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Scientific Machine Learning in Computational Science and Engineering

Numerical methods Machine learning models

Based on physical models Driven by data
+ Robust and generalizable + Do not require mathematical models
— Require availability of mathematical — Sensitive to data, limited extrapolation
models capabilities

Scientific machine learning (SciML)

Combining the strengths and compensating the weaknesses of the individual approaches:

numerical methods improve machine learning techniques
machine learning techniques  assist numerical methods
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Physics-informed machine learning & motivation

Deep learning-based domain decomposition method
Based on joint work with
Victorita Dolean (TU Eindhoven)

Serge Gratton and Valentin Mercier (IRIT Computer Science Research Institute of Toulouse)

Multilevel domain decomposition-based architectures for physics-informed
neural networks

Based on joint work with

Victorita Dolean (University of Strathclyde, University Céte d’Azur)

Ben Moseley and Siddhartha Mishra (ETH Ziirich)

Multifidelity domain decomposition-based physics-informed neural networks
for time-dependent problems

Based on joint work with

Damien Beecroft (University of Washington)

Amanda A. Howard and Panos Stinis (Pacific Northwest National Laboratory)



Physics-informed machine learning &
motivation



Neural Networks for Solving Differential Equations

Artificial Neural Networks for Solving Ordinary
and Partial Differential Equations

Isaac Elias Lagaris, Aristidis Likas, Member, IEEE, and Dimitrios I. Fotiadis

Published in IEEE Transactions on Neural Networks, Vol. 9, No. 5, 1998.

Approach Construction of the trial functions
Solve a general differential equation subject to The trial functions explicitly satisfy the
boundary conditions boundary conditions:

G(x, W(x), V¥(x), V’W¥(x)) =0 in Q V.(x,0) = A(x) + F(x, N(x,0))

by solving an optimization problem = N is a feedforward neural network with

min Z G(xi, Ve(x:, 8), VV,(x;, 6), Vzlllt(x,-, 0))2 trainable parameters 6 and input x € R”
0 . = A and F are fixed functions, chosen s.t.:
= A satisfies the boundary conditions
= F does not contribute to the

where \Ilt(x, 0) is a trial function, x; sampling
points inside the domain Q2 and @ are

adjustable parameters. DL G IS
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Neural Networks for Solving Differential Equations

Approach Construction of the trial functions
Solve a general differential equation subject to The trial functions explicitly satisfy the
boundary conditions boundary conditions:

G(x, W(x), V¥(x), V’W¥(x)) =0 in Q V.(x,0) = A(x) + F(x, N(x,0))

by solving an optimization problem = N is a feedforward neural network with

minz G(xi, Ve(x:, 0), VV.(x;, 0), VWe(x;, ) trainable parameters 6 and input x € R”
0 ‘ ’ T T ’ = A and F are fixed functions, chosen s.t.:
= A satisfies the boundary conditions

Xj
where \Ilt(x, 0) is a trial function, x; sampling

points inside the domain Q2 and 6 are = F does not contribute to the

boundary conditions

adjustable parameters.

boundary conditions

A(z) + F(x, N(z,p))
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Lagaris et. al’'s Method — Motivation

Solve the boundary value problem
AVi(x,0)+1 = 0on][0,1],

V.(0,0) =V(1,0) = O,
via a collocation approach:

min > (1 - Av(x,0))

X

0.2 T T T T T T 100
Wy (zi,0) — (AU (e, 0) + 1)2
0.1+ 50
0 —0
—0.1+ -+ =50
—0.2 ‘ ‘ ‘ —100

| | |
0 0.2 04 0.6 0.8 1
(AV,(x;,0) +1)*> >>0
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Boundary conditions

The boundary conditions can be enforced
explicitly, for instance, via the ansatz:

W.(x,0) = sin(rx) - F(x, N(x,0)

0.2 T T T T T
Wy (zi,0) — (AU, 0) + 1)?
H1
0.1+
0 0
701 [
—4-1
—0.2 ‘ ‘

| | | |
0 0.2 04 0.6 0.8 1
(AW, (x;,0) +1)° =~ 0
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Physics-Informed Neural Networks (PINNs)

In the physics-informed neural network (PINN) approach

introduced by Raissi et al. (2019), a neural network is

employed to discretize a partial differential equation
Nu(x,t) = f(xt), (x,t)€0,T]xQCR".

It is based on the approach by Lagaris et al. (1998). The

main novelty of PINNs is the use of a hybrid loss function:

oL = WdatasLdata + WPDELPDE,

where wyata and wppe are weights and

1 Niata R . Hybrid loss
Idata = Ndata : :i:I (U(X,', ti) - U,‘) ) Small data Some data Big data
1 Nppe ’
Leoe = § (Mu](xi, ) — f(xi, t))" .
Nppe i=1
Advantages Drawbacks
Lots of physics Some physics No physics
= “Meshfree” = Training cost and .
= Small data robustness = Known solution values can be
= Generalization properties = Convergence not included in Lyata
= High-dimensional problems well-understood . ..
= Inverse and parameterized = Difficulties with scalability = Initial and boundary conditions
problems and multi-scale problems are also included in Lyata
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Available Theoretical Results for PINNs — An Example

Mishra and Molinaro. Estimates on the generalisation error of PINNs, 2022

Estimate of the generalization error

The generalization error (or total error) satisfies

Ec < Crpe87 + Grpe CL/P N~/°

quad

where
» &g =Eg(0; X) = |lu—u*||, (V Sobolev space, X training data set)
= &7 is the training error (/P loss of the residual of the PDE)
= Cppe and Cquaq constants depending on the PDE resp. the quadrature

= N number of the training points and « convergence rate of the quadrature

Rule of thumb:

“As long as the PINN is trained well, it also generalizes well”
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Scaling Issues in Neural Network Training

Spectral bias

Neural networks prioritize learning lower frequency functions first irrespective of their amplitude.

4 4 4 4
2 2 2 2
0 0 [ 0
-2 -2 -2 -2
-4 -4 -4 -4
-6 -6 -6 -6
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
100 iterations 1000 iterations 10000 iterations 80000 iterations

Rahaman et al., On the spectral bias of neural networks, ICML (2019)

= Solving solutions on large domains and/or with multiscale features potentially requires very
large neural networks.

= Training may not sufficiently reduce the loss or take large numbers of iterations.

= Significant increase on the computational work

Dependence on the choice of activation functions: Hong et al. (arXiv 2022)

Convergence analysis of PINNs via the neural tangent kernel: Wang, Yu, Perdikaris, When and
why PINNs fail to train: A neural tangent kernel perspective, JCP (2022)
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Motivation — Some Observations on the Performance of PINNs

Solve
v = cos(wx),
u(0) = 0,

for different values of w
using PINNs with
varying network
capacities.

Scaling issues

= Large computational
domains

= Small frequencies

Cf. Moseley, Markham, and
Nissen-Meyer (2023)
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(a) PINN (w =1, 2 layers, 16 hidden units)

(b) PINN (w =15, 2 layers, 16 hidden units)

1.0 0.075
: —— Exact solution —— Exact solution
—— PINN 10:050; —— PINN
05 0.025
= 00 5 0.000
-0.025
<02 -0.050
~10 -0.075
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 a4 6
x x
(c) PINN (w =15, 4 layers, 64 hidden units) (d) PINN (w = 15, 5 layers, 128 hidden units)
0.075 0.075 -
—— Exact solution —— Exact solution
0.050 ~—— PINN 0.050 — PI
0.025 0.025
0.000 s 0.000
-0.025 -0.025
-0.050 =0.050
—0.075 -0.075
-6 —4 -2 0 2 4 6 —6 —4 -2 0 2 4 6
X X
(e) Test loss
10° 4
1071 4
@ —— PINN (w =1, 2 layers, 16 hidden units)
-2
o110 —— PINN (w =15, 2 layers, 16 hidden units)
ba —— PINN (w =15, 4 layers, 64 hidden units)
1073 —— PINN (w =15, 5 layers, 128 hidden units)
1074
0 10000 20000 30000 40000 50000

Training step

(a) 321 free parameters

(d) 66433 free parameters
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Motivation — Some Observations on the Performance of PINNs

Solve 1o (a) PINN (w =1, 2 layers, 16 hidden units) 6075 (b) PINN (w =15, 2 layers, 16 hidden units) y
—: ‘E’I);\‘arilsululmn o0 : EIXNE':l solution

! . o5 0.025
u = cos(wx), L e
-0.025
u (0) = 0’ “0: -0.050
-1.0 -0.075

. -6 -4 -2 0 2 a 6 -6 -4 -2 0 2 4 6

for different values of w g ) ! . ' '
(c) PINN (w =15, 4 layers, 64 hidden units) (d) PINN (w =15, 5 layers, 128 hidden units)

i H 0075 —— Exact solution 0075 —— Exact solution
USIng PINNS Wlth 0.050 = EINN! ¥ 0.050 mim IEINNt ¥i
varying network 00z 0025

0.000 s 0.000
capacitieS. -0.025 ~0.025
-0.050 =0.050
—0.075 -0.075
-6 —4 -2 [ 2 4 6 —6 -4 -2 0 2 4 6
Scaling issues " (e) Test loss
= Large computational -
domains @, , 2 layers, 16 hidden units)
© 10 5, 2 layers, 16 hidden units)
g 3 .5, 4 layers, 64 hidden units)
= Small frequencies 107 Replace the global network by a sum of 5.5 toyers, 12 hidden units)
- local networks defined on an overlapping
Cf. Moseley, Markham, and 0 domain decomposition.
Nissen-Meyer (2023) T
(a) 321 free parameters (d) 66433 free parameters
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Domain Decomposition Methods

Decomposing a large global problem into

smaller local problems:

= Better robustness and scalability of
numerical solvers

= Improved computational efficiency

Images based on Heinlein, Perego, Rajamanickam (2022)

= Introduce parallelism

Historical remarks: The alternating
Schwarz method is the earliest domain

decomposition method (DDM), which has Q0
been invented by H. A. Schwarz and
published in 1870: o0 Tip,
= Schwarz used the algorithm to establish : oK,

the existence of harmonic functions
with prescribed boundary values on
regions with non-smooth boundaries.
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DDM-Based Approaches for Neural Network-Based Discretizations — Literature

A non-exhaustive overview:

= cPINNs: Jagtap, Kharazmi, Karniadakis (2020)

= XPINNSs: Jagtap, Karniadakis (2020)

= D3M: Li, Tang, Wu, and Liao (2019)

» DeepDDM: Li, Xiang, Xu (2020); Mercier, Gratton, Boudier (arXiv 2021); Li, Wang, Cui,
Xiang, Xu (2023); Sun, Xu, Yi (arXiv 2022, arXiv 2023)

= Schwarz Domain Decomposition Algorithm for PINNs: Kim, Yang (2022, arXiv 2022)

= FBPINNs: Moseley, Markham, and Nissen-Meyer (2023); Dolean, Heinlein, Mishra,
Moseley (2024, subm. 2023 / arXiv:2306.05486); Heinlein, Howard, Beecroft, Stinis
(subm. 2024 / arXiv:2401.07888)

An overview of the state-of-the-art in early 2021: ~ An overview of the state-of-the-art in the end of
‘ A. Heinlein, A. Klawonn, M. Lanser, J. 2023:
Weber ‘ A. Klawonn, M. Lanser, J. Weber
Combining machine learning and domain Machine learning and domain
decomposition methods for the solution of decomposition methods — a survey
partial differential equations — A review arXiv:2312.14050. 2023

GAMM-Mitteilungen. 2021.
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https://arxiv.org/abs/2306.05486
https://arxiv.org/abs/2401.07888

Combining Schwarz Methods with Neural Network-Based Discretizations

Approach 1 — Classical Schwarz iteratio

Local optimization Local optimization Local optimization
No 2 No 2 Ne 2
o/ (”[ugk)](ﬂzvsj)’f(z,)) + Siid (Il[ugk)](z‘v,ej)f/(ﬂ,)) + h (Yl[uj(k)](ml.67)7/(ml)) +
2 2 2
ponis (u§k+])(¢l,91) = uf”(m,.el)) ponis (u;‘““)m,,e]) - uf”(ac,a,)) > (u§k+l)(ml,81) - (e, 9‘))

o . -
e K « 7| Schwarz iteration - g > o | i >

k41 N
Jsom a0, = o | AEI=s [Eyc— [y
N

2

Approach 2 — Via the neural network architecture

& A" A gt

gy

»
~ \L{/
— _of
Global optimization

Global optimization | o
rld - e
A b s E S SN S .
;€0 <

Alexander Heinlein (TU Delft) ANCS Seminar




Approach 1
Deep learning-based domain
decomposition method




Deep Learning-Based Domain Decomposition Method (DeepDDM)

Li, Xiang, Xu. Deep domain decomposition method: Elliptic problems. PMLR (2020)

DeepDDM for Overlapping Schwarz

Overl. domain decomposition

In the DeepDDM method, we train a local networks u; using
local loss functions on subdomain €;
Lj (67) := La; (6;) + Loaj\r; (6)) + Li; (6)) ,

with volume, boundary, and interface jump terms

oy (6= 5 3 |1 (o (:89)) = £ (35) [
J

i=1

Loaj\r; (6)) = i ZNgj |@ (”f (X;j;ej)) & (xé;) |2’

i i=1

)= 3 [0 (0 (40) - (o (50

~ Boundary points b."
« Interface points.
+ Interior points

Algorithm 1: DeepDDM for Q;

Data: Sampling points Xj, initial network parameters 019

while Convergence (local network & interface values) not reached do
Train local network uj;

end

U Delft) ANCS Seminar

Communicate & update interface values CD(u,(x}'j; 0,-)) from other subdomains ;;




Numerical Experiments

Strong scaling
Fix the problem complexity & increase the
model capacity.

Optimal scaling: improving the convergence rate
and/or accuracy at the same rate as the increase of
model capacity.

Let first consider a strong scaling study for
a two-dimensional Laplacian model
problem:

—Au=1inQ
u =0 on 0Q.

We increase the model capacity by
increasing the number of subdomains.

Scaling issue

We observe that the performance of the
DeepDDM method deteriorates.

Weak scaling
Increase the problem complexity & the model
capacity at the same rate.

Optimal scaling: constant convergence rate and/or
accuracy to stay approximately constant.

Relative 12 error (log)

0

10 — 2X2 pre

—— 3x3 pre

—— 4x4 pre

—— 5x5 pre

10-14 8x8 pre
10—2 4
10—3 4

0 10 20 30 40 50
Number of outter iteration
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Transport of Information One-Level Overlapping Schwarz Methods

00
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Transport of Information One-Level Overlapping Schwarz Methods

00

]
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Transport of Information One-Level Overlapping Schwarz Methods

NERINER %A

o0
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Transport of Information One-Level Overlapping Schwarz Methods

o0
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Transport of Information One-Level Overlapping Schwarz Methods

o0
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Transport of Information One-Level Overlapping Schwarz Methods

o0

Information (in particular, boundary data) is only exchanged via the overlapping regions,
leading to slow convergence — establish a faster / global transport of information.
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port of Information via a Coarse Level

Coarse space for the DeepDDM method

B q 0 _ i,coarse -
Sparse sampling XP = {x*"**} over the Algorithm 2: Two-level DeepDDM

whole domain 2

Data: Sampling points X; and coarse sampling
= Train coarse network, that is, a global PINN ug

points Xp, initial network parameters 0]9,
with additional loss term

parameters Ar and Ac

1 i,0 o i,0 ? while Convergence (local network & interface
Ao () =Y EGuu() sl
No £ . j=1 values) not reached do
O Train local network uj;
for incorporating information from the first Communicate & compute
level. Here, st:l E;(xjuj(x}°"*®) for each coarse points
= E; extension by zero outside £; in Xgoarse,
= x; partition of unity function with Train coarse network up;
support in Q Commun]lcate & update interface values
D (u,(x}_; 0_,')) from other subdomains €;
= Incorporate coarse information into the loss for J
Update Ar and A¢;

the local subdomain €;:

end
2

1 Ly i f
N—FJZ;’I | (w (x:65)) = W]

with Wi = D(Ac - uy(xE) + (1 — Ac) - uo(x})).
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2D Poisson Equation — Problem Setup

Model problem:

24

Au=r(x)in Q=[0,7] x [0,1]
u=g(x)onTl

We choose r and g to ensure that exact solution is

u(z) = sin(amxy)e*,

where « is an integer.

"0.0 0.5 1.0 15 2.0 25 3.0
x1

Training setup

= Strong scaling: Latin hypercube sampling for training points with N = 30000 and Ngo = Nr = 16 000.

= Weak scaling: Latin hypercube sampling for training points with Ng = 4000 and Npq = Nr = 1500 per
subdomain.

= Each network is composed of two hidden layers with 30 neurons

= Optimization of local/coarse networks: 2500 epochs using the Adam optimizer with initial learning rate
2.10~* and exp. decay of 0.999 every 100 epochs.

= Codes implemented in TensorFlow2 (v2.2.0) run on a single NVIDIA GeForce GTX 1080 Ti.

= The overlap is set to 30% of the subdomain larger side
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2D Poisson Equation — Weak Scaling

One-level DeepDDM

Two-level DeepDDM

100 4 == without coarse 2x2
N without coarse 3x3
S~o == without coarse 4x4
10711 N
N
N
\\
) ~Q
= ~
~
\\
~
10724 Sso
~
~
~
~
~ ~
~
~
~
~
~
~
~
SS
—3 Sso
10734 ~<
0 2 4 6 8
Outter iterations

10°
101 T
2 CT- S~<
107 L N — with coarse 4x2
T =~=~.~= without coarse 2x2
w3 with coarse 9x3
g 10 without coarse 3x3
—— with coarse 16x4
10-4 without coarse 4x4
10-°
10-°
0 2 4 6 8
Outter iterations

— Adding a coarse level fixes the issue.




2D Poisson Equation With Variable Frequency

Model problem:

Au=r(x)in Q=10,7] x [0,1]

u=g(x)onTl 04
0.0
We choose r and g to ensure that exact
solution is: o4
-0.8
u(z) = sin(wamxy)sin(wimxz) s

+sin(wamxy)sin(wamxy)

Alexander Heinlein (TU Delft) ANCS Seminar




2D Poisson Equation With Variable Frequency — Weak Scaling

Low frequency test:
wi=1and wp, =3

Higher frequency test:
wp = 1 and wy = 6

Alexander Heinlein (TU Delft)

with coarse 2x2
== without coarse 2x2
with coarse 3x3
without coarse 3x3
~— with coarse 4x4
without coarse 4x4

X2

0.8

0.6

0.4

0.2

1.0

-0.8 0 2 6 8
Outter iterations
2.0
— with coarse 2x2
16 ~ = without coarse 2x2
100 with coarse 3x3
12 without coarse 3x3
i < —— with coarse 4x4
without coarse 4x4
0.8 e
wwed L N T
04 g A
0.0
—04 101 ~e_ .
-0.8 Rt
-1.2 1y : s

Outter iterations.

ANCS Seminar




2D Poisson Equation With Variable Frequency — Weak Scaling

Higher frequency test:
wi=1and wp, =6

Hyper parameter
tuning

1 # epochs for
each sub problem

1 # outer Schwarz
iterations

Alexander Heinlein (TU Delft)

with coarse 2x2
1.6 == without coarse 2x2
10t with coarse 3x3
. without coarse 3x3
i . with coarse 4x4.
> without coarse 4x4
o8 | | Aea__ .
vl L TTTTTIUNR
< 0.4 2 /(\
\,
0.0
-0.4 0% ~< .
—038 Tm——
-2 4 2 4 6 8
Outter iterations
x1
2,0 N
Strong scalability test
ig 100 without coarse 2000
) with coarse 2000
~ = without coarse 6000
12 —— with coarse 6000
without coarse 10000
08 100 with coarse 10000
04 w1 ST
L N Tt
0.0 w4\ N TTTTme——e
-0.4
-0.8 102
-1z 0 2 4 6 8 10 12 14
Outter iterations
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DeepDDM for Helmholtz Problems

Li, Wang, Cui, Xiang, Xu. Deep domain decomposition method: Helmholtz equation. Advances in
Applied Mathematics and Mechanics (2023)

Train local networks us by transmitting only Robin interface Advantages

values to the neighboring subdomains. = Number of outer iterations
Use of NNs with plane wave (PW) activation to account for comparable to the use of FDM
oscillatory nature of the solution. The loss function reads with DDM

= Competitive solution

Ls (055 Xs) = Lag (0s; Xs) + Lagar, (0s; Xs) + Lrg (055 Xs) . . .
time/iteration when the wave

where N number increases.
fs
. _ 1 i NE
Lo, (0s; Xr,) == Ve E ‘n (us (x:05)) = F (xfs)| . Drawbacks
=t = Comparison done with an
N,
£ 2 iterative Schwarz method —

1 i i
Loaars (6: Xe:) = Ne. Z i@ (us (xgs; 95)) o E (xgs) what about Krylov

) acceleration?
1 i Ous (xi '95)
Lrg (05 Xr,) = o E + + Ysus (x}'s; 05) — g (x}s) . = All relies on PW activation
S .
° = function — number of

parameters dependent on k.
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Approach 2

Multilevel domain decomposition-based
architectures for physics-informed neural
networks




In the finite basis physics informed neural
network (FBPINNs) method introduced in
Moseley, Markham, and Nissen-Meyer (2023),
we solve the boundary value problem

Nnul(x) = f(x), x€QCR

Bi[ul(x) = gk(x), xeTlC.
using the PINN approach and hard enforcement
of the boundary conditions, similar to Lagaris
et al. (1998).

FBPINNSs use the network architecture

u(6s,. .., GZ wju; (65)

and the loss functlon
Z ne > wulx, 6
X €9Q;

= Overlapping DD: Q = UI:1 Q
= Window functions w; with supp(w;) C Q;

and Z,-J:l

’C(elv"'veJ) =

wj=1onQ

Alexander Heinlein (TU Delft)

f(x,)) .

Finite Basis Physics-Informed Neural Networks (FBPINNSs)

Hard enforcement of boundary conditions

Loss function N
1
=5 > (MCu(x,0) — f(x)),
i=1
with constraining operator C, which explicitly

enforces the boundary conditions.

— Often improves training performance

1
Window
function
0

Subdomain
definition

Overlapping
models
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Numerical Results for FBPINNSs

PINN vs FBPINN (Voscley et al. (2023)) Scalability of FBPINNs

[FBPINN local solutions] Consider the simple 02 o] | T
0.050 [ =4e01-9 ]
l ‘ \ boundary value problem ois
0.025 l 1 . .15 e
—u’ =1 in|0,1
0.000 [ Z ]’
0.1 B
-0.025 U(O) :U(l) = 0,
0050 which has the solution 0.05 - 1
-6 -4 -2 0 2 4 6 -1
u(x) = 1/2x(1 — x). 0 ! ! . |
FBPINN global solution T Ekaktpdafion &) = ) 0 02 04 06 08 1
0.050 ~—— FBPINN T T T
0.025 1071 4
0.000 § ]
-0.025 r —— 2 subdomains | 3
~0.050 1072 ¢ — 4 subdomains |4 | 2
5 § —— 8 subdomains ||
6 Za -2 0 2 4 6 = [ —— 16 subdomains | || 3
107 107! e o
— FBPINN —— FBPINN < 103 b 1%
SRPINN — PINN £ el
1072 1072 r ] §
o 1073 = 1073 10-4 1 417
107* 10-* L | | 1 g
0 0.5 1 1.5 2
o 20000 40000 00 05 1.0 15 20 . . 104
Training step FLOPS 1013 # iterations 10
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Multi-Level FBPINN Algorithm

We introduce a hierarchy of L overlapping domain ) Q !
decompositions T
S0 level 1§ o® 1
Q= o S ]
il [l e e )
. . b= . o . level 2 4 o - &) 1
and corresponding window functlons w:’ with R N S s ]
o o® o® o®
supp( (’)) C Q(’ and E J(I =lonQ. === SO S
J=1 level 4 £ o [Qu)l ol l nu)l ol l o [Q<4) IQ(A) 1
This yields the L-level FBPINN algorithm: B
L-level network architecture Loss function
L nNO
(1 () 2
u(6,.. 0% _ ZZ“’(’) (1)) = § (nje E WD uP1(x;,60) — £(x))
=1 i=1 i=1 xi eQ"
(a) Window functions (b) Individual subdomain solutions (c) FBPINN solution
1.0 1.0 — evell 1.0
0.8 0.8 e 0.8
0.6 1 0.6 0.6 1
0.4 0.4 0.4
0.2 0.2 0.2 -
—— Exact solution
0.04 001 0.0 —— FBPINN solution
-1 0 1 2 0.0 0.5 1.0 0.0 05 1.0
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Multilevel FBPINNs — 2D Laplace

Let us consider the simple two-dimensional boundary value

Exact solution

problem 08
q 2
—Au=32(x(1—-x)+y(l—-y)) inQ=]0,1], 0.6
u=20 on 01, 04
which has the solution 0.2
00 02 04 06 08 10700
u(x =16 (x(1 — x)y(1 — .
(x,y) (x(1 = x)y(1-y)) o
100 100 100
PINN [1, 2] levels FBPINN 1.1 overlap === PINN 3 layers 64 hidden units
FBPINN 1.5 overlap FBPINN 1 layer 2 hidden units
® 1071 4 4] levels #1071 4 ~—— FBPINN 1.9 overlap | 4 1071 4 FBPINN 1 layer 4 hidden units
K3 FBPINN [4] level ° —— FBPINN 2.3 overlap | £ ~— FBPINN 1 layer 8 hidden units
i ~— FBPINN [1, 2, 4, 8] lev i —— FBPINN 2.7 overlap | & —— FBPINN 1 layer 16 hidden units
£ 1072 4 —\— FBPINN [8] levels 210724 210724 FBPINN 1 layér 32 hidden units
i} ~— FBPINN[L,2, 4,8, 16] levels | T} at
© FBPINN [16] level ° °
-?n_) 10-3 [16] levels -g 10-3 4 g 10-3 4
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Cf. Dolean, Heinlein, Mishra, Moseley (submitted 2023 / arXiv:2306.05486).
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Multi-Frequency Problem

Let us now consider the two-dimensional multi-frequency Laplace boundary value problem
~Au=2%"" (wm)?sin (wimx)sin (wiry) in Q= [0,1]%,
i=1
u=0 on 09,
with w; = 2.

For increasing values of n, we obtain the analytical solutions:

Alexander Heinlein (TU Delft) ANCS Seminar



Multi-Level FBPINNSs for a Multi-Frequency Problem — Strong Scaling

FBPINN O FBPINN O FBPINN O FBPINN O  FBPINN
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[64]
(320, 320)

Cf. Dolean, Heinlein, Mishra, Moseley (submitted
2023 / arXiv:2306.05486).
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Multi-Level FBPINNSs for a Multi-Frequency Problem — Weak Scaling
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= Ongoing: analysis and improvement of the convergence

Cf. Dolean, Heinlein, Mishra, Moseley (submitted 2023 / arXiv:2306.05486).
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Helmholtz Problem

Finally, let us consider the two-dimensional Helmholtz boundary value problem

Au—Ku=f inQ=][0,1],
u=0 on 09,
F(x) = e~ 3(Ix—0sI/o)

With k = 2'7/1.6 and o = 0.8/2", we obtain the solutions:
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Multi-Level FBPINNSs for the Helmholtz Problem — Weak Scaling
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Multifidelity domain decomposition-based
physics-informed neural networks for
time-dependent problems




Stacking Multifidelity FBPINNs

In the stacking multifidelity PINNs approach introduced in Howard, Murphy, Ahmed, Stinis (arXiv

2023), multiple networks are stacked on top of each other in a recursive way. In particular, the

aMF

next model is trained as a corrector for the previous model #°F:

~ ~ S A AS
0™ (x,0M) = (1 = |a])inear (%, 8, 0™) + || Bnopinear (x, &, 6"")
Step 0

Stacking Step 1

Linear network
Pregicted ult. x)

.as‘ o Stacking Step N

Linear network

000 025 030 075 100
¢

o1ge =S|

Stacking multifidelity FBPINNSs

We combine stacking multifidelity PINNs with FBPINNSs by using an FBPINN model (with an
increasing number of subdomains) in each stacking step. — One-way sequential coupling of the
levels Cf. Heinlein, Howard, Beecroft, Stinis (subm. 2024 / arXiv:2401.07888)
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Numerical Results — Pendulum Problem

First, we consider a pedulum problem and compare the
stacking multifidelity PINN and FBPINN approaches:
)
dt
d52 b I3
o i sin(s1)

with m=L =1, b=0.05 g =9.81, and T = 20.

= S2,

10%4 . ~~~ Stacking PINN
—e— Stacking FBPINN

S
o
<'10-14
o
2
S
©
0]
I

10—2_

0 2 4 6 8 10
Stacking level
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Numerical Results — Two-Frequency Problem

Second, we consider a two-frequency problem:

ds _ w1 cos(w1x) + wa cos(wax),

dx
s(0) =0,
on domain Q = [0, 20] with w; = 1 and w», = 15.
: —e— Stacking FBPINN
5 \\ —A— Stacking PINN
- \ --- SF
£107% 44
) \
0 <& AV
9] A
g B X
" 5107 e
2 o A‘x-—*x—t"
24
-4
— Exact —— Level 2 0 -3
~—— Level0 --- Level4 _2 1075
—6{ ~ Levell 16 17 18 19 20 0 5 10 15
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 Stacking level

— Due to the multiscale structure of the problem, the improvements due to the multifidelity
FBPINN approach are even stronger.
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Numerical Results — Allen—Cahn Equation

Finally, we consider the Allen—Cahn equation:

st — 0.0001s,x + 5% — 55 = 0, t€(0,1],x € [-1,1],
s(x,0) = x? cos(mx), x € [-1,1],
s(x, t) = s(—x, t), te[0,1],x=-1,x=1,
sx(x, t) = sx(—x, t), tef0,1],x=-1,x=1.
Exact s(t, x) Prediction, level 0
1 1
x 0 0 x Lo
-1 -1
i -

Prediction, level 1

t

Prediction, level 2
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= Training of PINNs is often problematic when:

= scaling to large domains / high frequency solutions
= multiple loss terms have to be balanced

= Convergence of PINNs has yet to be understood better

DeepDDM for PINNs

= The DeepDDM method is a classical Schwarz iteration with local PINN solver.
= Scalability is enabled by adding a coarse level.

(Multilevel) FBPINNSs
= Schwarz domain decomposition architectures improve the scalability of PINNs to
large domains / high frequencies, keeping the complexity of the local networks low
= As classical domain decomposition methods, one-level FBPINNSs are not scalable to
large numbers of subdomains; multilevel FBPINNs enable scalability.

Multifidelity stacking FBPINNs

= The combination of multifidelity stacking PINNs with FBPINNs yields significant
improvements in the accuracy and efficiency for time-dependent problems.

Thank you for your attention!



Workshop on Computational and Mathematical Methods in Data Science 2024
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