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Numerical Analysis and Machine Learning

Numerical methods

Based on physical models

+ Robust and generalizable

– Require availability of mathematical

models

Machine learning models

Driven by data

+ Do not require mathematical models

– Sensitive to data, limited extrapolation

capabilities

Scientific machine learning (SciML)

Combining the strengths and compensating the weaknesses of the individual approaches:

numerical methods improve machine learning techniques

machine learning techniques assist numerical methods
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Classical Schwarz Domain Decomposition

Methods



Domain Decomposition Methods

Images based on Heinlein, Perego, Rajamanickam (2022)

Idea

Decomposing a large global problem into

smaller local problems:

• Better robustness and scalability of

numerical solvers

• Improved computational efficiency

• Introduce parallelism

Historical remarks: The alternating

Schwarz method is the earliest domain

decomposition method (DDM), which has

been invented by H. A. Schwarz and

published in 1870:

• Schwarz used the algorithm to establish

the existence of harmonic functions

with prescribed boundary values on

regions with non-smooth boundaries.
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The Alternating Schwarz Algorithm

For the sake of simplicity, instead of the two-dimensional geometry,
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we consider the one-dimensional Poisson

equation

−u
′′ = 1 in [0, 1],

u(0) = u(1) = 0.

Overlapping domain decomposition:

0 Ω 1Ω′
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Ω′

2
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Solution: u(x) = −
1

2
x(x − 1).
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Let us consider the simple boundary value problem: Find u such that

−u
′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform an alternating Schwarz iteration:

Figure 1: Iterate (left) and error (right) in iteration 0.
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We perform an alternating Schwarz iteration:
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Let us consider the simple boundary value problem: Find u such that

−u
′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform an alternating Schwarz iteration:

Figure 1: Iterate (left) and error (right) in iteration 2.
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Let us consider the simple boundary value problem: Find u such that

−u
′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform an alternating Schwarz iteration:

Figure 1: Iterate (left) and error (right) in iteration 3.
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Let us consider the simple boundary value problem: Find u such that

−u
′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform an alternating Schwarz iteration:

Figure 1: Iterate (left) and error (right) in iteration 4.

Alexander Heinlein (TU Delft) CASA Colloquium 5/31



Let us consider the simple boundary value problem: Find u such that

−u
′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform an alternating Schwarz iteration:

Figure 1: Iterate (left) and error (right) in iteration 5.
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The alternating Schwarz algorithm is sequential because each local boundary value

problem depends on the solution of the previous Dirichlet problem:

(D1)







−∆u
n+1/2 = f in Ω′

1,

u
n+1/2 = un on ∂Ω′

1

u
n+1/2 = un on Ω \ Ω′

1

(D2)







−∆u
n+1 = f in Ω2,

u
n+1 = un+1/2 on ∂Ω′

2

u
n+1 = un+1/2 on Ω \ Ω′

2

???

Idea: For all red terms, we use the values from the previous iteration. Then, the both

Dirichlet problem can be solved at the same time.
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The Parallel Schwarz Algorithm

The parallel Schwarz algorithm has been introduced by Lions (1988). Here, we solve the

local problems
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Since u
n
1 and u

n
2 are both computed in the previous iteration, the problems can be solved

independent of each other.
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Since u
n
1 and u

n
2 are both computed in the previous iteration, the problems can be solved

independent of each other.

This method is suitable for parallel computing!

!!!
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Let us again consider the simple boundary value problem: Find u such that

−u
′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform a parallel Schwarz iteration:

Figure 2: Iterate (left) and error (right) in iteration 0.
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Let us again consider the simple boundary value problem: Find u such that

−u
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We perform a parallel Schwarz iteration:

Figure 2: Iterate (left) and error (right) in iteration 1.
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Let us again consider the simple boundary value problem: Find u such that

−u
′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform a parallel Schwarz iteration:

Figure 2: Iterate (left) and error (right) in iteration 2.
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Let us again consider the simple boundary value problem: Find u such that

−u
′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform a parallel Schwarz iteration:

Figure 2: Iterate (left) and error (right) in iteration 3.
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Let us again consider the simple boundary value problem: Find u such that

−u
′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform a parallel Schwarz iteration:

Figure 2: Iterate (left) and error (right) in iteration 4.
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Let us again consider the simple boundary value problem: Find u such that

−u
′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform a parallel Schwarz iteration:

Figure 2: Iterate (left) and error (right) in iteration 5.
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Effect of the Size of the Overlap

We investigate the convergence of the methods (using the alternating method as an example)

depending on the size of the overlap:
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Effect of the Size of the Overlap
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Figure 3: Error in iteration 0.
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Effect of the Size of the Overlap
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Effect of the Size of the Overlap
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Figure 3: Error in iteration 2.
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Effect of the Size of the Overlap
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Figure 3: Error in iteration 3.
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Effect of the Size of the Overlap
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Figure 3: Error in iteration 4.
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Effect of the Size of the Overlap
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Figure 3: Error in iteration 5.
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Effect of the Size of the Overlap

Overlap 0.05 Overlap 0.1

Figure 3: Error in iteration 5.

⇒ A larger overlap leads to faster convergence.
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Schwarz Domain Decomposition

Preconditioners



Solvers for Partial Different Equations

Consider a diffusion model problem:

−∆u(x) = f in Ω = [0, 1]2,

u = 0 on ∂Ω.

Discretization using finite elements yields a sparse system of linear

equations

Ku = f .

The accuracy of the finite element solution depends on the refinement

level of the mesh h: higher refinement ⇒ better accuracy.

Direct solvers

For fine meshes, solving the

system using a direct solver is

not feasible due to superlinear

complexity and memory

cost.

Iterative solvers

Iterative solvers are efficient for

solving sparse systems, however,

the convergence rate depends on

the condition number:

κ(K) = λmax(K)
λmin(K) ≤ C

h2
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Solvers for Partial Different Equations

Consider a diffusion model problem:

−∆u(x) = f in Ω = [0, 1]2,

u = 0 on ∂Ω.

We solve Ku = f using the conjugate gradient (CG) method:

0 50 100 150 200 250
10

−13

10
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10
−1

iterations

∥
b
−
A
x
∥

16 × 16

32 × 32

64 × 64

128 × 128
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Solvers for Partial Different Equations

Consider a diffusion model problem:

−∆u(x) = f in Ω = [0, 1]2,

u = 0 on ∂Ω.

We solve Ku = f using the conjugate gradient (CG) method:
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∥
b
−
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64 × 64

128 × 128

⇒ Introduce a preconditioner M−1 ≈ K−1 to improve convergence:

M
−1

Ku = M
−1

f
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Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner

Overlap δ = 1h Solution of local problem

Based on an overlapping domain decomposition, we

define a one-level Schwarz operator

M
−1
OS-1

K =
∑N

i=1
R

⊤
i K

−1
i

Ri K ,

where Ri and R⊤
i are restriction and prolongation

operators corresponding to Ω′
i , and Ki := Ri KR⊤

i .

Condition number estimate:

κ
(

M
−1
OS-1

K

)
≤ C



1 +
1

Hδ



with subdomain size H and overlap width δ.

∂Ω
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Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner

Overlap δ = 1h Solution of local problem
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Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner

Overlap δ = 1h Solution of local problem
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Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner

Overlap δ = 1h Solution of local problem
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Information (in particular, boundary data) is only

exchanged via the overlapping regions, leading to

slow convergence → establish a faster / global

transport of information.
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Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner

Overlap δ = 1h Solution of local problem

Based on an overlapping domain decomposition, we

define a one-level Schwarz operator

M
−1
OS-1

K =
∑N

i=1
R

⊤
i K

−1
i

Ri K ,

where Ri and R⊤
i are restriction and prolongation

operators corresponding to Ω′
i , and Ki := Ri KR⊤

i .

Condition number estimate:

κ
(

M
−1
OS-1

K

)
≤ C



1 +
1

Hδ



with subdomain size H and overlap width δ.

Lagrangian coarse space

Coarse triangulation Coarse solution

The two-level overlapping Schwarz operator reads

M
−1
OS-2

K = ΦK
−1
0 Φ⊤

K
︸ ︷︷ ︸

coarse level – global

+
∑N

i=1
R

⊤
i K

−1
i

Ri K

︸ ︷︷ ︸
first level – local

,

where Φ contains the coarse basis functions and

K0 := Φ⊤KΦ; cf., e.g., Toselli, Widlund (2005).

The construction of a Lagrangian coarse basis requires

a coarse triangulation.

Condition number estimate:

κ
(

M
−1
OS-2

K

)
≤ C



1 +
H

δ
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Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner

Overlap δ = 1h Solution of local problem
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Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner

Overlap δ = 1h Solution of local problem

Lagrangian coarse space

Coarse triangulation Coarse solution

Diffusion model problem in two dimensions,

H/h = 100

200 400 600 800 1,000
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400
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FROSch (Fast and Robust Overlapping Schwarz) Framework in Trilinos

Software

• Object-oriented C++ domain decomposition solver framework with

MPI-based distributed memory parallelization

• Part of Trilinos with support for both parallel linear algebra packages

Epetra and Tpetra

• Node-level parallelization and performance portability on CPU and GPU

architectures through Kokkos and KokkosKernels

• Accessible through unified Trilinos solver interface Stratimikos

Methodology

• Parallel scalable multi-level Schwarz domain decomposition

preconditioners

• Algebraic construction based on the parallel distributed system matrix

• Extension-based coarse spaces

Team (active)

• Filipe Cumaru (TU Delft)

• Kyrill Ho (UCologne)

• Jascha Knepper (UCologne)

• Friederike Röver (TUBAF)

• Lea Saßmannshausen (UCologne)

• Alexander Heinlein (TU Delft)

• Axel Klawonn (UCologne)

• Siva Rajamanickam (SNL)

• Oliver Rheinbach (TUBAF)

• Ichitaro Yamazaki (SNL)
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Algorithmic Framework for FROSch Preconditioners

Overlapping domain decomposition

The overlapping subdomains

are constructed by recursively

adding layers of elements via

the sparsity pattern of K .

The corresponding matrices

Ki = Ri KR
T
i

can easily be extracted from K .

Nonoverlapping DD
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Algorithmic Framework for FROSch Preconditioners

Overlapping domain decomposition

The overlapping subdomains

are constructed by recursively

adding layers of elements via

the sparsity pattern of K .

The corresponding matrices

Ki = Ri KR
T
i

can easily be extracted from K .

Nonoverlapping DD Overlap δ = 1h Overlap δ = 2h

Coarse space – Example of Generalized Dryja–Smith–Widlund (GDSW)

1. Interface components
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Algorithmic Framework for FROSch Preconditioners

Overlapping domain decomposition

The overlapping subdomains

are constructed by recursively

adding layers of elements via

the sparsity pattern of K .

The corresponding matrices

Ki = Ri KR
T
i

can easily be extracted from K .

Nonoverlapping DD Overlap δ = 1h Overlap δ = 2h

Coarse space – Example of Generalized Dryja–Smith–Widlund (GDSW)

1. Interface components 2. Interface basis (partition of unity × null space)

For scalar elliptic

problems, the null space

consists only of

constant functions.
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Algorithmic Framework for FROSch Preconditioners

Overlapping domain decomposition

The overlapping subdomains

are constructed by recursively

adding layers of elements via

the sparsity pattern of K .

The corresponding matrices

Ki = Ri KR
T
i

can easily be extracted from K .

Nonoverlapping DD Overlap δ = 1h Overlap δ = 2h

Coarse space – Example of Generalized Dryja–Smith–Widlund (GDSW)

1. Interface components 2. Interface basis (partition of unity × null space)

For scalar elliptic

problems, the null space

consists only of

constant functions.

3. Extension
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Weak Scalability up to 64 k MPI Ranks / 1.7 b Unknowns (3D Poisson; Juqueen)

GDSW vs RGDSW (reduced dimension)

Heinlein, Klawonn, Rheinbach, Widlund (2019).

Two-level vs three-level GDSW
Heinlein, Klawonn, Rheinbach, Röver (2019, 2020).
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FROSch Preconditioners for Land Ice Simulations

https://github.com/SNLComputation/Albany

The velocity of the ice sheet in Antarctica and Greenland is

modeled by a first-order-accurate Stokes approximation model,

−∇ · (2µϵ̇1) + ρg
∂s

∂x
= 0, −∇ · (2µϵ̇2) + ρg

∂s

∂y
= 0,

with a nonlinear viscosity model (Glen’s law); cf., e.g., Blatter (1995) and Pattyn (2003).

Antarctica (velocity) Greenland (multiphysics vel. & temperature)

4 km resolution, 20 layers, 35 m dofs 1-10 km resolution, 20 layers, 69 m dofs

MPI ranks avg. its avg. setup avg. solve avg. its avg. setup avg. solve

512 41.9 (11) 25.10 s 12.29 s 41.3 (36) 18.78 s 4.99 s

1 024 43.3 (11) 9.18 s 5.85 s 53.0 (29) 8.68 s 4.22 s

2 048 41.4 (11) 4.15 s 2.63 s 62.2 (86) 4.47 s 4.23 s

4 096 41.2 (11) 1.66 s 1.49 s 68.9 (40) 2.52 s 2.86 s

8 192 40.2 (11) 1.26 s 1.06 s - - -

Computations performed on Cori (NERSC). Heinlein, Perego, Rajamanickam (2022)

Alexander Heinlein (TU Delft) CASA Colloquium 15/31

https://github.com/SNLComputation/Albany


Spectral Extension-Based Coarse Spaces for Schwarz Preconditioners

Highly heterogeneous problems . . .

. . . appear in most areas of modern science and engineering:

Micro section of a

dual-phase steel.

Courtesy of J.

Schröder.

Groundwater flow

(SPE10);

cf. Christie and

Blunt (2001).

Composition of

arterial walls; taken

from O’Connell et

al. (2008).

Spectral coarse spaces

The coarse space is enhanced by eigenfunctions of

local edge and face eigenvalue problems with

eigenvalues below tolerances tolE and tolF:

κ
(

M
−1
∗ K

)
≤ C



1 +
1

tolE
+

1

tolF
+

1

tolE · tolF



;

C does not depend on h, H, or the coefficients.

OS-ACMS & adaptive GDSW (AGDSW) (Heinlein,

Klawonn, Knepper, Rheinbach (2018, 2018, 2019)).

Local eigenvalue problems

Local generalized eigenvalue problems corresponding to the edges E and faces F of the domain decomposition:

∀E ∈ E : SEE τ∗,E = λ∗,E KEE τ∗,E , ∀τ∗,E ∈ VE ,

∀F ∈ F : SFF τ∗,F = λ∗,F KFF τ∗,F , ∀τ∗,F ∈ VF ,

with Schur complements SEE , SFF with Neumann boundary conditions and

submatrices KEE , KFF of K . We select eigenfunctions corresponding to eigenvalues

below tolerances tolE and tolF.

→ The corresponding coarse basis functions are energy-minimizing extensions into

the interior of the subdomains.

Ω1 Ω2 Ω3

Ω4 Ω5 Ω6

Ω7 Ω8 Ω9

E12 E23

E45 E56

E78 E89

E14 E25 E36

E47 E58 E69

Γ
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Spectral Extension-Based Coarse Spaces for Schwarz Preconditioners

Highly heterogeneous problems . . .

. . . appear in most areas of modern science and engineering:

Micro section of a

dual-phase steel.

Courtesy of J.

Schröder.

Groundwater flow

(SPE10);

cf. Christie and

Blunt (2001).

Composition of

arterial walls; taken

from O’Connell et

al. (2008).

Spectral coarse spaces

The coarse space is enhanced by eigenfunctions of

local edge and face eigenvalue problems with

eigenvalues below tolerances tolE and tolF:

κ
(

M
−1
∗ K

)
≤ C



1 +
1

tolE
+

1

tolF
+

1

tolE · tolF



;

C does not depend on h, H, or the coefficients.

OS-ACMS & adaptive GDSW (AGDSW) (Heinlein,

Klawonn, Knepper, Rheinbach (2018, 2018, 2019)).

Foam coefficient function example

Solid phase: α = 106; transparent phase: α = 1; 100 subdomains

V0 tolE tolF it. κ dim V0 dim V0/ dof

VGDSW — — 565 1.3·106 1 601 0.27 %

VAGDSW 0.05 0.05 60 30.2 1 968 0.33 %

VOS−ACMS 0.001 0.001 57 30.3 690 0.12 %

Cf. Heinlein, Klawonn, Knepper, Rheinbach (2018, 2019).
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Domain Decomposition for Neural

Networks



Domain Decomposition for Neural Networks
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Domain Decomposition Methods and Machine Learning – Literature

A non-exhaustive literature overview:

• Machine Learning for adaptive BDDC, FETI–DP, and AGDSW: Heinlein, Klawonn, Lanser, Weber

(2019, 2020, 2021, 2021, 2021, 2022); Klawonn, Lanser, Weber (2024)

• cPINNs, XPINNs: Jagtap, Kharazmi, Karniadakis (2020); Jagtap, Karniadakis (2020)

• Classical Schwarz iteration for PINNs or DeepRitz (D3M, DeepDDM, etc):: Li, Tang, Wu, and Liao

(2019); Li, Xiang, Xu (2020); Mercier, Gratton, Boudier (arXiv 2021); Dolean, Heinlein, Mercier,

Gratton (subm. 2024 / arXiv:2408.12198); Li, Wang, Cui, Xiang, Xu (2023); Sun, Xu, Yi (arXiv 2022,

arXiv 2023); Kim, Yang (2022, arXiv 2023)

• FBPINNs, FBKANs: Moseley, Markham, and Nissen-Meyer (2023); Dolean, Heinlein, Mishra, Moseley

(2024, 2024); Heinlein, Howard, Beecroft, Stinis (acc. 2024 / arXiv:2401.07888); Howard, Jacob,

Murphy, Heinlein, Stinis (arXiv:2406.19662)

• DDMs for CNNs: Gu, Zhang, Liu, Cai (2022); Lee, Park, Lee (2022); Klawonn, Lanser, Weber (2024);

Verburg, Heinlein, Cyr (subm. 2024)

An overview of the state-of-the-art in early 2021:

A. Heinlein, A. Klawonn, M. Lanser, J. Weber

Combining machine learning and domain
decomposition methods for the solution of
partial differential equations — A review

GAMM-Mitteilungen. 2021.

An overview of the state-of-the-art in mid 2024:

A. Klawonn, M. Lanser, J. Weber

Machine learning and domain decomposition
methods – a survey

Computational Science and Engineering. 2024
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Physics-Informed Neural Networks (PINNs)

In the physics-informed neural network (PINN) approach

introduced by Raissi et al. (2019), a neural network is

employed to discretize a partial differential equation

N[u] = f, in Ω.

PINNs use a hybrid loss function:

L(θ) = ωdataLdata(θ) + ωPDELPDE(θ),

where ωdata and ωPDE are weights and

Ldata(θ) =
1

Ndata

∑Ndata

i=1
(u(x̂i , θ) − ui )

2
,

LPDE(θ) =
1

NPDE

∑NPDE

i=1
(N[u](xi , θ) − f(xi ))

2
.

See also Dissanayake and Phan-Thien (1994); Lagaris et al. (1998).

Advantages

• “Meshfree”

• Small data

• Generalization properties

• High-dimensional problems

• Inverse and parameterized

problems

Drawbacks

• Training cost and

robustness

• Convergence not

well-understood

• Difficulties with scalability

and multi-scale problems

x

t
.

.

.

.

.

.

...

...

...

.

.

.

...

.

.

.

u L

∂u

∂t
,

∂u

∂x
,

. . .

Hybrid loss
Small data Some data Big data

Lots of physics Some physics No physics

• Known solution values can be

included in Ldata

• Initial and boundary conditions

are also included in Ldata
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Theoretical Result for PINNs

Estimate of the generalization error (Mishra and Molinaro (2022))

The generalization error (or total error) satisfies

EG ≤ CPDEET + CPDEC
1/p

quadN
−α/p

• EG = EG (X , θ) := ∥u − u∗∥V general. error (V Sobolev space, X training data set)

• ET training error (lp loss of the residual of the PDE)

• N number of the training points and α convergence rate of the quadrature

• CPDE and Cquad constants depending on the PDE, quadrature, and neural network

Rule of thumb: “As long as the PINN is trained well, it also generalizes well”

100 iterations 1 000 iterations 10 000 iterations 80 000 iterations

Rahaman et al., On the spectral bias of neural networks, ICML (2019)
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Motivation – Some Observations on the Performance of PINNs

Solve

u
′ = cos (ωx) ,

u (0) = 0,

for different values of ω

using PINNs with

varying network

capacities.

Scaling issues

• Large computational

domains

• Small frequencies

Cf. Moseley, Markham, and

Nissen-Meyer (2023)

(a) 321 free parameters (d) 66 433 free parameters
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Motivation – Some Observations on the Performance of PINNs

Solve

u
′ = cos (ωx) ,

u (0) = 0,

for different values of ω

using PINNs with

varying network

capacities.

Scaling issues

• Large computational

domains

• Small frequencies

Cf. Moseley, Markham, and

Nissen-Meyer (2023)

(a) 321 free parameters (d) 66 433 free parameters

Idea

Replace the global network by a coupled

local networks defined on an overlapping

domain decomposition.
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Finite Basis Physics-Informed Neural Networks (FBPINNs)

In the finite basis physics informed neural

network (FBPINNs) method introduced in

Moseley, Markham, and Nissen-Meyer (2023),

we employ the PINN approach and hard

enforcement of the boundary conditions;

cf. Lagaris et al. (1998).

FBPINNs use the network architecture

u(θ1, . . . , θJ) = C
∑J

j=1
ωjuj (θj)

and the loss function

L(θ1, . . . , θJ ) =
1

N

N∑

i=1

(
N[C

∑

xi ∈Ωj

ωj uj ](xi , θj )−f(xi )
)2

.

Here:

• Overlapping DD: Ω =
⋃J

l=1
Ωj

• Partition of unity ωj with supp(ωj) ⊂ Ωj

and
∑J

j=1
ωj ≡ 1 on Ω

0

0.5

1

0 0.2 0.4 0.6 0.8 1

−1

0

1

u

Ω1

ω1

ω1u1 (θ1)

Ω2

ω2

ω2u2 (θ2)

Ω3

ω3

ω3u3 (θ3)

Ω4

ω4

ω4u4 (θ4)

Hard enf. of boundary conditions

Loss function

L(θ) =
1

N

∑N

i=1
(N[Cu](xi , θ) − f(xi ))

2
,

with constraining operator C, which explicitly

enforces the boundary conditions.
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Numerical Results for FBPINNs

PINN vs FBPINN (Moseley et al. (2023))

FBPINN local solutions

FBPINN global solution

Scalability of FBPINNs

Consider the simple

boundary value problem

−u′′ = 1 in [0, 1],

u(0) = u(1) = 0,

which has the solution

u(x) = 1/2x(1 − x).
0 0.2 0.4 0.6 0.8 1

0

0.05

0.10.1

0.15

0.2

u(x) = 1

2
x(1− x)

0 0.5 1 1.5 2

·104

10−4

10−3

10−2

10−1

# iterations

l 2
er
ro
r

2 subdomains

4 subdomains

8 subdomains

16 subdomains

c
o
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v
e
rg
e
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c
e
d
e
te
rio

ra
te
s
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Multi-Level FBPINN Algorithm

Extension of FBPINNs to L levels; Cf. Dolean, Heinlein,

Mishra, Moseley (2024).

Ω

level 1 Ω
(1)
1

level 2 Ω
(2)
1 Ω

(2)
2

level 3 Ω
(3)
1 Ω

(3)
2 Ω

(3)
3 Ω

(3)
4

level 4 Ω
(4)
1 Ω

(4)
2 Ω

(4)
3 Ω

(4)
4 Ω

(4)
5 Ω

(4)
6 Ω

(4)
7 Ω

(4)
8

.

.

.

L-level network architecture

u
(

θ
(1)
1 , . . . , θ

(L)

J(L)

)
= C

(
L∑

l=1

N(l)
∑

i=1

ω
(l)
j

u
(l)
j

(
θ

(l)
j

))
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Exact solution
FBPINN solution
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(b) Individual subdomain solutions
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(d) Domain decomposition level 2
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(e) Domain decomposition level 3

Example subdomain boundary
Example collocation points
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x
2

(f) FBPINN solution
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0.2

0.4

0.6

0.8

Multi-Frequency Problem

Let us now consider the two-dimensional

multi-frequency Laplace boundary value problem

−∆u = 2

n∑

i=1

(ωi π)2 sin (ωi πx) sin (ωi πy) in Ω,

u = 0 on ∂Ω,

with ωi = 2i .

For increasing values of n, we obtain the analytical

solutions:

n = 1 n = 2 n = 3

n = 4 n = 5 n = 6

Alexander Heinlein (TU Delft) CASA Colloquium 24/31
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Let us now consider the two-dimensional

multi-frequency Laplace boundary value problem

−∆u = 2

n∑

i=1

(ωi π)2 sin (ωi πx) sin (ωi πy) in Ω,

u = 0 on ∂Ω,

with ωi = 2i .

For increasing values of n, we obtain the analytical

solutions:

n = 1 n = 2 n = 3

n = 4 n = 5 n = 6

Alexander Heinlein (TU Delft) CASA Colloquium 24/31



Multi-Level FBPINNs for a Multi-Frequency Problem – Strong Scaling

0 5000 10000 15000 20000 25000 30000
Training step

10 3

10 2

10 1

100

101

No
rm

al
ise

d 
L1

 te
st

 lo
ss

102 103

Total time elapsed (s)

10 3

10 2

10 1

100

101

No
rm

al
ise

d 
L1

 te
st

 lo
ss

FBPINN
[1, 2]

(320, 320)

FBPINN
[1, 2, 4]

(320, 320)

FBPINN
[1, 2, 4, 8]
(320, 320)

FBPINN
[1, 2, 4, 8, 16]

(320, 320)

FBPINN
[1, 2, 4, 8, 16, 32]

(320, 320)

FBPINN
[1, 2, 4, 8, 16, 32, 64]

(320, 320)

FBPINN
[64]

(320, 320)

FBPINN
[1, 8, 64]

(320, 320) Exact solution

0.0 0.5 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

PINN
5-256

(320, 320)

FourierPINN
5-256

(320, 320)

SA-PINN
5-256

(320, 320)

0 5000 10000 15000 20000 25000 30000
Training step

10 3

10 2

10 1

100

101

No
rm

ali
se

d L
1 t

es
t lo

ss

102 103

Total time elapsed (s)

10 3

10 2

10 1

100

101

No
rm

ali
se

d L
1 t

es
t lo

ss

FBPINN
[1, 2]

(320, 320)

FBPINN
[1, 2, 4]

(320, 320)

FBPINN
[1, 2, 4, 8]
(320, 320)

FBPINN
[1, 2, 4, 8, 16]

(320, 320)

FBPINN
[1, 2, 4, 8, 16, 32]

(320, 320)

FBPINN
[1, 2, 4, 8, 16, 32, 64]

(320, 320)

FBPINN
[64]

(320, 320)

FBPINN
[1, 8, 64]

(320, 320) Exact solution

0.0 0.5 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

PINN
5-256

(320, 320)

FourierPINN
5-256

(320, 320)

SA-PINN
5-256

(320, 320)

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

Alexander Heinlein (TU Delft) CASA Colloquium 25/31



Multi-Frequency Problem – What the FBPINN Learns
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Cf. Dolean, Heinlein, Mishra, Moseley (2024).
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Multi-Level FBPINNs for a Multi-Frequency Problem – Weak Scaling
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n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

Alexander Heinlein (TU Delft) CASA Colloquium 27/31



Memory Requirements for CNN Training

• As an example for a convolutional neural

network (CNN), we employ the U-Net

architecture introduced in Ronneberger,

Fischer, and Brox (2015).

• The U-Net yields state-of-the-art accuracy

in semantic image segmentation and

other image-to-image tasks.

Below: memory consumption for training on a

single 1024 × 1024 image.

name size
# channels mem. feature maps mem. weights

input output # of values MB # of values MB

input block 1 024 3 64 268 M 1 024.0 38 848 0.148

encoder block 1 512 64 128 167 M 704.0 221 696 0.846

encoder block 2 256 128 256 84 M 352.0 885 760 3.379

encoder block 3 128 256 512 42 M 176.0 3 540 992 13.508

encoder block 4 64 512 1 024 21 M 88.0 14 159 872 54.016

decoder block 1 64 1,024 512 50 M 192.0 9 177 088 35.008

decoder block 2 128 512 256 101 M 384.0 2 294 784 8.754

decoder block 3 256 256 128 201 M 768.0 573 952 2.189

decoder block 4 512 128 64 402 M 1 536.0 143 616 0.548

output block 1 024 64 3 3.1 M 12.0 195 0.001
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Decomposing the U-Net

Cf. Verburg, Heinlein, Cyr (subm. 2024).
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Decomposing the U-Net

Local network

We train the subnetwork(s)

with shared weights → the

subnetwork(s) are fully

convolutional.
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Decomposing the U-Net

Local network

We train the subnetwork(s)

with shared weights → the

subnetwork(s) are fully

convolutional.

Communication network

The communication network

is a fully convolutional

network operating on a part

of the coarse feature maps.
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Decomposing the U-Net

• Distribution of feature maps results in significant reduction of memory usage on a single GPU

• Moderate additional memory usage due to the communication network
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Results – Synthetic Data Set

Task: Connect two dots via a line segment
Input Target (segmentation mask)

Result: Communication

True mask

Pred. (no comm.)

Pred. (comm.)

Testing on 6 subimages
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DeepGlobe 2018 Satellite Image Data Set (Demir et al. (2018))

class pixel count proportion

urban 642.4M 9.35 %

agriculture 3898.0M 56.76 %

rangeland 701.1M 10.21 %

forest 944.4M 13.75 %

water 256.9M 3.74 %

barren 421.8M 6.14 %

unknown 3.0M 0.04 %

Input Target

Avoiding overfitting

The data set includes only 803 images. To avoid overfitting, we

• apply batch normalization, use random dropout layers and

data augmentation, and

• initialize the encoder using the ResNet-18 (He, Zhang,

Ren, and Sun (2016))

image true mask without comm. with comm.
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Schwarz Domain Decomposition Preconditioners

• Numerical scalability and robust convergence for

• heterogeneous problems

• multiphysics problems

• highly nonlinear problems

→ Algebraic and parallel implementation in FROSch

Domain Decomposition for Neural Networks

• Schwarz domain decomposition architectures improve the scalability of PINNs to

large domains / high frequencies, keeping the complexity of the local networks low.

• Novel DDU-Net approach decouples the training on the sub-images, allowing us to

distribute the memory load among multiple GPUs. It limits communication to

deepest level of the U-Net architecture using a communication network.

Thank you for your attention!
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