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Scientific Machine Learning in Computational Science and Engineering

Numerical methods Machine learning models

Based on physical models Driven by data
+ Robust and generalizable + Do not require mathematical models
— Require availability of mathematical — Sensitive to data, limited extrapolation
models capabilities

Scientific machine learning (SciML)

Combining the strengths and compensating the weaknesses of the individual approaches:

numerical methods improve machine learning techniques
machine learning techniques  assist numerical methods
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Physics-informed machine learning & motivation

Deep learning-based domain decomposition method
Based on joint work with
Victorita Dolean (TU Eindhoven)

Serge Gratton and Valentin Mercier (IRIT Computer Science Research Institute of Toulouse)

Multilevel domain decomposition-based architectures for physics-informed
neural networks

Based on joint work with

Victorita Dolean (University of Strathclyde, University Céte d’Azur)

Ben Moseley and Siddhartha Mishra (ETH Ziirich)

Multifidelity domain decomposition-based physics-informed neural networks
for time-dependent problems

Based on joint work with

Damien Beecroft (University of Washington)

Amanda A. Howard and Panos Stinis (Pacific Northwest National Laboratory)



Physics-informed machine learning &
motivation



Neural Networks for Solving Differential Equations

Artificial Neural Networks for Solving Ordinary
and Partial Differential Equations

Isaac Elias Lagaris, Aristidis Likas, Member, IEEE, and Dimitrios I. Fotiadis

Published in IEEE Transactions on Neural Networks, Vol. 9, No. 5, 1998.

Approach Construction of the trial functions
Solve a general differential equation subject to The trial functions satisfy the boundary
boundary conditions conditions explicitly:

G(x, W(x), V¥(x), V’W¥(x)) =0 in Q V¢(x,0) = A(x) + F(x,NN(x,0))

by solving an optimization problem = NN is a feedforward neural network with

min Z G(xi, Ve(x:, 8), VV,(x;, 6), Vzlllt(x,-, 0))2 trainable parameters 6 and input x € R”
0 . = A and F are fixed functions, chosen s.t.:
= A satisfies the boundary conditions
= F does not contribute to the

where \Ilt(x, 0) is a trial function, x; sampling
points inside the domain Q2 and @ are

adjustable parameters. DL G
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Neural Networks for Solving Differential Equations

Approach Construction of the trial functions
Solve a general differential equation subject to The trial functions satisfy the boundary
boundary conditions conditions explicitly:

G(x, W(x), V¥(x), V’W¥(x)) =0 in Q V(x,0) = A(x) + F(x,NN(x, 0))

by solving an optimization problem = NN is a feedforward neural network with

minz G(xi, Ve(x:, 0), VV.(x;, 0), VWe(x;, ) trainable parameters 6 and input x € R”
0 ‘ ’ T T ’ = A and F are fixed functions, chosen s.t.:
= A satisfies the boundary conditions

Xj
where \Ilt(x, 0) is a trial function, x; sampling

points inside the domain Q2 and 6 are = F does not contribute to the

boundary conditions

adjustable parameters.

boundary conditions

A(z) + F(x, N(z,p))
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Lagaris et. al’'s Method — Motivation

Solve the boundary value problem
AV,(x,0)+1=0on [0,1],
V,(0,0) = W(1,0) =0,
via a collocation approach:

min Z (1— AV(x;,0))?

0.2 T T T T T T 100

0| [ —@nwo 1]

0.1 g2
ok 0
—01L - =50
g2l w 1 100

0 O.‘2 014 0‘.6 0.8 1
(AV(x;,0) +1)*> >> 0

Alexander Heinlein (TU Delft)

Boundary conditions

The boundary conditions can be enforced
explicitly, for instance, via the ansatz:

W,(x,0) = sin(7x) - F(x,NN(x, 8)

0.2 T T T T T
Wi (xi, 0) — (AU (x;,0) + 1)?

0.1+

| | | |
0 0.2 0.4 0.6 0.8 1
(AV(x;,0) +1)° =0
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Physics-Informed Neural Networks (PINNs)

In the physics-informed neural network (PINN) approach

introduced by Raissi et al. (2019), a neural network is

employed to discretize a partial differential equation
Nl =/, inQ.

It is based on the approach by Lagaris et al. (1998). The

main novelty of PINNs is the use of a hybrid loss function:

L(0) = waatasLaata(0) + wppeLpDE(D),

where wdata and wppe are weights and

1 Nyata ) Hybrid loss
aLdata(o) = Ndata § i—1 (U(Xi, 0) - ZI“") ? Small data Some data Big data
5 1 Nepe 2
Lrpe(8) = > T (M[u](x,0) — f(x))*
Nppe i=1
Advantages Drawbacks
Lots of physics Some physics No physics

= “Meshfree” = Training cost and .
= Small data robustness = Known solution values can be
= Generalization properties = Convergence not included in eEdata
= High-dimensional problems well-understood . .
« Inverse and parameterized « Difficulties with scalability = Initial and boundary conditions

problems and multi-scale problems are also included in Lyata
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Available Theoretical Results for PINNs — An Example

Mishra and Molinaro. Estimates on the generalisation error of PINNs, 2022

Estimate of the generalization error

The generalization error (or total error) satisfies
& < CrpeST + Crpe CLLEN—o/P
G = Cppe®T + CpDEC 09

where

» &6 =& (X,0) = |u—u*|, general. error (V Sobolev space, X training data set)
= &7 training error (/P loss of the residual of the PDE)

= /N number of the training points and o« convergence rate of the quadrature

= Cppe and Cyyad constants depending on the PDE respectively the quadrature as well as
on the neural network

Rule of thumb:

“As long as the PINN is trained well, it also generalizes well”

Alexander Heinlein (TU Delft)
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Scaling Issues in Neural Network Training

Spectral bias

Neural networks prioritize learning lower frequency functions first irrespective of their amplitude.

4 4 4 4
2 2 2 2
0 0 [ 0
-2 -2 -2 -2
-4 -4 -4 -4
-6 -6 -6 -6
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
100 iterations 1000 iterations 10000 iterations 80000 iterations

Rahaman et al., On the spectral bias of neural networks, ICML (2019)

= Solving solutions on large domains and/or with multiscale features potentially requires very
large neural networks.

= Training may not sufficiently reduce the loss or take large numbers of iterations.

= Significant increase on the computational work

Dependence on the choice of activation functions: Hong et al. (arXiv 2022)

Convergence analysis of PINNs via the neural tangent kernel: Wang, Yu, Perdikaris, When and
why PINNs fail to train: A neural tangent kernel perspective, JCP (2022)
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Motivation — Some Observations on the Performance of PINNs

Solve
@ = cos(wx),
w(0) = 0,

for different values of w
using PINNs with
varying network
capacities.

Scaling issues

= Large computational
domains

= Small frequencies

Cf. Moseley, Markham, and
Nissen-Meyer (2023)

Alexander Heinlein (TU Delft)

(a) PINN (w =1, 2 layers, 16 hidden units)

(b) PINN (w =15, 2 layers, 16 hidden units)

1.0 0.075
: —— Exact solution —— Exact solution
—— PINN 10:050; —— PINN
05 0.025
= 00 5 0.000
-0.025
<02 -0.050
~10 -0.075
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 a4 6
x x
(c) PINN (w =15, 4 layers, 64 hidden units) (d) PINN (w = 15, 5 layers, 128 hidden units)
0.075 0.075 -
—— Exact solution —— Exact solution
0.050 ~—— PINN 0.050 — PI
0.025 0.025
0.000 s 0.000
-0.025 -0.025
-0.050 =0.050
—0.075 -0.075
-6 —4 -2 0 2 4 6 —6 —4 -2 0 2 4 6
X X
(e) Test loss
10°
107!
@ —— PINN (w =1, 2 layers, 16 hidden units)
-2
o110 —— PINN (w =15, 2 layers, 16 hidden units)
ba —— PINN (w =15, 4 layers, 64 hidden units)
1073 —— PINN (w =15, 5 layers, 128 hidden units)
1074
0 10000 20000 30000 40000 50000

Training step

(a) 321 free parameters

(d) 66433 free parameters

Seminar




Motivation — Some Observations on the Performance of PINNs

Solve o (a) PINN (w =1, 2 layers, 16 hidden units) 6075 (b) PINN (w =15, 2 layers, 16 hidden units) y
—: ‘E’I);\‘a'ilsululmn o0 : EIXNE':l solution
/ _ 05 0.025
w = cos(wx), L e
-0.025
u (O) = O7 -05 Db
-1.0 -0.075
. -6 -4 -2 0 2 a 6 -6 -4 -2 0 2 4 6
for different values of w g B . o
(c) PINN (w =15, 4 layers, 64 hidden units) (d) PINN (w =15, 5 layers, 128 hidden units)
using PINNs with 0075 — Exact solution oo7s Exact soltigh
0.050 ~— PINN 0.050 PINN
varying network 00z 0025
0.000 s 0.000
capacities. -0.025 -0.025
-0.050 =0.050
—0.075 -0.075
-6 —4 -2 [ 2 4 6 7‘6 -4 -2 0 2 4 6
Scaling issues " (e) Test loss
= Large computational -
domains . . 2 layers, 16 hidden units)
210 5,2 layers, 16 hidden units)
g 3 .5, 4 layers, 64 hidden units)
= Small frequencies 107 Replace the global network by a coupled 5.5 toyers, 12 hidden units)
- local networks defined on an overlapping
Cf. Moseley, Markham, and 0 domain decomposition.
NissenfMeyer (2023) e
(a) 321 free parameters (d) 66433 free parameters
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Domain Decomposition Methods

Decomposing a large global problem into

smaller local problems:

= Better robustness and scalability of
numerical solvers

= Improved computational efficiency

Images based on Heinlein, Perego, Rajamanickam (2022)

= Introduce parallelism

Historical remarks: The alternating
Schwarz method is the earliest domain

decomposition method (DDM), which has Q0
been invented by H. A. Schwarz and
published in 1870: o0 Tip,
= Schwarz used the algorithm to establish : oK,

the existence of harmonic functions
with prescribed boundary values on
regions with non-smooth boundaries.
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DDM-Based Approaches for Neural Network-Based Discretizations — Literature

A non-exhaustive literature overview:

= cPINNs: Jagtap, Kharazmi, Karniadakis (2020)

= XPINNSs: Jagtap, Karniadakis (2020)

=« D3M: Li, Tang, Wu, and Liao (2019)

= DeepDDM: Li, Xiang, Xu (2020); Mercier, Gratton, Boudier (arXiv 2021); Li, Wang, Cui,
Xiang, Xu (2023); Sun, Xu, Yi (arXiv 2022, arXiv 2023)

= Schwarz Domain Decomposition Algorithm for PINNs: Kim, Yang (2022, arXiv 2023)

= FBPINNs: Moseley, Markham, and Nissen-Meyer (2023); Dolean, Heinlein, Mishra,
Moseley (2024, subm. 2023 / arXiv:2306.05486); Heinlein, Howard, Beecroft, Stinis
(subm. 2024 / arXiv:2401.07888)

An overview of the state-of-the-art in early 2021:  An overview of the state-of-the-art in the end of
2023:
¥y A. Heinlein, A. Klawonn, M. Lanser, J. > A. Klawonn, M. Lanser, J. Weber
Weber Machine learning and domain
Combining machine learning and domain decomposition methods — a survey
decomposition methods for the solution of arXiv:2312.14050. 2023

partial differential equations — A review
GAMM-Mitteilungen. 2021.
Alexander Heinlein (TU Delft) Crunch Seminar



https://arxiv.org/abs/2306.05486
https://arxiv.org/abs/2401.07888

Combining Schwarz Methods with Neural Network-Based Discretizations

Approach 1 — Via a classical Schwarz iteration

Local optimization Local optimization Local optimization
Mgy 2 No 2 No, 2
S (1P 05 — 1@0) " + Tt (n[u"“)um ;) ~ i) + St (n0§P1wi05) - 1) +
. 2 . 2
S (w5005 - ufP i 00) (8540 @i, 05) = ufP) @i, 5!) S (w5050 - ufP i 00)

rh

Schwarz iteration
Aulk+D _

SGD 26, = —ar 2 in 25 SGD Ao

u§k+1) = (B r I

Approach 2 — Integration via the neural network architecture

J

whl 2
g
s o
SGD: A(8),....0N) = —al
A . A =3V e ¥ wjul *
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Approach 1
Deep learning-based domain
decomposition method




Deep Learning-Based Domain Decomposition Method (DeepDDM)

Li, Xiang, Xu. Deep domain decomposition method: Elliptic problems. PMLR (2020)

i Z;ﬁ&’ﬁ‘gwﬁ%i%&’f
b %ﬁ%g‘ﬁi% =
XX X X, X x
.

DeepDDM for Overlapping Schwarz

In the DeepDDM method, we train local networks u; using a ﬁg{% : < §
x ! 8 X<

local loss function on each subdomain Q; g&f’& s RS

p oogé 0, 4

L (6)) = Lo, (6)) + Loaj\r; (6)) + Lr; (6;) , i A

. Q Q X {E‘/\X b »

. R o BERL *

with volume, boundary, and interface jump terms: P :

>

Loy (0= - D (M, 8)) = 106))

=

q pgo;m'm'o}‘
& SHH 2 3
3 '0'0°Q 000 00
X

1 Ny 2 $ B2 R %ot 2
Loay\r; (6)) = 7~ E (B(ui(xi, 8)) — (%)) ER . LR F
9j i=1 $ <o Ko x >§§<x>&<§x X E §
OB X R K X
1 Nr. 2 X xxg; %R0 %;{%x& F¥g 78
Ly, (@) = == E / (Q)(Uj(ii, 6;)) — D(u (%, Gj))) 5K 8765 1 48 S84 o ¥ow
J Nrj =1 x Residual points & Boundary points © Interface points

Algorithm 1: DeepDDM for Q;

Data: Sampling points Xj, initial network parameters 91(.)

while convergence (local network & interface values) not reached do
Train local network wj;

Communicate & update interface values @ (u;()"(,-; 9,-)) from other subdomains Q;;

end
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Numerical Experiments

Strong scaling Weak scaling

Fix the problem complexity & increase the Increase the problem complexity & the model
model capacity. capacity at the same rate.

Optimal scaling: improving the convergence rate Optimal scaling: constant convergence rate and/or
and/or accuracy at the same rate as the increase of accuracy to stay approximately constant.

model capacity.

Let first consider a strong scaling study for a 104
two-dimensional Laplacian model problem:
—Au=1 inQQ,
a 10—1_
=0 ondQ. 2

g

()
We increase the model ca_paaty by increasing @ 107
the number of subdomains. 3

[7)

o
Scaling issue 1o
We observe that the performance of the

DeepDDM method deteriorates. . . : . . .
0 10 20 30 40 50

Number of outer iteration
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Transport of Information One-Level Overlapping Schwarz Methods

00
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Transport of Information One-Level Overlapping Schwarz Methods

00

]
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Transport of Information One-Level Overlapping Schwarz Methods

NERINER %A

o0
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Transport of Information One-Level Overlapping Schwarz Methods

o0
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Transport of Information One-Level Overlapping Schwarz Methods

o0

Alexander Heinlein (TU Delft) Crunch Seminar




Transport of Information One-Level Overlapping Schwarz Methods

o0

Information (in particular, boundary data) is only exchanged via the overlapping regions,
leading to slow convergence — establish a faster / global transport of information.
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Fast T port of Information via a Coarse Level
Coarse space for the DeepDDM method f%;;;’ié fog’" ?9’8’;’%@;
oK XX %
X i Q 2 >! 3 » % ?

= Sparse sampling Xo = {x,p}i over the whole
domain Q

= Train a coarse network (global PINN) wg
with additional loss term

/\»‘Ni0 > (uo(x) — Z::l E(uu(x)))’

X?GXO

X o0
>@)€< x >°<><>< .. %
%o e sedelnie
x Residual points & Boundary points o Interface points

for incorporating information from the

first level. Here, = Cosrse polnts
= E; extension by zero outside Q; Algorithm 2: Two-level DeepDDM
= x; local partition of unity function Data: X;j, Xo, 0}‘?, Af, and Ac

while conv. (local & interface) not reached do
Train local network uj;

Comm. & comp. ZJ.J:I Ej(xjuj(x?)) Vx? € Xo;

= Incorporate coarse information into the
loss for the local subdomain €;:

1 Nr, 3 .
Nr. Z_rjl (® (uj (%:,6;)) — W, )2 Train coarse network wuo;
{ - Comm. & update @(ul()"(;; 9j)) VN #0;
with W/ = D(Actn(%) + (1 - A) (%), end

Alexander Heinlein (TU Delft) Crunch Seminar




2D Poisson Equation — Problem Setup

Model problem: #

18

12

Au=/f inQ=][0,7]x[0,1],
w=yg on 0.

We choose f and ¢ such that the exact solution is

u(x) = sin(amxy)e™,

where « is an integer.

"0.0 0.5 1.0 15 20 25 3.0
X1

Training setup — Strong scaling
= Latin hypercube sampling for training points with N = 30000 and Nyq = Nr = 16 000.
= Each network is composed of two hidden layers with 30 neurons

= Optimization of local/coarse networks: 2500 epochs using the Adam optimizer with initial learning rate
2-10~* and exp. decay of 0.999 every 100 epochs.

= Codes implemented in TENSORFLOW2 (v2.2.0) run on a single NVIDIA GeForce GTX 1080 Ti.

= The overlap is set to 30% of the subdomain diameter
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2D Poisson Equation — Weak Scaling

Increasing the frequency while

One-level DeepDDM

increasing the number of subdomains.

Two-level DeepDDM

100 4 == without coarse 2x2 100
\\\ withoutcoarse 3x3 || [ ] N\ Te~—o____
Seo == withoutcoarsedx4 || | 1 \\ T T TTTmmemmeemaaaa
~——lllC - 101
m——mmmaae ~~e -
1019 N 10-2 DL I i
N ~~— with coarse 4x2
\\ == without coarse 2x2
N, with coarse 9x3
w ~ -3
g \\\ 210 without coarse 3x3
SO with coarse 16x4
10-24 Sso 104 without coarse 4x4
~
~ ~o
~
~~o
~o 1073
SS
~eo
-3 Sso
1074 ~o 10-6
0 2 4 6 8 0 2 4 8
Outer iterations Outer iterations

— Adding a coarse level fixes the scaling issue.
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Approach 2

Multilevel domain decomposition-based
architectures for physics-informed neural
networks




Finite Basis Physics-Informed Neural Networks (FBPINNSs)

In the finite basis physics informed neural

network (FBPINNs) method introduced in

Moseley, Markham, and Nissen-Meyer (2023),

we solve the partial differential equation
Nu](x) =f(x) inQ

using the PINN approach and hard enforcement of
the boundary conditions, similar to Lagaris et
al. (1998).

FBPINNSs use the network architecture
o 0 C ! )
u(®,...,0,) = ijleuj( )

and the loss function

N
% Z nje Z wju](x;, 6

i=1 xi €9
= Overlapping DD: Q = U,J:1 Q
= Window functions w; with supp(w;) C ©; and
J
ijl wj=1onQ

L(01,...,0)) = (x,)) .

Alexander Heinlein (TU Delft)

Hard enf. of boundary conditions

Loss function
1 N 2
L£(0) =5 > (NCul(x:,8) = /(x)*,
with constraining operator C, which explicitly
enforces the boundary conditions.

— Often improves training performance

1
Window
function

0

Subdomain |
definition

Overlapping |
models

- — —
1.0
0.0

VY

=6 -4 -2 0 2 4 6
x
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Numerical Results for FBPINNSs

PINN vs FBPINN (Voscley et al. (2023)) Scalability of FBPINNs

[FBPINN local solutions] Consider the simple 02 o] | T
0.050 [—un=3=0-9]
l ‘ \ boundary value problem ois
0.025 l 1 . .15 e
—u’ =1in[0,1
0.000 [ 9 ]’
0.1 B
~0025 «(0) =u(1) =0,
0050 which has the solution 0.05 - 1
-6 -4 -2 0 2 4 6 —1
u(x) = 1/2x(1 — x). 0 ! ! . |
FBPINN global solution T Ekaktpdafion ) = ) 0 02 04 06 08 1
0.050 ~—— FBPINN T T T
0.025 1071 4
0.000 § ]
-0.025 r —— 2 subdomains | 3
~0.050 1072 F —— 4 subdomains |{| 2
5 § —— 8 subdomains ||
T _4 5 0 2 4 6 = i —— 16 subdomains | | 5
10 FBPINN 107 = o
- —— FBPINN < 1073 |1 1l &
SRPINN — PINN £ el
1072 1072 r ] §
o 1073 = 1073 10-4 1 417
107* 10-* L | | 1 g
0 0.5 1 1.5 2
o 20000 40000 00 05 1.0 15 20 . . 104
Training step FLOPS 1013 # iterations 10
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Multi-Level FBPINN Algorithm

We introduce a hierarchy of L overlapping domain ) Q !
decompositions T
S0 level 1§ Q® ]
Q- Q() .. @@ o
1 Ll e B ]
o m - oUW e ;
and corresponding window functions w; with I ]
5 o® o o® o®
supp(ww) c o and E w=10n0 _ e
J J j=1 7 ovel 4§ Q<4)Iﬂm ln<4> lnm) [9@) lnu) [ﬂ<4) lﬂw .
This yields the L-level FBPINN algorithm: T
L-level network architecture Loss function
L g0
( 10
u(,,g) e(L ZZ‘” ) (f)(eu )) =3 E (nje E w u 10xi,6;") — f(x,))
=1 j=1 X Q(’
(a) Window functions (b) Individual subdomain solutions (c) FBPINN solution
1.0 1.0 el 1.0
— Level 2
0.8 0.8 — Level 3 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2 -
—— Exact solution
0.0 0.0 0.0 —— FBPINN solution
. . . . "~ .




Multilevel FBPINNs — 2D Laplace

Let us consider the simple two-dimensional boundary value

Exact solution

problem 038
—Au=32(x(1-x)+y(l—-y)) inQ=][0,1],
0.6
u=0 on 09, N
B
which has the solution «(x, y) = 16(x(1 — x)y(1 — y)). 0.4
" A 0.2
B #levels | # hidden units | overlap &
Baseline model: 3 e —
: 00 02 04 06 08 10700
1
10°4 FBPINN [1, 2] levels 10° 4 FBPINN 1.1 overlap 10° 4 —— PINN 3 layers 64 hidden units
FBPINN 1.5 overlap FBPINN 1 layer 2 hidden units
. » —— FBPINN 1.9 overlap . FBPINN 1 layer 4 hidden units
9 107 9 1070 5 —— FBPINN 2.3 overlap | 93 107" 3 ~—— FBPINN 1 layer 8 hidden units
° —— FBPINN [1, 2, 4, 2 —— FBPINN 2.7 overlap | © —— FBPINN 1 layer 16 hidden units
@, ~— FBPINN [8] levels e, k] FBPINN 1 layer 32 hidden units
210774 —— FBPINN[1, 2, 4, 8, 16] levels | & 10 2
] —— FBPINN [16] levels 3 ]
o ° 5
510 F10-] 3
© © ©
£ £ £
S 10-4 4 S 10-4 S
g 10 S 1074 S
1075 4 10-5 4
. - - . : v v v v v v " v v v
0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000
Training step Training step Training step

Cf. Dolean, Heinlein, Mishra, Moseley (submitted 2023 / arXiv:2306.05486).
Alexander Heinlein (TU Delft)
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https://arxiv.org/abs/2306.05486

Multi-Frequency Problem

Let us now consider the two-dimensional multi-frequency Laplace boundary value problem
—Au=2 Z (wim)? sin (wimx) sin (wimy) in Q = [0, 1]%,
i=1
u=0 on 09,
with w; = 2.

For increasing values of n, we obtain the analytical solutions:
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FBPINN
[1,2]
(320, 320)

p

>

L PINN

5-256
(320, 320)

FBPINN

(320,

@ FourierPINN
5-256
(320, 320)

[1,2,4]
, 320)

FBPINN
[1,2,4,8]
(320, 320)

-

SA-PINN

5-256
(320, 320)

v

FBPINN

1,2, 4,8, 16]

(320, 320)

FBPINN

[64]
(320, 320)

A

[1,2,4,8,16,32]

FBPINN ® FBP
[1,2,4,8,
(320,

320, 320)

FBPINN
[1, 8, 64]
(320, 320)

INN
16, 32, 64]
320)

_.
2

1004

3 8
£ 2 v
B 101 B 101 + +
£ £ +
S S
2 2

1072 4 10724

1073 4 1024

5

o 5000

10000

15000
Training step

20000

25000

30000

Total time elapsed (s)
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Multi-Level FBPINNSs for a Multi-Frequency Problem — Weak Scaling

FBPINN FBPINN ©®  FBPINN ® FBPINN ®  FBPINN ®  FBPINN

[1,2] 1,2, 41 [1,2,4,8] [1,2, 4,8, 16] [1,2,4,8,16,32] [1,2,4,8, 16, 32, 64]
(10, 10) (20, 20 (40, 40) 80, 80) (160, 160) (320, 320

10° 4

107t 4 B 10-1 4
i S| 8 t
s| : )
= ® o +
T 10724 a— B 10724
AR A
13 13
5 5
=z =z

1073 4 1073 4

0 5000 10000 15000 20000 25000 30000 102
Training step Total time elapsed (s)

= Ongoing: analysis and improvement of the convergence

Cf. Dolean, Heinlein, Mishra, Moseley (submitted 2023 / arXiv:2306.05486).
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https://arxiv.org/abs/2306.05486

Helmholtz Problem

Finally, let us consider the two-dimensional Helmholtz boundary value problem

Au—Ku=f inQ= [o, 1]2,
«u=0 on0Q,
f(x) = e~ HIx=051/72.

With k = 2'7/1.6 and o = 0.8/2", we obtain the solutions:
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Multi-Level FBPINNSs for the Helmholtz Problem — Weak Scaling

FBPINN
[1,2]
(20, 20)

FourierPINN

SA-PINN
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[1,2,4]
(40, 40)

FourierPINN
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©  FBPINN
[1,2,4,8]
(80, 80)

@ FourierPINN

% SA-PINN

®  FBPINN ®  FBPINN
[1,2, 4,8, 16 [1,2, 4,8, 16, 32]
(160, 1 (320, 320)

@ FourierPINN @ FourierPINN

#  SA-PINN #®  SA-PINN
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Multi-Level FBPINNSs for the Helmholtz Problem — Weak Scaling
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Cf. Dolean, Heinlein, Mishra, Moseley (submitted 2023 / arXiv:2306.05486).
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Multifidelity domain decomposition-based
physics-informed neural networks for
time-dependent problems




PINNSs for Time-Dependent Problems

We investigate the performance of PINNs for time-dependent

Problem parameters
problems. Therefore, consider the simple pedulum problem:

a m=L=1, b=0.05,
a1
=8, =031
a0 &
dso b g . = Top: T =4
— = ——4 — =sin(41). B e
dt m L = Bottom: T =20
51 52
1 2
— BExact
0 0 ==< PINN
Y -2
0 1 2 3 4 0 1 2 3 4

— Exact
==+ PINN

00 25 50 75 100 125 150 0.0 25 50 75 100 125 15.0
Alexander Heinlein (TU Delft)
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Stacking Multifidelity PINNs

In the stacking multifidelity PINNs approach introduced in Howard, Murphy, Ahmed, Stinis (arXiv 2023),
multiple PINNs are trained in a recursive way. In each step, a model u™F is trained based on the previous
model u5F:

uMF (x, 0M7) = (1 — |a) e (x, 0™, u™F) + | Ul inear (x, 807, u°F)

linear nonlinear

Step 0 Stacking Step 1 Stacking Step N

Linear network

Linear network
Predicted ult. x)

LN

0
0 025 030 075 100 025 050 075 1
¢ €

Nonlinear network Nonlinear network

Related works (non-exhaustive list)

= Cokriging & multifidelity Gaussian process regression: E.g., Wackernagel (1995); Perdikaris et
al. (2017); Babaee et al. (2020)

= Multifidelity PINNs & DeepONet: Meng and Karniadakis (2020); Howard, Fu, and Stinis (arXiv 2023);
Howard, Perego, Karniadakis, Stinis (2023); Murphy, Ahmed, Stinis (arXiv 2023)

= Galerkin, multi-level, and multi-stage neural networks: Ainsworth and Dong (2021); Ainsworth and
Dong (2022); Aldirany et al. (arXiv 2023); Wang and Lai (arXiv 2023)
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Stacking Multifidelity FBPINNs

In Heinlein, Howard, Beecroft, and Stinis (subm. 2024 / arXiv:2401.07888), we combine stacking
multifidelity PINNs with FBPINNs by using an FBPINN model in each stacking step.

Stacking Step 1

Step 0

\r MF Network 1

- Stacking Step 2
= =|| MF Network 1 I—’
Level / of the stacking FBPINN (S—FBPINN) © SIS
0 D —
I I N N (-1 C .
U()(X,e()) = Zj:l w;)u},;\AF(x? 0(),U( ))7 - ) MF Network 2 |..
where — ‘
) I I I /-1 - MF Network -
4 (%, 8) = (1 = [a]) tfye0s (5, 60", 47 —C=a
+ |af u},’l)jonlinear(x’ 01(")’ “(171))' — -
This corresponds to a one-way sequential coupling * ;:: )

of the levels.
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Numerical Results — Pendulum Problem

First, we consider a pedulum problem and
compare the stacking multifidelity PINN and
FBPINN approaches:

ddl p
—— =92,
dt
dsy b g .
— = ——4p — =sin(s
dt m’2 0
withm=L=1, b=0.05 g=9.81, and T = 20. Exemplary partition of unity in time
10%9 .. -~~~ Stacking PINN
—e— Stacking FBPINN
—_
o
£
9]
<101
20.0 g
2
L
3]
- Exact o
—— Level 0
s 102
-=- Level 5
y 0 2 4 6 8 10
0.0 25 5.0 75 100 125 150 175  20.0 Stacking level
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Numerical Results — Pendulum Problem

First, we consider a pedulum problem and Model details:
compare the stacking multifidelity PINN and

FBPINN approaches: method arch. # levels +# params error
S—PINN | 5x50, 1x20 4 63018 0.0125
dn _ " S-FBPINN | 3x32, 1x 4 2 34570 0.0074
dt '
ds b
ﬁ = —Edz — %Sin(dl)
with m=L=1, b=0.05 g =9.81, and T = 20.
10%4 . -~~~ stacking PINN
—e— Stacking FBPINN
S
—
o
<107
20.0 9
2
f©
[}
- Exact o
—— Level 0
— Lo 1072
—=- Level 5
y 0 2 4 6 8 10
0.0 25 5.0 75 100 125 150 175  20.0 Stacking level
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Numerical Results — Two-Frequency Problem

Second, we consider a two-frequency problem: method | arch. Zlevels # params TN
ds B PINN 4x64 0 12673 0.6543
T ) S A ) PINN 5x64 0 16833 0.0265
4(0) =0, S—-PINN 4x16, 1x5 3 4900 0.0249
S—-PINN 4x16, 1x5 10 11179 0.0061
on domain € = [0,20] with w; =1 and wp = 15. S-FBPINN | 4x16, 1x5 2 7822 0.00415
S—-FBPINN | 4x16, 1x5 5 59902 0.00083
. —e— Stacking FBPINN
\ —a— Stacking PINN
2 . \ E—
21071 44
0 @ \
o o e
-2 E 1072 M-
4 A —A
2 () h 3 ~A &
o«
4 .
—— Exact — Level 2 3
~—— Level0 --- Level4 2 WVM 10
-6{ ~ levell 16 17 18 19 20 0 g 10 15
0.0 25 5.0 7.5 10.0 12.5 15.0 17.5 20.0 Stacking |eVe|

— Due to the multiscale structure of the problem, the improvements due to the multifidelity FBPINN
approach are even stronger.
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Numerical Results — Allen—Cahn Equation

Finally, we consider the Allen—Cahn equation:

st — 0.0001ux + 55> — 53 =0, t€(0,1],x € [-1,1],
s(x,0) = x> cos(nx), x¢€[-1,1],
s(x,t) = a(—x, t), te[0,1],x=—-1,x =1,
ax(x,t) = ax(—x,t), t€][0,1],x=—-1,x=1.
Exact s(t, x) Prediction, level 0
1 1
x 0 0 *x Lo
-1 [ 1
=L t t
Prediction
method arch. # params error 1
0 levels ro
PINN 12951 0.499
6x50 =1
srepiNn |2 '®®S 39627 0.00504 -
— | . rediction,
5x32, 1x20 [
to
-1
0.4 0.6
t

PINN gets stuck at fixed point of the of dynamical system; cf. Rohrhofer et al. (arXiv 2023).
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= Training of PINNs can be challenging when:

= scaling to large domains / high frequency solutions
= multiple loss terms have to be balanced

= Convergence of PINNs has yet to be understood better

DeepDDM for PINNs

= The DeepDDM method is a classical Schwarz iteration with local PINN solver.

= Scalability is enabled by adding a coarse level.

Multilevel FBPINNs
= Schwarz domain decomposition architectures improve the scalability of PINNs to

large domains / high frequencies, keeping the complexity of the local networks low.
= As classical domain decomposition methods, one-level FBPINNSs are not scalable to
large numbers of subdomains; multilevel FBPINNs enable scalability.

Multifidelity stacking FBPINNs

= The combination of multifidelity stacking PINNs with FBPINNs yields significant
improvements in the accuracy and efficiency for time-dependent problems.

Thank you for your attention!
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