3
TUDelft

Multi-level domain decomposition-based physics-informed

neural networks

Alexander Heinlein®
28th International Conference on Domain Decomposition Methods (DD28), KAUST, Saudi Arabia,
January 28 - February 1, 2024

! Delft University of Technology

Based on joint work with Damien Beecroft (University of Washington), Victorita Dolean (TU Eindhoven), Amanda
A. Howard and Panos Stinis (Pacific Northwest National Laboratory), and Sid Mishra and Ben Moseley (ETH

Ziirich)



Neural Networks for Solving Differential Equations

Artificial Neural Networks for Solving Ordinary
and Partial Differential Equations

Isaac Elias Lagaris, Aristidis Likas, Member, IEEE, and Dimitrios I. Fotiadis

Published in IEEE Transactions on Neural Networks, Vol. 9, No. 5, 1998.

Approach Construction of the trial functions
Solve a general differential equation subject to The trial functions explicitly satisfy the
boundary conditions boundary conditions:

G(x, W(x), V¥(x), V’W¥(x)) =0 in Q V.(x,0) = A(x) + F(x, N(x,0))

by solving an optimization problem = N is a feedforward neural network with

min Z G(xi, Vi(x:, 8), VV,(x;, 6), Vz\llt(x,-, 0))2 trainable parameters 6 and input x € R”
0 ‘ = A and F are fixed functions, chosen s.t.:
= A satisfies the boundary conditions
= F does not contribute to the

where \Ilt(x, 0) is a trial function, x; sampling
points inside the domain Q2 and 6 are

adjustable parameters. DL G TS
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Neural Networks for Solving Differential Equations

Approach Construction of the trial functions
Solve a general differential equation subject to The trial functions explicitly satisfy the
boundary conditions boundary conditions:

G(x,¥(x), VV¥U(x),V’¥U(x)) =0 inQ V. (x,0) = A(x) + F(x, N(x,0))

by solving an optimization problem = N is a feedforward neural network with

minz G(xi, Ve(x:, 0), VW, (x;, 0), VWe(x;, ) trainable parameters 6 and input x € R”
0 ‘ ’ T T ’ = A and F are fixed functions, chosen s.t.:
= A satisfies the boundary conditions

Xj
where \Ilt(x, 0) is a trial function, x; sampling

points inside the domain Q2 and 6 are = F does not contribute to the

boundary conditions

adjustable parameters.

boundary conditions

A(xz) + F(x, N(z,p))
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Physics-Informed Neural Networks (PINNs)

In the physics-informed neural network (PINN) approach

introduced by Raissi et al. (2019), a neural network is

employed to discretize a partial differential equation
Nul(x,t) = f(x8), (xt) €0 T]xQCR.

It is based on the approach by Lagaris et al. (1998). The

main novelty of PINNs is the use of a hybrid loss function:

oL = WdatasLdata + WPDELPDE,

where wyata and wppe are weights and

1 Niata R . Hybrid loss
BCdata - Ndata : :i:I (LI(X,', ti) - U,‘) ) Small data Some data Big data
1 Nppe >
Lepe = E (NM[u](xi, t) — f(xi, ;)" -
Nppe i=1
Advantages Drawbacks
Lots of physics Some physics No physics
= “Meshfree” = Training cost and .
= Small data robustness = Known solution values can be
= Generalization properties = Convergence not included in Lyata
= High-dimensional problems well-understood . .
= Inverse and parameterized = Difficulties with scalability = Initial and boundary conditions
problems and multi-scale problems are also included in Lyata
Alexander Heinlein (TU Delft) DD28
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Available Theoretical Results for PINNs — An Example

Mishra and Molinaro. Estimates on the generalisation error of PINNs, 2022

Estimate of the generalization error

The generalization error (or total error) satisfies

Ec < Crpe87 + Grpe CL/P N~/°

quad

where
» &g =Eg(0; X) = |lu—u*||, (V Sobolev space, X training data set)
= &7 is the training error (/P loss of the residual of the PDE)
= Cppe and Cquaq constants depending on the PDE resp. the quadrature
= /N number of the training points and « convergence rate of the quadrature

Rule of thumb:

“As long as the PINN is trained well, it also generalizes well”
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Scaling Issues in Neural Network Training

Spectral bias

Neural networks prioritize learning lower frequency functions first irrespective of their amplitude.
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Rahaman et al., On the spectral bias of neural networks, ICML (2019)

= Solving solutions on large domains and/or with multiscale features potentially requires very
large neural networks.

= Training may not sufficiently reduce the loss or take large numbers of iterations.

= Significant increase on the computational work

Dependence on the choice of activation functions: Hong et al. (arXiv 2022)

Convergence analysis of PINNs via the neural tangent kernel: Wang, Yu, Perdikaris, When and
why PINNs fail to train: A neural tangent kernel perspective, JCP (2022)
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Motivation — Some Observations on the Performance of PINNs

cos (wx) ,

u(0) = 0,

for different values of w
using PINNs with
varying network
capacities.

Scaling issues

= Large computational
domains

= Small frequencies

Cf. Moseley, Markham, and
Nissen-Meyer (2023)

Alexander Heinlein (TU Delft)

(a) PINN (w =1, 2 layers, 16 hidden units)

(b) PINN (w =15, 2 layers, 16 hidden units)
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Motivation — Some Observations on the Performance of PINNs

Solve
v = cos(wx),
u(0) = 0,

for different values of w
using PINNs with
varying network
capacities.

Scaling issues

= Large computational
domains

= Small frequencies

Cf. Moseley, Markham, and
Nissen-Meyer (2023)
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(a) PINN (w =1, 2 layers, 16 hidden units)

(b) PINN (w =15, 2 layers, 16 hidden units)
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Machine Learning and Domain Decomposition Methods

A non-exhaustive overview:

Machine Learning for adaptive BDDC, FETI-DP, and AGDSW: Heinlein, Klawonn, Lanser, Weber
(2019, 2020, 2021, 2021, 2021, 2022); Klawonn, Lanser, Weber (preprint 2022)

Domain decomposition for CNNs: Gu, Zhang, Liu, Cai (2022); Lee, Park, Lee (2022); Klawonn,
Lanser, Weber (arXiv 2023)

D3M: Li, Tang, Wu, and Liao (2019)

DeepDDM: Li, Xiang, Xu (2020); Mercier, Gratton, Boudier (arXiv 2021); Li, Wang, Cui, Xiang, Xu
(2023); Sun, Xu, Yi (arXiv 2022, arXiv 2023)

FBPINNs: Moseley, Markham, and Nissen-Meyer (2023); Dolean, Heinlein, Mishra, Moseley (2024,
subm. 2023 / arXiv:2306.05486); Heinlein, Howard, Beecroft, Stinis (subm. 2024 / arXiv:2401.07888)
Schwarz Domain Decomposition Algorithm for PINNs: Kim, Yang (2022, arXiv 2022)

cPINNs: Jagtap, Kharazmi, Karniadakis (2020)

XPINNs: Jagtap, Karniadakis (2020)

An overview of the state-of-the-art in early 2021: An overview of the state-of-the-art in the end of 2023:
¥ A. Heinlein, A. Klawonn, M. Lanser, J. ¥ A. Klawonn, M. Lanser, J. Weber
Weber Machine learning and domain
Combining machine learning and domain decomposition methods — a survey
decomposition methods for the solution of arXiv:2312.14050. 2023

partial differential equations — A review
GAMM-Mitteilungen. 2021.
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Finite Basis Physics-Informed Neural Networks (FBPINNSs)

In the finite basis physics informed neural
network (FBPINNs) method introduced in
Moseley, Markham, and Nissen-Meyer (2023),
we solve the boundary value problem
Nnul(x) = f(x), xe€QcCR
Bi[u](x) = gi(x), xeTlxC.
using the PINN approach and hard enforcement

of the boundary conditions, similar to Lagaris
et al. (1998).

FBPINNSs use the network architecture

J
u(01, o ,OJ) = G Zj:1 w,-u,- (01)
and the loss function

N
L(61,...,0,) = % ST (1e > wulx, 0)~F(x))”.
i=1

X,‘EQJ'
. J
= Overlapping DD: Q = J_,
= Window functions w; with supp(w;) C Q;
J
and - jwj=1onQ

Alexander Heinlein (TU Delft)

Hard enforcement of boundary conditions

Loss function N
£(0) = 5 > (N[Cul(x,0) — f(x))*,
i=1
with constraining operator C, which explicitly

enforces the boundary conditions.

— Often improves training performance

1
Window
function
0

Subdomain — — —
definition

OVerlapping | s s S s s
T

models




Numerical Results for FBPINNSs

PINN vs FBPINN (Moscley et al. (2023)) Scalability of FBPINNs
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Multi-Level FBPINN Algorithm

Extension of FBPINNSs to L levels; Cf. Dolean, Heinlein,
Mishra, Moseley (submitted 2023 / arXiv:2306.05486).

P Q (]
K |
e T .
level 1 | o ]
e 1
level 2 | 2 2
”- _______ N :
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lovel 4§ ) I Q(A)I n(d)l nu)l ﬂ(n)l n(d)l n(«) l o
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L-level network architecture

L nO
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0.0 0.0 0.0 —— FBPINN solution
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Multi-Level FBPINN Algorithm

Extension of FBPINNSs to L levels; Cf. Dolean, Heinlein, ~ Multi-Frequency Problem

Mishra, Moseley (submitted 2023 / arXiv:2306.05486). et us mevw censder ihe me-eirersens!

I | multi-frequency Laplace boundary value problem

n
level 1 | o 1 , . '
s ————— Y E (wim)” sin (wimx) sin (wiTy) in Q,
fevel 2§ o - oY ] i=1
o o o ) u=20 on 09,

\ R, i .
level 4§ 0 I Q(A)I n(d)l ﬂwl n(‘)_' n(d)l ﬂw l o E with w; = 2.
L BRI SUCANS NN NI LA 1

For increasing values of n, we obtain the analytical

o solutions:
L-level network architecture

L nO
(1) (L M, (g
u (01 , 0_,( n) = C’ w; u 0 ; ))
(a) Window functions (b) Individual subdomain solutions (c) FBPINN solution
10 10 et 10
— Level2
0.8 08 — Level3 08
06 06 06

0.4 04 04
o o2 02 — Exact solution
0.0 0.0 0.0 —— FBPINN solution
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Multi-Level FBPINNSs for a Multi-Frequency Problem — Strong Scaling

FBPINN O FBPINN O FBPINN O FBPINN O  FBPINN
[1,2,4] [1,2,4,8] [1,2,4,8,16] [1,2,4,8,16,32] [1,2,4,8, 16,32, 64
(20, 20) (40, 40) (80, 80) (160, 160) (320, 320)

FBPINN

u] PINN FBPINN FBPINN
5-256 [1, 8, 64]
(320, 320) (320, 320)

[64]
(320, 320)

Cf. Dolean, Heinlein, Mishra, Moseley (submitted
2023 / arXiv:2306.05486).
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Multi-Level FBPINNSs for a Multi-Frequency Problem — Weak Scaling

FBPINN FBPINN O FBPINN O FBPINN O FBPINN O  FBPINN
[1,2] [1,2,4] [1,2,4,8] [1,2,4,8,16]  [1,2, 4,8, 16,32] [1,2,4,8,16, 32, 64

(10, 10) (20, 20) (40, 40) (80, 80) (160, 160) (320, 320)

w1004 100 4
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u 0
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E 1073 - £ 1073 4
2 2
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= Ongoing: analysis and improvement of the convergence

Cf. Dolean, Heinlein, Mishra, Moseley (submitted 2023 / arXiv:2306.05486).
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Helmholtz Problem

Finally, let us consider the two-dimensional Helmholtz boundary value problem

Au—Ku=f inQ=][0,1],
u=0 on 99,
F(x) = e~ 3UIx—0sI/oY

With k = 2'7/1.6 and o = 0.8/2", we obtain the solutions:

Alexander Heinlein (TU Delft)



Multi-Level FBPINNSs for the Helmholtz Problem — Weak Scaling
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Stacking Multifidelity FBPINNs

In the stacking multifidelity PINNs approach introduced in Howard, Murphy, Ahmed, Stinis (arXiv

2023), multiple networks are stacked on top of each other in a recursive way. In particular, the

aMF

next model is trained as a corrector for the previous model #°F:

~ ~ S ~ AS
0™ (x,0M7) = (1 — |a])inear (%, 8, 0™) + || Unopinear (X, &, 6"")
Step 0

Stacking Step 1

Linear network
Predicted ult. x)

-as‘ o Stacking Step N

Linear network

000 025 030 075 100
¢

e =S|

Stacking multifidelity FBPINNSs
We combine stacking multifidelity PINNs with FBPINNSs by using an FBPINN model (with an
increasing number of subdomains) in each stacking step. — One-way sequential coupling of the

levels Cf. Heinlein, Howard, Beecroft, Stinis (subm. 2024 / arXiv:2401.07888)
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Numerical Results — Pendulum Problem

First, we consider a pedulum problem and compare the
stacking multifidelity PINN and FBPINN approaches:
dS1
dt
CI52
dt
with m=L =1, b=0.05 g =9.81, and T = 20.

= 2,

b g .
— Zsm(sl)

0]
10°9 oo ~~~ Stacking PINN
—e— Stacking FBPINN
—_
1<)
s
(U]
<'10-14
200 g
2
©
(V]
- Bxact x
~—— Level 0
— - Levell _
e 10724
—=- Level 5
0 2 4 6 8 10

20.0 Stacking level




Numerical Results — Two-Frequency Problem

Second, we consider a two-frequency problem:

ds _ w1 cos(w1x) + wa cos(wax),

dx
s(0) =0,
on domain Q = [0, 20] with w; = 1 and w, = 15.
. —e— Stacking FBPINN
5 \\ —A— Stacking PINN
- \ --- SF
£107h 44
o \
0 < B —
o Aa
" g107 e
2 o L‘x-—*w—t"
a4
-4
— Exact —— Level 2 0 -3
~—— lLevel0 --- Level4 _2 1075
—6{ ~ Levell 16 17 18 19 20 0 5 10 15
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 Stacking level

— Due to the multiscale structure of the problem, the improvements due to the multifidelity
FBPINN approach are even stronger.
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Numerical Results — Allen—Cahn Equation

Finally, we consider the Allen—Cahn equation:

st — 0.0001s,x 4 5% — 55 = 0, t€(0,1],x € [-1,1],
s(x,0) = x? cos(mx), x € [-1,1],
s(x, t) = s(—x, t), te[0,1],x=-1,x=1,
sx(x, t) = sx(—x, t), tef0,1],x=-1,x=1.
Exact s(t, x) Prediction, level 0
1 1
x 0 0 x Lo
-1 -1
1 -

Prediction, level 1

t

Prediction, level 2
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= Training of PINNs is often problematic when:
= scaling to large domains / high frequency solutions

= multiple loss terms have to be balanced

= Convergence of PINNs has yet to be understood better

(Multilevel) FBPINNs

= Schwarz domain decomposition approaches improve the scalability of PINNs to
large domains / high frequencies, keeping the complexity of the local networks low

= As classical domain decomposition methods, one-level FBPINNSs are not scalable to
large numbers of subdomains; multilevel FBPINNs enable scalability.

Multifidelity stacking FBPINNs

= The combination of multifidelity stacking PINNs with the multilevel FBPINN
approach yields significant improvements in the accuracy and efficiency for
time-dependent problems.

Thank you for your attention!

— Talk by Victorita Dolean on Tuesday, 10.45 am, in Hall 2: Domain decomposition-based training strategies for PINNs



Workshop on Computational and Mathematical Methods in Data Science 2024

Details

Date: April 24-26 2024
Location: Delft University of Technology

This workshop brings together scientists from mathematics,
computer science, and application areas working on

Workshop on Computational and Mathematical Methods in Data Science 2024

computational and mathematical methods in data science. ey e N
About the Workshop
Confirmed invited speakers . Methods n Dats sciene 2024 isthe
2024 edition of the annual workshop of the GAMM Activity Group on “Computational and Mathematical
. . . Methods in Data Science” (COMinDS) and is co-organized by the Strategic Research Initiative “Bridging
= Christoph Brune (University of Twente) Numerial Anlysis and Machine Learing” o the the STU Apiied MathematicsInstute (M), The
. . . workshop will be hosted by Delft University of Technology and take place on April 25 and 26, 2024.
= Victorita Dolean (TU Eindhoven) . computer scence, and apicts
. working d methods
= Thomas Richter
The meeting will be organized under the support of
S ses « the 4TU Applied Mathematics Institute (AMI) and

For more details, see
https://searhein.github.io/gamm-cominds-2024 /
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