, \boldsymbol{t}\right)-f\left(\boldsymbol{x}_{i}, \boldsymbol{t}_{i}\right)\right)^{2} .
\end{aligned}
$$

Advantages

- "Meshfree"
- Small data
- Generalization properties
- High-dimensional problems
- Inverse and parameterized problems

Drawbacks

- Training cost and robustness
- Convergence not well-understood
- Difficulties with scalability and multi-scale problems

Hybrid loss

- Known solution values can be included in $\mathcal{L}_{\text {data }}$
- Initial and boundary conditions are also included in $\mathcal{L}_{\text {data }}$

Available Theoretical Results for PINNs - An Example

Mishra and Molinaro. Estimates on the generalisation error of PINNs, 2022

Estimate of the generalization error

The generalization error (or total error) satisfies

$$
\mathscr{E}_{G} \leq C_{\mathrm{PDE}} \mathscr{E}_{T}+C_{\mathrm{PDE}} C_{\mathrm{quad}}^{1 / p} N^{-\alpha / p}
$$

where

- $\mathscr{E}_{G}=\varepsilon_{G}(\theta ; \boldsymbol{X}):=\left\|\mathbf{u}-\mathbf{u}^{*}\right\|_{V}$ (V Sobolev space, \boldsymbol{X} training data set)
- \mathcal{E}_{T} is the training error (I^{P} loss of the residual of the PDE)
- $C_{\text {PDE }}$ and $C_{\text {quad }}$ constants depending on the PDE resp. the quadrature
- N number of the training points and α convergence rate of the quadrature

Rule of thumb:
"As long as the PINN is trained well, it also generalizes well"

Scaling Issues in Neural Network Training

Spectral bias

Neural networks prioritize learning lower frequency functions first irrespective of their amplitude.

Rahaman et al., On the spectral bias of neural networks, ICML (2019)

- Solving solutions on large domains and/or with multiscale features potentially requires very large neural networks.
- Training may not sufficiently reduce the loss or take large numbers of iterations.
- Significant increase on the computational work

Dependence on the choice of activation functions: Hong et al. (arXiv 2022)
Convergence analysis of PINNs via the neural tangent kernel: Wang, Yu, Perdikaris, When and why PINNs fail to train: A neural tangent kernel perspective, JCP (2022)

Motivation - Some Observations on the Performance of PINNs

Solve

$$
\begin{aligned}
u^{\prime} & =\cos (\omega \boldsymbol{x}) \\
u(0) & =0
\end{aligned}
$$

for different values of ω using PINNs with varying network capacities.

Scaling issues

- Large computational domains
- Small frequencies

> Cf. Moseley, Markham, and
> Nissen-Meyer (2023)

Motivation - Some Observations on the Performance of PINNs

Solve

$$
\begin{aligned}
u^{\prime} & =\cos (\omega \boldsymbol{x}) \\
u(0) & =0
\end{aligned}
$$

for different values of ω using PINNs with varying network capacities.

Scaling issues

- Large computational domains
- Small frequencies

Cf. Moseley, Markham, and
Nissen-Meyer (2023)

(a) 321 free parameters
(d) 66433 free parameters

Domain Decomposition Methods

Idea

Decomposing a large global problem into smaller local problems:

- Better robustness and scalability of numerical solvers
- Improved computational efficiency
- Introduce parallelism

Historical remarks: The alternating Schwarz method is the earliest domain decomposition method (DDM), which has been invented by H. A. Schwarz and published in 1870:

- Schwarz used the algorithm to establish the existence of harmonic functions with prescribed boundary values on regions with non-smooth boundaries.

DDM-Based Approaches for Neural Network-Based Discretizations - Literature

A non-exhaustive overview:

- cPINNs: Jagtap, Kharazmi, Karniadakis (2020)
- XPINNs: Jagtap, Karniadakis (2020)
- D3M: Li, Tang, Wu, and Liao (2019)
- DeepDDM: Li, Xiang, Xu (2020); Mercier, Gratton, Boudier (arXiv 2021); Li, Wang, Cui, Xiang, Xu (2023); Sun, Xu, Yi (arXiv 2022, arXiv 2023)
- Schwarz Domain Decomposition Algorithm for PINNs: Kim, Yang (2022, arXiv 2022)
- FBPINNs: Moseley, Markham, and Nissen-Meyer (2023); Dolean, Heinlein, Mishra, Moseley (2024, subm. 2023 / arXiv:2306.05486); Heinlein, Howard, Beecroft, Stinis (subm. 2024 / arXiv:2401.07888)

An overview of the state-of-the-art in early 2021:
A. Heinlein, A. Klawonn, M. Lanser, J. Weber
Combining machine learning and domain decomposition methods for the solution of partial differential equations - A review

An overview of the state-of-the-art in the end of 2023:
A. Klawonn, M. Lanser, J. Weber Machine learning and domain decomposition methods - a survey arXiv:2312.14050. 2023

Combining Schwarz Methods with Neural Network-Based Discretizations

Approach 1 - Classical Schwarz iteration

Approach 2 - Via the neural network architecture

Global optimization SGD: $\Delta\left(\boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{N}\right)=-\alpha \mathcal{L}$
$f=\sum_{i=1}^{N}\left(n\left[e \sum_{\boldsymbol{x}_{i} \in \Omega_{j}} \omega_{j} u_{j}\right]\right.$
$\left.\left(\boldsymbol{x}_{i}, \boldsymbol{\theta}_{j}\right)-f\left(\boldsymbol{x}_{i}\right)\right)^{2}$

Approach 1

Deep learning-based domain
decomposition method

Deep Learning-Based Domain Decomposition Method (DeepDDM)

Li, Xiang, Xu. Deep domain decomposition method: Elliptic problems. PMLR (2020)

DeepDDM for Overlapping Schwarz

In the DeepDDM method, we train a local networks u_{j} using local loss functions on subdomain Ω_{j}

$$
\mathscr{L}_{j}\left(\boldsymbol{\theta}_{j}\right):=\mathcal{L}_{\Omega_{j}}\left(\boldsymbol{\theta}_{j}\right)+\mathscr{L}_{\partial \Omega_{j} \backslash \Gamma_{j}}\left(\boldsymbol{\theta}_{j}\right)+\mathcal{L}_{\Gamma_{j}}\left(\boldsymbol{\theta}_{j}\right),
$$

with volume, boundary, and interface jump terms

$$
\begin{aligned}
L_{\Omega_{j}}\left(\boldsymbol{\theta}_{j}\right) & :=\frac{1}{N_{f_{j}}} \sum_{i=1}^{N_{f_{j}}}\left|n\left(u_{j}\left(\boldsymbol{x}_{f_{j}}^{i} ; \boldsymbol{\theta}_{j}\right)\right)-f\left(\boldsymbol{x}_{f_{j}}^{i}\right)\right|^{2}, \\
\mathcal{L}_{\partial \Omega_{j} \backslash \Gamma_{j}}\left(\boldsymbol{\theta}_{j}\right) & :=\frac{1}{N_{g_{j}}} \sum_{i=1}^{N_{g_{j}}}\left|\mathscr{B}\left(u_{j}\left(\boldsymbol{x}_{g_{j}}^{i} ; \boldsymbol{\theta}_{j}\right)\right)-g\left(\boldsymbol{x}_{g_{j}}^{i}\right)\right|^{2}, \\
\mathcal{L}_{\Gamma_{j}}\left(\boldsymbol{\theta}_{j}\right) & :=\frac{1}{N_{\Gamma_{j}}} \sum_{i=1}^{N_{\Gamma_{j}}}\left|\mathscr{D}\left(u_{j}\left(\boldsymbol{x}_{\Gamma_{j}}^{i} ; \boldsymbol{\theta}_{j}\right)\right)-\mathscr{D}\left(u_{l}\left(x_{\Gamma_{j}}^{i} ; \boldsymbol{\theta}_{j}\right)\right)\right|^{2} .
\end{aligned}
$$

Overl. domain decomposition

Algorithm 1: DeepDDM for Ω_{j}
Data: Sampling points X_{j}, initial network parameters θ_{j}^{0}
while Convergence (local network \& interface values) not reached do
Train local network u_{j};
Communicate \& update interface values $\mathscr{D}\left(u_{l}\left(\boldsymbol{x}_{\Gamma_{j}}^{i} ; \boldsymbol{\theta}_{j}\right)\right)$ from other subdomains Ω_{l}; end

Numerical Experiments

Strong scaling

Fix the problem complexity \& increase the model capacity.

Optimal scaling: improving the convergence rate and/or accuracy at the same rate as the increase of model capacity.

Let first consider a strong scaling study for a two-dimensional Laplacian model problem:

$$
\begin{aligned}
-\Delta u & =1 \text { in } \Omega \\
u & =0 \text { on } \partial \Omega .
\end{aligned}
$$

We increase the model capacity by increasing the number of subdomains.

Scaling issue

We observe that the performance of the DeepDDM method deteriorates.

Transport of Information One-Level Overlapping Schwarz Methods

Information (in particular, boundary data) is only exchanged via the overlapping regions, leading to slow convergence \rightarrow establish a faster / global transport of information.

Fast Transport of Information via a Coarse Level

Coarse space for the DeepDDM method

- Sparse sampling $X_{f}^{0}=\left\{x_{f}^{i, \text { coarse }}\right\}_{i}$ over the whole domain Ω
- Train coarse network, that is, a global PINN u_{0} with additional loss term
$\lambda_{f} \frac{1}{N_{0}} \sum_{x_{f}^{i, 0} \in X_{f}^{0}}\left|u_{0}\left(x_{f}^{i, 0}\right)-\sum_{j=1}^{N} E_{j}\left(\chi_{j} u_{j}\left(x_{f}^{i, 0}\right)\right)\right|^{2}$ for incorporating information from the first level. Here,
- E_{j} extension by zero outside Ω_{j}
- χ_{j} partition of unity function with support in Ω_{j}
- Incorporate coarse information into the loss for the local subdomain Ω_{j} :

$$
\begin{gathered}
\frac{1}{N_{\Gamma_{j}}} \sum_{i=1}^{N_{\Gamma_{j}}}\left|\mathscr{D}\left(u_{j}\left(x_{\Gamma_{j}}^{i} ; \theta_{j}\right)\right)-W_{j}^{i}\right|^{2} \\
\text { with } W_{f}^{i}=\mathscr{D}\left(\lambda_{c} \cdot u_{l}\left(x_{\Gamma}^{i}\right)+\left(1-\lambda_{c}\right) \cdot u_{0}\left(x_{\Gamma}^{i}\right)\right)
\end{gathered}
$$

Algorithm 2: Two-level DeepDDM

Data: Sampling points X_{j} and coarse sampling points X_{0}, initial network parameters θ_{j}^{0}, parameters λ_{f} and λ_{c}
while Convergence (local network \& interface values) not reached do

Train local network u_{j};
Communicate \& compute
$\sum_{j=1}^{S} E_{j}\left(\chi_{j} u_{j}\left(x_{f}^{i, \text { coarse }}\right)\right.$ for each coarse points
in $X_{f}^{\text {coarse }}$;
Train coarse network u_{0};
Communicate \& update interface values $\mathscr{D}\left(u_{l}\left(x_{\Gamma_{j}}^{i} ; \boldsymbol{\theta}_{j}\right)\right)$ from other subdomains Ω_{l};
Update λ_{f} and λ_{c};
end

2D Poisson Equation - Problem Setup

Model problem:

$$
\begin{aligned}
\Delta u & =r(x) \text { in } \Omega=[0, \pi] \times[0,1] \\
u & =g(x) \text { on } \Gamma
\end{aligned}
$$

We choose r and g to ensure that exact solution is

$$
u(z)=\sin \left(\alpha \pi x_{1}\right) e^{x_{2}}
$$

where α is an integer.

Training setup

- Strong scaling: Latin hypercube sampling for training points with $N_{\Omega}=30000$ and $N_{\partial \Omega}=N_{\Gamma}=16000$.
- Weak scaling: Latin hypercube sampling for training points with $N_{\Omega}=4000$ and $N_{\partial \Omega}=N_{\Gamma}=1500$ per subdomain.
- Each network is composed of two hidden layers with 30 neurons
- Optimization of local/coarse networks: 2500 epochs using the Adam optimizer with initial learning rate $2 \cdot 10^{-4}$ and exp. decay of 0.999 every 100 epochs.
- Codes implemented in TensorFlow2 (v2.2.0) run on a single NVIDIA GeForce GTX 1080 Ti .
- The overlap is set to 30% of the subdomain larger side

2D Poisson Equation - Weak Scaling

One-level DeepDDM

Two-level DeepDDM

\rightarrow Adding a coarse level fixes the issue.

2D Poisson Equation With Variable Frequency

Model problem:

$$
\begin{aligned}
\Delta u & =r(x) \text { in } \Omega=[0, \pi] \times[0,1] \\
u & =g(x) \text { on } \Gamma
\end{aligned}
$$

We choose r and g to ensure that exact solution is:

$$
\begin{aligned}
u(z)= & \sin \left(w_{1} \pi x_{1}\right) \sin \left(w_{1} \pi x_{2}\right) \\
& +\sin \left(w_{2} \pi x_{1}\right) \sin \left(w_{2} \pi x_{2}\right)
\end{aligned}
$$

2D Poisson Equation With Variable Frequency - Weak Scaling

Low frequency test:
$w_{1}=1$ and $w_{2}=3$

Higher frequency test: $w_{1}=1$ and $w_{2}=6$

2D Poisson Equation With Variable Frequency - Weak Scaling

Higher frequency test:
$w_{1}=1$ and $w_{2}=6$

DeepDDM for Helmholtz Problems

Li, Wang, Cui, Xiang, Xu. Deep domain decomposition method: Helmholtz equation. Advances in

 Applied Mathematics and Mechanics (2023)Train local networks u_{s} by transmitting only Robin interface values to the neighboring subdomains.

Use of NNs with plane wave (PW) activation to account for oscillatory nature of the solution. The loss function reads

$$
\mathscr{L}_{s}\left(\theta_{s} ; \boldsymbol{X}_{s}\right):=\mathscr{L}_{\Omega_{s}}\left(\theta_{s} ; \boldsymbol{X}_{s}\right)+\mathscr{L}_{\partial \Omega_{s} \backslash \Upsilon_{s}}\left(\theta_{s} ; \boldsymbol{X}_{s}\right)+\mathcal{L}_{\Gamma_{s}}\left(\theta_{s} ; \boldsymbol{X}_{s}\right),
$$

where

$$
\begin{aligned}
\mathcal{L}_{\Omega_{s}}\left(\theta_{s} ; \boldsymbol{X}_{f_{s}}\right):=\frac{1}{N_{f_{s}}} \sum_{i=1}^{N_{f_{s}}}\left|n\left(u_{s}\left(\boldsymbol{x}_{f_{s}}^{i} ; \theta_{s}\right)\right)-f\left(x_{f_{s}}^{i}\right)\right|^{2}, \\
\mathcal{L}_{\partial \Omega_{s} \backslash \Gamma_{s}}\left(\theta_{s} ; \boldsymbol{X}_{g_{s}}\right):=\frac{1}{N_{g_{s}}} \sum_{i=1}^{N_{g_{s}}}\left|\mathscr{B}\left(u_{s}\left(\boldsymbol{x}_{g_{s}}^{i} ; \theta_{s}\right)\right)-g\left(\boldsymbol{x}_{g_{s}}^{i}\right)\right|^{2}, \\
\mathcal{L}_{\Gamma_{s}}\left(\theta_{s} ; \boldsymbol{X}_{\Gamma_{s}}\right):=\frac{1}{N_{\Gamma_{s}}} \sum_{i=1}^{N_{\Gamma_{s}}}\left|\frac{\partial u_{s}\left(\boldsymbol{x}_{g_{\Gamma_{s}}}^{i} ; \theta_{s}\right)}{\partial \boldsymbol{n}_{s}}+\gamma_{s} u_{s}\left(x_{\Gamma_{s}}^{i} ; \theta_{s}\right)-g_{s}\left(x_{\Gamma_{s}}^{i}\right)\right|^{2} .
\end{aligned}
$$

Advantages

- Number of outer iterations comparable to the use of FDM with DDM
- Competitive solution time/iteration when the wave number increases.

Drawbacks

- Comparison done with an iterative Schwarz method what about Krylov acceleration?
- All relies on PW activation function - number of parameters dependent on k.

Approach 2
Multilevel domain decomposition-based architectures for physics-informed neural networks

Finite Basis Physics-Informed Neural Networks (FBPINNs)

In the finite basis physics informed neural network (FBPINNs) method introduced in Moseley, Markham, and Nissen-Meyer (2023), we solve the boundary value problem

$$
\begin{aligned}
n[u](x) & =f(x), & & x \in \Omega \subset \mathbb{R}^{d}, \\
\mathscr{B}_{k}[u](x) & =g_{k}(x), & & x \in \Gamma_{k} \subset \partial \Omega .
\end{aligned}
$$

using the PINN approach and hard enforcement of the boundary conditions, similar to Lagaris et al. (1998).
FBPINNs use the network architecture

$$
u\left(\boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{J}\right)=e \sum_{j=1}^{J} \omega_{j} u_{j}\left(\boldsymbol{\theta}_{j}\right)
$$

and the loss function
$\mathcal{L}\left(\boldsymbol{\theta}_{1}, \ldots, \theta_{J}\right)=\frac{1}{N} \sum_{i=1}^{N}\left(n\left[e \sum_{x_{i} \in \Omega_{j}} \omega_{j} u_{j}\right]\left(x_{i}, \theta_{j}\right)-f\left(x_{i}\right)\right)^{2}$.

- Overlapping DD: $\Omega=\bigcup_{i=1}^{J} \Omega_{j}$
- Window functions ω_{j} with $\operatorname{supp}\left(\omega_{j}\right) \subset \Omega_{j}$ and $\sum_{j=1}^{J} \omega_{j} \equiv 1$ on Ω

Hard enforcement of boundary conditions

Loss function

$$
\mathcal{L}(\boldsymbol{\theta})=\frac{1}{N} \sum_{i=1}^{N}\left(n[C u]\left(\boldsymbol{x}_{i}, \boldsymbol{\theta}\right)-f\left(\boldsymbol{x}_{i}\right)\right)^{2}
$$

with constraining operator C, which explicitly enforces the boundary conditions.
\rightarrow Often improves training performance

Numerical Results for FBPINNs

PINN vs FBPINN (Moseley et al. (2023))

Scalability of FBPINNs

Consider the simple boundary value problem

$$
\begin{aligned}
& -u^{\prime \prime}=1 \quad \text { in }[0,1] \\
& u(0)=u(1)=0
\end{aligned}
$$

which has the solution

$$
u(x)=1 / 2 x(1-x)
$$

Multi-Level FBPINN Algorithm

We introduce a hierarchy of L overlapping domain decompositions

$$
\Omega=\bigcup_{j=1}^{J^{(I)}} \Omega_{j}^{(I)}
$$

and corresponding window functions $\omega_{j}^{(I)}$ with

$$
\operatorname{supp}\left(\omega_{j}^{(I)}\right) \subset \Omega_{j}^{(I)} \text { and } \sum_{j=1}^{J^{(I)}} \omega_{j}^{(/)} \equiv 1 \text { on } \Omega
$$

This yields the L-level FBPINN algorithm:

L-level network architecture

$$
u\left(\boldsymbol{\theta}_{1}^{(1)}, \ldots, \boldsymbol{\theta}_{J(L)}^{(L)}\right)=e\left(\sum_{l=1}^{L} \sum_{i=1}^{N^{(I)}} \omega_{j}^{(I)} u_{j}^{(I)}\left(\boldsymbol{\theta}_{j}^{(I)}\right)\right)
$$

Loss function

$$
\mathcal{L}=\frac{1}{N} \sum_{i=1}^{N}\left(n\left[C \sum_{x_{i} \in \Omega_{j}^{(I)}} \omega_{j}^{(I)} u_{j}^{(I)}\right]\left(\boldsymbol{x}_{i}, \boldsymbol{\theta}_{j}^{(I)}\right)-f\left(\boldsymbol{x}_{i}\right)\right)^{2}
$$

(b) Individual subdomain solutions

Multilevel FBPINNs - 2D Laplace

Let us consider the simple two-dimensional boundary value problem

$$
\begin{aligned}
-\Delta u & =32(x(1-x)+y(1-y)) & & \text { in } \Omega=[0,1]^{2}, \\
u & =0 & & \text { on } \partial \Omega,
\end{aligned}
$$

which has the solution

$$
u(x, y)=16(x(1-x) y(1-y))
$$

Cf. Dolean, Heinlein, Mishra, Moseley (submitted 2023 / arXiv:2306.05486).

Multi-Frequency Problem

Let us now consider the two-dimensional multi-frequency Laplace boundary value problem

$$
\begin{aligned}
-\Delta u & =2 \sum_{i=1}^{n}\left(\omega_{i} \pi\right)^{2} \sin \left(\omega_{i} \pi \boldsymbol{x}\right) \sin \left(\omega_{i} \pi \boldsymbol{y}\right) & & \text { in } \Omega=[0,1]^{2} \\
u & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

with $\omega_{i}=2^{i}$.
For increasing values of n, we obtain the analytical solutions:

Multi-Level FBPINNs for a Multi-Frequency Problem - Strong Scaling

Multi-Level FBPINNs for a Multi-Frequency Problem - Weak Scaling

- Ongoing: analysis and improvement of the convergence

Cf. Dolean, Heinlein, Mishra, Moseley (submitted 2023 / arXiv:2306.05486).

Helmholtz Problem

Finally, let us consider the two-dimensional Helmholtz boundary value problem

$$
\begin{aligned}
\Delta u-k^{2} u & =f \quad \text { in } \Omega=[0,1]^{2} \\
u & =0 \quad \text { on } \partial \Omega \\
f(\mathbf{x}) & =e^{-\frac{1}{2}(\|\mathbf{x}-0.5\| / \sigma)^{2}}
\end{aligned}
$$

With $k=2^{L} \pi / 1.6$ and $\sigma=0.8 / 2^{L}$, we obtain the solutions:

Multi-Level FBPINNs for the Helmholtz Problem - Weak Scaling

Multifidelity domain decomposition-based physics-informed neural networks for time-dependent problems

Stacking Multifidelity FBPINNs

In the stacking multifidelity PINNs approach introduced in Howard, Murphy, Ahmed, Stinis (arXiv 2023), multiple networks are stacked on top of each other in a recursive way. In particular, the next model $\hat{u}^{M F}$ is trained as a corrector for the previous model $\hat{u}^{S F}$:

$$
\hat{u}^{M F}\left(\mathbf{x}, \theta^{M F}\right)=(1-|\alpha|) \hat{u}_{\text {linear }}^{M F}\left(\mathbf{x}, \hat{u}^{S F}, \theta^{M F}\right)+|\alpha| \hat{u}_{\text {nonlinear }}^{M F}\left(\mathbf{x}, \hat{u}^{S F}, \theta^{M F}\right)
$$

Stacking multifidelity FBPINNs

We combine stacking multifidelity PINNs with FBPINNs by using an FBPINN model (with an increasing number of subdomains) in each stacking step. \rightarrow One-way sequential coupling of the levels

Cf. Heinlein, Howard, Beecroft, Stinis (subm. 2024 / arXiv:2401.07888)

Numerical Results - Pendulum Problem

First, we consider a pedulum problem and compare the stacking multifidelity PINN and FBPINN approaches:

$$
\begin{aligned}
& \frac{d s_{1}}{d t}=s_{2}, \\
& \frac{d s_{2}}{d t}=-\frac{b}{m} s_{2}-\frac{g}{L} \sin \left(s_{1}\right)
\end{aligned}
$$

with $m=L=1, b=0.05, g=9.81$, and $T=20$.

Exemplary partition of unity in time

Numerical Results - Two-Frequency Problem

Second, we consider a two-frequency problem:

$$
\begin{aligned}
\frac{d s}{d x} & =\omega_{1} \cos \left(\omega_{1} x\right)+\omega_{2} \cos \left(\omega_{2} x\right) \\
s(0) & =0
\end{aligned}
$$

on domain $\Omega=[0,20]$ with $\omega_{1}=1$ and $\omega_{2}=15$.

\rightarrow Due to the multiscale structure of the problem, the improvements due to the multifidelity FBPINN approach are even stronger.

Numerical Results - Allen-Cahn Equation

Finally, we consider the Allen-Cahn equation:

$$
\begin{aligned}
s_{t}-0.0001 s_{x x}+5 s^{3}-5 s & =0, \\
s(x, 0) & =x^{2} \cos (\pi x), \\
s(x, t) & =s(-x, t), \\
s_{x}(x, t) & =s_{x}(-x, t),
\end{aligned}
$$

$$
\begin{aligned}
& t \in(0,1], x \in[-1,1], \\
& x \in[-1,1], \\
& t \in[0,1], x=-1, x=1, \\
& t \in[0,1], x=-1, x=1 .
\end{aligned}
$$

PINNs

- Training of PINNs is often problematic when:
- scaling to large domains / high frequency solutions
- multiple loss terms have to be balanced
- Convergence of PINNs has yet to be understood better

DeepDDM for PINNs

- The DeepDDM method is a classical Schwarz iteration with local PINN solver.
- Scalability is enabled by adding a coarse level.

(Multilevel) FBPINNs

- Schwarz domain decomposition architectures improve the scalability of PINNs to large domains / high frequencies, keeping the complexity of the local networks low
- As classical domain decomposition methods, one-level FBPINNs are not scalable to large numbers of subdomains; multilevel FBPINNs enable scalability.

Multifidelity stacking FBPINNs

- The combination of multifidelity stacking PINNs with FBPINNs yields significant improvements in the accuracy and efficiency for time-dependent problems.

Thank you for your attention!

Workshop on Computational and Mathematical Methods in Data Science 2024

Details

Date: April 24-26 2024
Location: Delft University of Technology
This workshop brings together scientists from mathematics, computer science, and application areas working on computational and mathematical methods in data science.

Confirmed invited speakers

- Christoph Brune (University of Twente)
- Victorita Dolean (TU Eindhoven)
- Thomas Richter
- ...

For more details, see
https://searhein.github.io/gamm-cominds-2024/
© $\mathrm{CM}=$ TUDelft 4 TU.AMI COMinDSWorkhop 2024

Workshop on Computational and Mathematical Methods in Data Science 2024 Delft University of Technology, April 25-26, 2024

About the Workshop
Welcome to the Workshop on Computational and Mathematical Methods in Data Science 2024. It is the 2024 edition of the annual workshop of the GAMM Activity Group on "Computational and Mathematical Methods in Data Science" (COMinDS) and is co-organized by the Strategic Research Initiative "Bridging Methods in Data Science" (COMinDS) and is co-organized by the Strategic Research Initiative "Bridgin workshop will be hosted by Delft University Of Technology and take place on April 25 and 26, 2024.

This workshop brings together scientists from mathematics, computer science, and application areas working on computational and mathematical methods in data science.
The meeting will be organized under the support of

- the 4TU Applied Mathematics Institute (AMI) and
tha TII nalft incretruta for ramourational Crionca and Enninaarion (ncse)

