



# Fast and Robust Overlapping Schwarz (FROSch) Domain Decomposition Preconditioners

Alexander Heinlein<sup>1</sup>

High Performance Computing in Science and Engineering 2024 conference (HPCSE 2024), Beskydy, Czech Republic, May 20 - 23, 2024

<sup>1</sup>Delft University of Technology

## Solving A Model Problem



Consider a diffusion model problem:

 $-\nabla \cdot (\alpha(x)\nabla u(x)) = f \quad \text{in } \Omega = [0, 1]^2,$  $u = 0 \quad \text{on } \partial\Omega.$ 

Discretization using finite elements yields a **sparse** linear system of equations

Ku = f.

#### **Direct solvers**

For fine meshes, solving the system using a direct solver is not feasible due to **superlinear complexity and memory cost**.

#### **Iterative solvers**

Iterative solvers are efficient for solving sparse linear systems of equations, however, the convergence rate generally depends on the condition number  $\kappa$  (*A*). It deteriorates, e.g., for

- fine meshes, that is, small element sizes h
- large contrasts  $\frac{\max_{x} \alpha(x)}{\min_{x} \alpha(x)}$

 $\Rightarrow$  We introduce a preconditioner  $M^{-1} \approx A^{-1}$  to improve the condition number:

$$\boldsymbol{M}^{-1}\boldsymbol{A}\boldsymbol{u}=\boldsymbol{M}^{-1}\boldsymbol{f}$$

## **Two-Level Schwarz Preconditioners**

**One-level Schwarz preconditioner** 





Based on an overlapping domain decomposition, we define a one-level Schwarz operator

$$\boldsymbol{M}_{\text{OS-1}}^{-1}\boldsymbol{K} = \sum_{i=1}^{N} \boldsymbol{R}_{i}^{\top}\boldsymbol{K}_{i}^{-1}\boldsymbol{R}_{i}\boldsymbol{K}_{i}$$

where  $\mathbf{R}_i$  and  $\mathbf{R}_i^{\top}$  are restriction and prolongation operators corresponding to  $\Omega'_i$ , and  $\mathbf{K}_i := \mathbf{R}_i \mathbf{K} \mathbf{R}_i^{\top}$ .

Condition number estimate:

$$\kappa\left( \pmb{M}_{\mathsf{OS-1}}^{-1}\pmb{K} 
ight) \leq C\left(1+rac{1}{H\delta}
ight)$$

with subdomain size H and overlap width  $\delta$ .

#### Lagrangian coarse space





The two-level overlapping Schwarz operator reads

$$\boldsymbol{M}_{\text{OS-2}}^{-1}\boldsymbol{K} = \underbrace{\boldsymbol{\Phi}\boldsymbol{K}_{0}^{-1}\boldsymbol{\Phi}^{\top}\boldsymbol{K}}_{\text{coarse level - global}} + \underbrace{\sum_{i=1}^{N}\boldsymbol{R}_{i}^{\top}\boldsymbol{K}_{i}^{-1}\boldsymbol{R}_{i}\boldsymbol{K}}_{\text{first level - local}},$$

where  $\Phi$  contains the coarse basis functions and  $K_0 := \Phi^\top K \Phi$ ; cf., e.g., **Toselli, Widlund (2005)**. The construction of a Lagrangian coarse basis requires a coarse triangulation.

Condition number estimate:

$$\kappa\left(\boldsymbol{M}_{\mathsf{OS-2}}^{-1}\boldsymbol{K}
ight)\leq C\left(1+rac{\boldsymbol{H}}{\delta}
ight)$$

## **Two-Level Schwarz Preconditioners**



## FROSch (Fast and Robust Overlapping Schwarz) Framework in Trilinos





#### Software

- Object-oriented C++ domain decomposition solver framework with  $\rm MPI\text{-}based$  distributed memory parallelization
- Part of TRILINOS with support for both parallel linear algebra packages EPETRA and TPETRA
- Node-level parallelization and performance portability on CPU and GPU architectures through KOKKOS and KOKKOSKERNELS
- Accessible through unified  ${\rm TRILINOS}$  solver interface  ${\rm STRATIMIKOS}$

## Methodology

- Parallel scalable multi-level Schwarz domain decomposition
   preconditioners
- Algebraic construction based on the parallel distributed system matrix
- Extension-based coarse spaces

## Team (active)

- Filipe Cumaru (TU Delft)
- Kyrill Ho (UCologne)
- Jascha Knepper (UCologne)
- Friederike Röver (TUBAF)
- Lea Saßmannshausen (UCologne)

- Alexander Heinlein (TU Delft)
- Axel Klawonn (UCologne)
- Siva Rajamanickam (SNL)
- Oliver Rheinbach (TUBAF)
- Ichitaro Yamazaki (SNL)

#### Overlapping domain decomposition

Adjacency can be determined algebraically from the sparsity pattern of the system matrix *A* (nonzero off-diagonal entries).



#### Overlapping domain decomposition

Adjacency can be determined algebraically from the sparsity pattern of the system matrix *A* (nonzero off-diagonal entries).



#### **Overlapping domain decomposition**

Adjacency can be determined algebraically from the sparsity pattern of the system matrix *A* (nonzero off-diagonal entries).



#### **Overlapping domain decomposition**

Adjacency can be determined algebraically from the sparsity pattern of the system matrix A (nonzero off-diagonal entries).



#### **Coarse space**

1. Interface components





For scalar elliptic problems, the null space consists only of constant functions.





# **Overlapping domain decomposition Overlap** $\delta = 1h$ **Overlap** $\delta = 2h$ Nonoverlapping DD Adjacency can be determined algebraically from the sparsity pattern of the system matrix A (nonzero off-diagonal entries). **Coarse space** 3. Extension 1. Interface components 2. Interface basis (partition of unity $\times$ null space)

## Examples of FROSch Coarse Spaces

#### GDSW (Generalized Dryja-Smith-Widlund)





- Dohrmann, Klawonn, Widlund (2008)
- Dohrmann, Widlund (2009, 2010, 2012)

#### MsFEM (Multiscale Finite Element Method)





- Hou (1997), Efendiev and Hou (2009)
- Buck, Iliev, and Andrä (2013)
- H., Klawonn, Knepper, Rheinbach (2018)

#### **RGDSW** (Reduced dimension GDSW)





- Dohrmann, Widlund (2017)
- H., Klawonn, Knepper, Rheinbach, Widlund (2022)

#### Q1 Lagrangian / piecewise bilinear





**Piecewise linear** interface partition of unity functions and a **structured domain decomposition**.

#### Alexander Heinlein (Delft University of Technology)

## **Examples of FROSch Coarse Spaces**



For elliptic model problems, the condition number of the (R)GDSW two-level Schwarz operator is bounded by

$$\kappa\left(\pmb{M}_{(\mathsf{R})\mathsf{GDSW}}^{-1}\pmb{K}\right) \leq C\left(1+\frac{H}{\delta}\right)\left(1+\log\left(\frac{H}{h}\right)\right)^{\alpha},$$

where

C constant (does not depend on h, H, or  $\delta$ ),

H subdomain diameter,

h element size,

 $\delta$  width of the overlap,

 $\alpha \in \{0, 1, 2\}$  power (depends on problem dimension, regularity of the subdomains, and variant of the algorithm).

## Weak Scalability up to 64 k MPI Ranks / 1.7 b Unknowns (3D Poisson; Juqueen)

#### GDSW vs RGDSW (reduced dimension)





#### Two-level vs three-level GDSW

Heinlein, Klawonn, Rheinbach, Röver (2019, 2020).



Alexander Heinlein (Delft University of Technology)

1000

# Cores

10000

100000

70

35

0

100

# Monolithic and Adaptive Extension-Based Coarse Spaces

## Monolithic (R)GDSW Preconditioners for CFD Simulations

Consider the discrete saddle point problem

$$\mathcal{A}_{X} = \begin{bmatrix} \mathbf{K} & \mathbf{B}^{\top} \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} \mathbf{f} \\ \mathbf{0} \end{bmatrix} = \mathbf{6}.$$

#### Monolithic GDSW preconditioner

We construct a monolithic GDSW preconditioner

$$\mathcal{M}_{\mathsf{GDSW}}^{-1} = \phi \mathcal{R}_0^{-1} \phi^\top + \sum\nolimits_{i=1}^N \mathcal{R}_i^\top \mathcal{R}_i^{-1} \mathcal{R}_i$$

with block matrices  $\mathcal{A}_0=\phi^\top\mathcal{A}\phi,\,\mathcal{A}_i=\mathcal{R}_i\mathcal{A}\mathcal{R}_i^\top,$  and

$$\mathcal{R}_i = \begin{bmatrix} \mathcal{R}_{u,i} & \mathbf{0} \\ \mathbf{0} & \mathcal{R}_{p,i} \end{bmatrix} \quad \text{and} \quad \phi = \begin{bmatrix} \Phi_{u,u_0} & \Phi_{u,p_0} \\ \Phi_{p,u_0} & \Phi_{p,p_0} \end{bmatrix}.$$

Using  $\mathcal{A}$  to compute extensions:  $\phi_I = -\mathcal{A}_{II}^{-1}\mathcal{A}_{I\Gamma}\phi_{\Gamma}$ ; cf. Heinlein, Hochmuth, Klawonn (2019, 2020).







Stokes flow

Navier-Stokes flow

## **Related work:**

- Original work on monolithic Schwarz preconditioners: Klawonn and Pavarino (1998, 2000)
- Other publications on monolithic Schwarz preconditioners: e.g., Hwang and Cai (2006), Barker and Cai (2010), Wu and Cai (2014), and the presentation Dohrmann (2010) at the Workshop on Adaptive Finite Elements and Domain Decomposition Methods in Milan.

## Monolithic (R)GDSW Preconditioners for CFD Simulations

Consider the discrete saddle point problem

$$\mathcal{A}_{X} = \begin{bmatrix} \mathbf{K} & \mathbf{B}^{\top} \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} \mathbf{f} \\ \mathbf{0} \end{bmatrix} = \mathbf{6}.$$

#### Monolithic GDSW preconditioner

We construct a monolithic GDSW preconditioner

$$\mathcal{M}_{\mathsf{GDSW}}^{-1} = \phi \mathcal{A}_0^{-1} \phi^\top + \sum_{i=1}^N \mathcal{R}_i^\top \mathcal{A}_i^{-1} \mathcal{R}_i$$

with block matrices  $\mathcal{A}_0 = \phi^\top \mathcal{A} \phi$ ,  $\mathcal{A}_i = \mathcal{R}_i \mathcal{A} \mathcal{R}_i^\top$ .

#### SIMPLE block preconditioner

We employ the SIMPLE (Semi-Implicit Method for Pressure Linked Equations) block preconditioner

$$\mathcal{M}_{\mathsf{SIMPLE}}^{-1} = \begin{bmatrix} \mathbf{I} & -\mathbf{D}^{-1}\mathbf{B} \\ \mathbf{0} & \alpha \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{K}^{-1} & \mathbf{0} \\ -\hat{\mathbf{S}}^{-1}\mathbf{B}\mathbf{K}^{-1} & \hat{\mathbf{S}}^{-1} \end{bmatrix};$$

see Patankar and Spalding (1972). Here,

- $\hat{\boldsymbol{S}} = -\boldsymbol{B}\boldsymbol{D}^{-1}\boldsymbol{B}^{\top}$ , with  $\boldsymbol{D} = \operatorname{diag} \boldsymbol{K}$
- $\alpha$  is an under-relaxation parameter

We **approximate the inverses** using (R)GDSW preconditioners.

#### Monolithic vs. SIMPLE preconditioner



#### Steady-state Navier-Stokes equations

| prec.                             | # MPI<br>ranks          | 243                                      | 1 1 2 5                                    | 15 562                                     |
|-----------------------------------|-------------------------|------------------------------------------|--------------------------------------------|--------------------------------------------|
| Monolithic                        | setup                   | 39.6 s                                   | 57.9 s                                     | 95.5 s                                     |
| RGDSW                             | solve                   | 57.6 s                                   | 69.2 s                                     | 74.9 s                                     |
|                                   |                         |                                          |                                            |                                            |
| (FROSCH)                          | total                   | 97.2 s                                   | 127.7 s                                    | 170.4 s                                    |
| (FROSCH)<br>SIMPLE                | total<br>setup          | <b>97.2 s</b> 39.2 s                     | <b>127.7 s</b><br>38.2 s                   | <b>170.4 s</b> 68.6 s                      |
| (FROSCH)<br>SIMPLE<br>RGDSW (Теко | total<br>setup<br>solve | <b>97.2 s</b><br>39.2 s<br><b>86.2 s</b> | <b>127.7 s</b><br>38.2 s<br><b>106.6 s</b> | <b>170.4 s</b><br>68.6 s<br><b>127.4 s</b> |

Computations on Piz Daint (CSCS). Implementation in the finite element software FEDDLib.

## Balancing the Velocity and Pressure Coarse Spaces



Alexander Heinlein (Delft University of Technology)

## **Local Pressure Projections**

We slightly modify the monolithic two-level overlapping Schwarz preconditioner

$$\mathcal{M}_{\mathsf{OS-2}}^{-1} = \phi \mathcal{A}_0^{-1} \phi^\top + \sum_{i=1}^N \mathcal{R}_i^\top \overline{\mathcal{P}}_i \mathcal{A}_i^{-1} \mathcal{R}_i$$

with local projection operators  $\overline{\mathcal{P}}_i$  of the form

$$\overline{\mathcal{P}}_{i} = \begin{bmatrix} I_{u,i} & 0\\ 0 & \overline{P}_{p,i} \end{bmatrix}, \text{ with } \overline{P}_{p,i} = I_{p,i} - \frac{a_{i}a_{i}^{T}}{a_{i}^{T}a_{i}},$$

where  $a_i$  is the discretization of the integral  $\int_{\Omega_i} u \, dx$ .

## Backward-facing step (Re = 200)



#### Lid-driven cavity Stokes



Navier–Stokes flow with kinematic viscosity  $\nu$  =1e^{-3}

| ♯ MPI ran                                            | iks               | 196 | 1089 | 4 356 |
|------------------------------------------------------|-------------------|-----|------|-------|
| P2-P1,                                               | Local projections | 33  | 36   | 35    |
| H/h = 50                                             | —                 | 118 | 172  | 237   |
| $\begin{array}{l} P1-P1stab \\ H/h = 80 \end{array}$ | Pressure stab.    | 38  | 36   | 36    |

#### RGDSW-RGDSW coarse spaces

 $\rightarrow$  Local pressure corrections significantly improve the convergence. We obtain very fast convergence using a good combination of coarse spaces.

Heinlein, Klawonn, Saßmannshausen (in prep.)

Computations on Fritz (FAU).

## **FROSch Preconditioners for Land Ice Simulations**



https://github.com/SNLComputation/Albany

The velocity of the ice sheet in Antarctica and Greenland is modeled by a **first-order-accurate Stokes approximation model**,

$$-\nabla \cdot (2\mu \dot{\epsilon}_1) + \rho g \frac{\partial s}{\partial x} = 0, \quad -\nabla \cdot (2\mu \dot{\epsilon}_2) + \rho g \frac{\partial s}{\partial y} = 0.$$



with a nonlinear viscosity model (Glen's law); cf., e.g., Blatter (1995) and Pattyn (2003).

|                            | Antarctica ( <b>velocity</b> )        |            |            | Greenland                                | (multiphysics v | el. & temperature) |
|----------------------------|---------------------------------------|------------|------------|------------------------------------------|-----------------|--------------------|
|                            | 4 km resolution, 20 layers, 35 m dofs |            |            | 1-10 km resolution, 20 layers, 69 m dofs |                 |                    |
| $\operatorname{MPI}$ ranks | avg. its                              | avg. setup | avg. solve | avg. its                                 | avg. setup      | avg. solve         |
| 512                        | 41.9 (11)                             | 25.10 s    | 12.29 s    | 41.3 (36)                                | 18.78 s         | 4.99 s             |
| 1 024                      | 43.3 (11)                             | 9.18 s     | 5.85 s     | 53.0 (29)                                | 8.68 s          | 4.22 s             |
| 2 048                      | 41.4 (11)                             | 4.15 s     | 2.63 s     | 62.2 (86)                                | 4.47 s          | 4.23 s             |
| 4 096                      | 41.2 (11)                             | 1.66 s     | 1.49 s     | 68.9 (40)                                | 2.52 s          | 2.86 s             |
| 8 192                      | 40.2 (11)                             | 1.26 s     | 1.06 s     | -                                        | -               | -                  |

Computations performed on Cori (NERSC).

Heinlein, Perego, Rajamanickam (2022)

## Adaptive Extension-Based Coarse Spaces for Schwarz Preconditioners

#### Highly heterogeneous problems ...

... appear in most areas of modern science and engineering:







Micro section of a dual-phase steel. Courtesy of J. Schröder.

Groundwater flow (SPE10); cf. Christie and Blunt (2001). Composition of arterial walls; taken from **O'Connell et al. (2008)**.

#### Adaptive coarse spaces

The coarse space is **enhanced** by eigenfunctions of **local edge and face eigenvalue problems** with eigenvalues below tolerances  $tol_{\mathcal{E}}$  and  $tol_{\mathcal{F}}$ :

$$\kappa\left(\mathbf{M}_{*}^{-1}\mathbf{K}\right) \leq C\left(1 + \frac{1}{\operatorname{tol}_{\mathcal{B}}} + \frac{1}{\operatorname{tol}_{\mathcal{F}}} + \frac{1}{\operatorname{tol}_{\mathcal{F}} \cdot \operatorname{tol}_{\mathcal{F}}}\right);$$

C does not depend on *h*, *H*, or the coefficients. OS-ACMS & adaptive GDSW (AGDSW) (Heinlein, Klawonn, Knepper, Rheinbach (2018, 2018, 2019)).

## Local eigenvalue problems

Local generalized eigenvalue problems corresponding to the edges  ${\mathcal S}$  and faces  ${\mathcal F}$  of the domain decomposition:

$$\begin{aligned} \forall E \in \mathcal{E} : \qquad & \boldsymbol{S}_{EE} \boldsymbol{\tau}_{*,E} = \lambda_{*,E} \boldsymbol{K}_{EE} \boldsymbol{\tau}_{*,E}, \quad \forall \boldsymbol{\tau}_{*,E} \in \boldsymbol{V}_{E}, \\ \forall F \in \mathcal{F} : \qquad & \boldsymbol{S}_{FE} \boldsymbol{\tau}_{*,F} = \lambda_{*,E} \boldsymbol{K}_{FE} \boldsymbol{\tau}_{*,F}, \quad \forall \boldsymbol{\tau}_{*,F} \in \boldsymbol{V}_{F}, \end{aligned}$$

with Schur complements  $S_{EE}$ ,  $S_{FF}$  with Neumann boundary conditions and submatrices  $K_{EE}$ ,  $K_{FF}$  of K. We select eigenfunctions corresponding to eigenvalues below tolerances  $tol_{\&}$  and  $tol_{\mathcal{J}}$ .

 $\rightarrow$  The corresponding coarse basis functions are **energy-minimizing extensions** into the interior of the subdomains.



## Adaptive Extension-Based Coarse Spaces for Schwarz Preconditioners

#### Highly heterogeneous problems ...

... appear in most areas of modern science and engineering:







Micro section of a dual-phase steel. Courtesy of J. Schröder.

Groundwater flow (SPE10); cf. Christie and Blunt (2001).

Composition of arterial walls; taken from **O'Connell et al. (2008)**.

#### Adaptive coarse spaces

The coarse space is **enhanced** by eigenfunctions of **local edge and face eigenvalue problems** with eigenvalues below tolerances  $tol_{\mathcal{E}}$  and  $tol_{\mathcal{F}}$ :

$$\kappa\left(\mathbf{M}_{*}^{-1}\mathbf{K}\right) \leq C\left(1 + \frac{1}{\operatorname{tol}_{\mathcal{B}}} + \frac{1}{\operatorname{tol}_{\mathcal{F}}} + \frac{1}{\operatorname{tol}_{\mathcal{B}} \cdot \operatorname{tol}_{\mathcal{F}}}\right);$$

*C* does not depend on *h*, *H*, or the coefficients. OS-ACMS & adaptive GDSW (AGDSW) (Heinlein, Klawonn, Knepper, Rheinbach (2018, 2018, 2019)).

## Foam coefficient function example



**Solid phase:**  $A = 10^6$ ; transparent phase: A = 1; 100 subdomains

| V <sub>0</sub>    | tol <sub>8</sub> | $\mathit{tol}_{\mathcal{F}}$ | it. | κ                  | dim $V_0$ | $\dim V_0/\operatorname{dof}$ |
|-------------------|------------------|------------------------------|-----|--------------------|-----------|-------------------------------|
| $V_{ m GDSW}$     | —                | _                            | 565 | $1.3 \cdot 10^{6}$ | 1601      | 0.27 %                        |
| $V_{ m AGDSW}$    | 0.05             | 0.05                         | 60  | 30.2               | 1968      | 0.33 %                        |
| $V_{\rm OS-ACMS}$ | 0.001            | 0.001                        | 57  | 30.3               | 690       | 0.12 %                        |

Cf. Heinlein, Klawonn, Knepper, Rheinbach (2018, 2019).

## Algebraic Adaptive Extension-Based Coarse Spaces

Two algebraic eigenvalue problems

Use the a-orthogonal decomposition

 $V_{\Omega_{e}} = V_{\Omega_{e}}^{0} \oplus \{E_{\partial \Omega_{e} \to \Omega_{e}}(v) : v \in V_{\partial \Omega_{e}}\}$ 

to "split the AGDSW (Neumann) eigenvalue problem" into two:

- Dirichlet eigenvalue problem on V<sup>0</sup><sub>Ω<sub>e</sub></sub>
- Transfer eigenvalue problem on  $V_{\Omega_{e},harm}$ ; cf. Smetana, Patera (2016)



#### **Condition number estimate**

$$\kappa\left(\boldsymbol{M}_{\mathsf{DIR}\&\mathsf{TR}}^{-1}\boldsymbol{K}
ight)\leq C\max\left\{1/ au \mathsf{OL}_{\mathsf{DIR}}, \ au \mathsf{OL}_{\mathsf{TR}}/lpha_{\mathsf{min}}
ight\},$$

where *C* is independent of *H*, *h*, and the contrast of the coefficient function  $\alpha$ .

Heinlein & Smetana (subm. 2023; preprint arXiv).

#### Numerical results – SPE10 benchmark

Layer 70 from model 2; cf. Christie and Blunt (2001)



Alexander Heinlein (Delft University of Technology)

# Accelerating Time-to-Solution

## Inexact Subdomain Solvers in FROSch

$$oldsymbol{M}_{ ext{OS-2}}^{-1}oldsymbol{\mathcal{K}}=\Phioldsymbol{\mathcal{K}}_0^{-1}\Phi^{ op}oldsymbol{\mathcal{K}}+\sum_{i=1}^Noldsymbol{R}_i^{ op}oldsymbol{\mathcal{K}}_i^{-1}oldsymbol{R}_ioldsymbol{\mathcal{K}}$$

3D Laplacian; 512 MPI ranks = 512 (= 8  $\times$  8  $\times$  8) subdomains;  $H/\delta$  = 10; RGDSW coarse space.

|                              |            | subdomain solver |         |         |          |            |                  |         |  |
|------------------------------|------------|------------------|---------|---------|----------|------------|------------------|---------|--|
|                              |            | direct           | ILU     | l(k)    | symm. G  | auß–Seidel | Chebyshev polyn. |         |  |
|                              |            | solver           | k = 2   | k = 3   | 5 sweeps | 10 sweeps  | p = 6            | p = 8   |  |
| H/h = 20                     | iter       | 26               | 33      | 30      | 31       | 28         | 34               | 31      |  |
| H/H = 20,                    | setup time | 1.89 s           | 0.97 s  | 1.01 s  | 0.89 s   | 0.91 s     | 0.73 s           | 0.71 s  |  |
| $\approx$ 14 K dots          | apply time | 0.39 s           | 0.27 s  | 0.31 s  | 0.31 s   | 0.35 s     | 0.30 s           | 0.30 s  |  |
| per rank                     | prec. time | 2.28 s           | 1.24 s  | 1.32 s  | 1.20 s   | 1.26 s     | 1.03 s           | 1.01 s  |  |
| H/h = 40                     | iter       | 30               | 55      | 46      | 52       | 41         | 59               | 51      |  |
| H/H = 40,                    | setup time | 12.09 s          | 6.14 s  | 6.26 s  | 5.74 s   | 5.89 s     | 5.55 s           | 5.64 s  |  |
| $\approx 105  \text{k}$ dois | apply time | 4.21 s           | 1.84 s  | 1.96 s  | 2.66 s   | 3.28 s     | 2.52 s           | 2.47 s  |  |
| per rank                     | prec. time | 16.30 s          | 7.98 s  | 8.22 s  | 8.40 s   | 9.18 s     | 8.16 s           | 8.11 s  |  |
| H/h = 60                     | iter       |                  | 81      | 64      | 76       | 56         | 88               | 74      |  |
| n/n = 00,                    | setup time | 0.0M             | 47.29 s | 47.87 s | 45.14 s  | 45.08 s    | 45.44 s          | 45.49 s |  |
|                              | apply time | 00101            | 10.79 s | 9.98 s  | 13.00 s  | 16.16 s    | 11.95 s          | 12.09 s |  |
| регланк                      | prec. time |                  | 58.08 s | 57.85 s | 58.15 s  | 61.25 s    | 57.39 s          | 57.59 s |  |

INTEL MKL PARDISO; ILU / symmetric Gauß–Seidel / Chebyshev polynomials from IFPACK2.

Parallel computations on dual-socket Intel Xeon Platinum machine at Sandia National Laboratories (Blake).

## Inexact Subdomain Solvers in FROSch

$$oldsymbol{M}_{ ext{OS-2}}^{-1}oldsymbol{\mathcal{K}}=\Phioldsymbol{\mathcal{K}}_0^{-1}\Phi^{ au}oldsymbol{\mathcal{K}}+\sum_{i=1}^Noldsymbol{R}_i^{ au}oldsymbol{\mathsf{K}}_i^{-1}oldsymbol{R}_ioldsymbol{\mathcal{K}}$$

3D Laplacian; 512 MPI ranks = 512 (= 8  $\times$  8  $\times$  8) subdomains;  $H/\delta$  = 10; RGDSW coarse space.

|                              |            | subdomain solver |         |         |                   |           |                  |         |
|------------------------------|------------|------------------|---------|---------|-------------------|-----------|------------------|---------|
|                              |            | direct           | ILU(k)  |         | symm. Gauß–Seidel |           | Chebyshev polyn. |         |
|                              |            | solver           | k = 2   | k = 3   | 5 sweeps          | 10 sweeps | p = 6            | p = 8   |
| H/h = 20                     | iter       | 26               | 33      | 30      | 31                | 28        | 34               | 31      |
| H/H = 20,                    | setup time | 1.89 s           | 0.97 s  | 1.01 s  | 0.89 s            | 0.91 s    | 0.73 s           | 0.71 s  |
| $\approx 14  \text{K}$ dois  | apply time | 0.39 s           | 0.27 s  | 0.31 s  | 0.31 s            | 0.35 s    | 0.30 s           | 0.30 s  |
| per rank                     | prec. time | 2.28 s           | 1.24 s  | 1.32 s  | 1.20 s            | 1.26 s    | 1.03 s           | 1.01 s  |
| H/h = 40                     | iter       | 30               | 55      | 46      | 52                | 41        | 59               | 51      |
| H/H = 40,                    | setup time | 12.09 s          | 6.14 s  | 6.26 s  | 5.74 s            | 5.89 s    | 5.55 s           | 5.64 s  |
| $\approx 105 \text{ k dols}$ | apply time | 4.21 s           | 1.84 s  | 1.96 s  | 2.66 s            | 3.28 s    | 2.52 s           | 2.47 s  |
| per rank                     | prec. time | 16.30 s          | 7.98 s  | 8.22 s  | 8.40 s            | 9.18 s    | 8.16 s           | 8.11 s  |
| H/h = 60                     | iter       |                  | 81      | 64      | 76                | 56        | 88               | 74      |
| 11/11 = 00,                  | setup time | 0.014            | 47.29 s | 47.87 s | 45.14 s           | 45.08 s   | 45.44 s          | 45.49 s |
|                              | apply time | 00101            | 10.79 s | 9.98 s  | 13.00 s           | 16.16 s   | 11.95 s          | 12.09 s |
| регланк                      | prec. time |                  | 58.08 s | 57.85 s | 58.15 s           | 61.25 s   | 57.39 s          | 57.59 s |

INTEL MKL PARDISO; ILU / symmetric Gauß–Seidel / Chebyshev polynomials from IFPACK2.

Parallel computations on dual-socket Intel Xeon Platinum machine at Sandia National Laboratories (Blake).

## Inexact Extension Solvers in FROSch

$$\Phi = \begin{bmatrix} -\mathbf{K}_{II}^{-1}\mathbf{K}_{\Gamma I}^{T}\Phi_{\Gamma} \\ \Phi_{\Gamma} \end{bmatrix} = \begin{bmatrix} \Phi_{I} \\ \Phi_{\Gamma} \end{bmatrix}$$

3D Laplacian; 512 MPI ranks = 512 (= 8  $\times$  8  $\times$  8) subdomains;  $H/\delta$  = 10; RGDSW coarse space.

| extension                    | solver        | direct  |         | precond | itioned GMF | RES (rel. tol. | $= 10^{-4}$ )    |         |
|------------------------------|---------------|---------|---------|---------|-------------|----------------|------------------|---------|
| (10 Gauss–Seide              | el sweeps for | antect  | ILU(k)  |         | symm. G     | auß–Seidel     | Chebyshev polyn. |         |
| the subdomain solver)        |               | solver  | k = 2   | k = 3   | 5 sweeps    | 10 sweeps      | p = 6            | p = 8   |
| H/h = 20                     | iter          | 28      | 28      | 28      | 28          | 28             | 28               | 28      |
| H/H = 20,                    | setup time    | 0.89 s  | 0.93 s  | 0.89 s  | 0.78 s      | 0.83 s         | 0.79 s           | 0.84 s  |
| $\approx 14  \text{K}$ dois  | apply time    | 0.35 s  | 0.35 s  | 0.34 s  | 0.36 s      | 0.34 s         | 0.35 s           | 0.34 s  |
| per rank                     | prec. time    | 1.23 s  | 1.28 s  | 1.23 s  | 1.14 s      | 1.17 s         | 1.14 s           | 1.18 s  |
| H/h = 40                     | iter          | 41      | 41      | 41      | 41          | 41             | 41               | 41      |
| H/H = 40,                    | setup time    | 5.72 s  | 4.16 s  | 4.61 s  | 4.26 s      | 4.64 s         | 4.27 s           | 4.33 s  |
| $\approx 105  \text{k}$ dois | apply time    | 3.33 s  | 3.33 s  | 3.30 s  | 3.33 s      | 3.30 s         | 3.28 s           | 3.29 s  |
| per rank                     | prec. time    | 9.04 s  | 7.49 s  | 7.92 s  | 7.59 s      | 7.95 s         | 7.55 s           | 7.62 s  |
| H/h = 60                     | iter          | 56      | 56      | 56      | 56          | 56             | 56               | 56      |
| n/n = 00,                    | setup time    | 45.16 s | 17.75 s | 18.16 s | 17.98 s     | 19.34 s        | 17.93 s          | 18.04 s |
|                              | apply time    | 15.83 s | 18.04 s | 17.08 s | 16.26 s     | 15.81 s        | 16.19 s          | 16.44 s |
| per rank                     | prec. time    | 60.99 s | 35.79 s | 35.25 s | 34.24 s     | 35.15 s        | 34.12 s          | 34.49 s |

INTEL MKL PARDISO; ILU / symmetric Gauß–Seidel / Chebyshev polynomials from  $\rm IFPACK2.$ 

Parallel computations on dual-socket Intel Xeon Platinum machine at Sandia National Laboratories (Blake).

## Inexact Extension Solvers in FROSch

$$\Phi = \begin{bmatrix} -\mathbf{K}_{\mathsf{II}}^{-1}\mathbf{K}_{\mathsf{\Gamma}^{\prime}}^{\mathsf{T}}\Phi_{\mathsf{\Gamma}} \\ \Phi_{\mathsf{\Gamma}} \end{bmatrix} = \begin{bmatrix} \Phi_{\mathsf{I}} \\ \Phi_{\mathsf{\Gamma}} \end{bmatrix}$$

3D Laplacian; 512 MPI ranks = 512 (= 8  $\times$  8  $\times$  8) subdomains;  $H/\delta$  = 10; RGDSW coarse space.

| extension                           | solver        | direct  |         | precond | itioned GMF       | RES (rel. tol. | $= 10^{-4}$ )    |         |
|-------------------------------------|---------------|---------|---------|---------|-------------------|----------------|------------------|---------|
| (10 Gauss–Seide                     | el sweeps for | antect  | ILU(k)  |         | symm. Gauß–Seidel |                | Chebyshev polyn. |         |
| the subdomain solver)               |               | solver  | k = 2   | k=3     | 5 sweeps          | 10 sweeps      | p = 6            | p = 8   |
| 11/1- 20                            | iter          | 28      | 28      | 28      | 28                | 28             | 28               | 28      |
| H/H = 20,                           | setup time    | 0.89 s  | 0.93 s  | 0.89 s  | 0.78 s            | 0.83 s         | 0.79 s           | 0.84 s  |
| $\approx$ 14 K dots                 | apply time    | 0.35 s  | 0.35 s  | 0.34 s  | 0.36 s            | 0.34 s         | 0.35 s           | 0.34 s  |
| per rank                            | prec. time    | 1.23 s  | 1.28 s  | 1.23 s  | 1.14 s            | 1.17 s         | 1.14 s           | 1.18 s  |
| H/h = 40                            | iter          | 41      | 41      | 41      | 41                | 41             | 41               | 41      |
| 11/11 = 40,<br>$\approx 105 k dots$ | setup time    | 5.72 s  | 4.16 s  | 4.61 s  | 4.26 s            | 4.64 s         | 4.27 s           | 4.33 s  |
| $\approx 105 \text{ k uois}$        | apply time    | 3.33 s  | 3.33 s  | 3.30 s  | 3.33 s            | 3.30 s         | 3.28 s           | 3.29 s  |
| per rank                            | prec. time    | 9.04 s  | 7.49 s  | 7.92 s  | 7.59 s            | 7.95 s         | 7.55 s           | 7.62 s  |
| H/h = 60                            | iter          | 56      | 56      | 56      | 56                | 56             | 56               | 56      |
| n/n = 00,                           | setup time    | 45.16 s | 17.75 s | 18.16 s | 17.98 s           | 19.34 s        | 17.93 s          | 18.04 s |
| $\sim$ 330 k dois                   | apply time    | 15.83 s | 18.04 s | 17.08 s | 16.26 s           | 15.81 s        | 16.19 s          | 16.44 s |
| per rank                            | prec. time    | 60.99 s | 35.79 s | 35.25 s | 34.24 s           | 35.15 s        | 34.12 s          | 34.49 s |

INTEL MKL PARDISO; ILU / symmetric Gauß–Seidel / Chebyshev polynomials from  $\rm IFPACK2.$ 

Parallel computations on dual-socket Intel Xeon Platinum machine at Sandia National Laboratories (Blake).

## Sparse Triangular Solver in KokkosKernels (Amesos2 – SuperLU/Tacho)

per node.

## SuperLU & SpTRSV

- Supernodal LU factorization with partial pivoting
- Triangular solver with level-set scheduling (KOKKOSKERNELS);
  - cf. Yamazaki, Rajamanickam,

Ellingwood (2020).



#### Tacho

- Multifrontal factorization with pivoting inside frontal matrices
- Implementation using KOKKOS using level-set scheduling
- Cf. Kim, Edwards, Rajamanickam (2018).



## Three-Dimensional Linear Elasticity – Weak Scalability



| # nodes                                              | 1                                                                                  | 2                                                                                           | 4                                                                                           | 8                                                                                  | 16                                                                                 |  |  |  |
|------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|--|
| # dofs                                               | 375 K                                                                              | 750 K                                                                                       | 1.5 M                                                                                       | 3 M                                                                                | 6 M                                                                                |  |  |  |
|                                                      | SuperLU solve                                                                      |                                                                                             |                                                                                             |                                                                                    |                                                                                    |  |  |  |
| CPUs                                                 | 2.03 (75)                                                                          | 2.07 (69)                                                                                   | 1.87 (61)                                                                                   | 1.95 (58)                                                                          | 2.48 (69)                                                                          |  |  |  |
| $n_p/\text{GPU} = 1$                                 | 1.43 (47)                                                                          | 1.52 (53)                                                                                   | 2.82 (77)                                                                                   | 2.44 (68)                                                                          | 2.61 (75)                                                                          |  |  |  |
| 2                                                    | 1.03 (46)                                                                          | 1.36 (65)                                                                                   | 1.37 (60)                                                                                   | 1.52 (65)                                                                          | 1.98 (86)                                                                          |  |  |  |
| 4                                                    | 0.93 (59)                                                                          | 0.91 (53)                                                                                   | 0.98 (59)                                                                                   | 1.33 (77)                                                                          | 1.21 (66)                                                                          |  |  |  |
| 6                                                    | 0.67 (46)                                                                          | 0.99 (65)                                                                                   | 0.92 (57)                                                                                   | 0.91 (57)                                                                          | 0.95 (57)                                                                          |  |  |  |
| 7                                                    | 1.03 (75)                                                                          | 1.04 (69)                                                                                   | 0.90 (61)                                                                                   | 0.97 (58)                                                                          | 1.18 (69)                                                                          |  |  |  |
|                                                      |                                                                                    |                                                                                             |                                                                                             |                                                                                    |                                                                                    |  |  |  |
| speedup                                              | 2.0×                                                                               | <b>2</b> .0×                                                                                | <b>2</b> .1×                                                                                | <b>2</b> .0×                                                                       | <b>2</b> .1×                                                                       |  |  |  |
| speedup                                              | <b>2.0</b> ×                                                                       | 2.0×                                                                                        | 2.1×                                                                                        | <b>2.0</b> ×                                                                       | <b>2</b> .1×                                                                       |  |  |  |
| speedup<br>CPUs                                      | 2.0×                                                                               | 2.0×<br>Tacho<br>1.63 (69)                                                                  | 2.1×<br>solve<br>1.49 (61)                                                                  | 2.0×<br>1.51 (58)                                                                  | 2.1×<br>1.90 (69)                                                                  |  |  |  |
| speedup<br>CPUs<br>n <sub>p</sub> /GPU = 1           | 2.0×<br>1.60 (75)<br>1.17 (47)                                                     | 2.0×<br>TACHO<br>1.63 (69)<br>1.37 (53)                                                     | 2.1×<br>solve<br>1.49 (61)<br>1.92 (77)                                                     | 2.0×<br>1.51 (58)<br>1.78 (68)                                                     | 2.1×<br>1.90 (69)<br>2.21 (75)                                                     |  |  |  |
| speedup<br>CPUs<br>$n_p/GPU = 1$<br>2                | 2.0×<br>1.60 (75)<br>1.17 (47)<br>0.79 (46)                                        | 2.0×<br>TACHO<br>1.63 (69)<br>1.37 (53)<br>1.14 (65)                                        | 2.1×<br>solve<br>1.49 (61)<br>1.92 (77)<br>1.05 (60)                                        | 2.0×<br>1.51 (58)<br>1.78 (68)<br>1.18 (65)                                        | 2.1×<br>1.90 (69)<br>2.21 (75)<br>1.70 (86)                                        |  |  |  |
| speedup<br>CPUs<br>$n_p/GPU = 1$<br>2<br>4           | 2.0×<br>1.60 (75)<br>1.17 (47)<br>0.79 (46)<br>0.85 (59)                           | 2.0×<br>TACHO<br>1.63 (69)<br>1.37 (53)<br>1.14 (65)<br>0.81 (53)                           | 2.1×<br>solve<br>1.49 (61)<br>1.92 (77)<br>1.05 (60)<br>0.78 (59)                           | 2.0×<br>1.51 (58)<br>1.78 (68)<br>1.18 (65)<br>1.22 (77)                           | 2.1×<br>1.90 (69)<br>2.21 (75)<br>1.70 (86)<br>1.19 (66)                           |  |  |  |
| speedup<br>CPUs<br>$n_p/GPU = 1$<br>2<br>4<br>6      | 2.0×<br>1.60 (75)<br>1.17 (47)<br>0.79 (46)<br>0.85 (59)<br>0.60 (46)              | 2.0×<br>TACHO<br>1.63 (69)<br>1.37 (53)<br>1.14 (65)<br>0.81 (53)<br>0.86 (65)              | 2.1×<br>solve<br>1.49 (61)<br>1.92 (77)<br>1.05 (60)<br>0.78 (59)<br>0.75 (57)              | 2.0×<br>1.51 (58)<br>1.78 (68)<br>1.18 (65)<br>1.22 (77)<br>0.84 (57)              | 2.1×<br>1.90 (69)<br>2.21 (75)<br>1.70 (86)<br>1.19 (66)<br>0.91 (57)              |  |  |  |
| speedup<br>CPUs<br>$n_p/GPU = 1$<br>2<br>4<br>6<br>7 | 2.0×<br>1.60 (75)<br>1.17 (47)<br>0.79 (46)<br>0.85 (59)<br>0.60 (46)<br>0.99 (75) | 2.0×<br>TACHO<br>1.63 (69)<br>1.37 (53)<br>1.14 (65)<br>0.81 (53)<br>0.86 (65)<br>0.93 (69) | 2.1×<br>solve<br>1.49 (61)<br>1.92 (77)<br>1.05 (60)<br>0.78 (59)<br>0.75 (57)<br>0.82 (61) | 2.0×<br>1.51 (58)<br>1.78 (68)<br>1.18 (65)<br>1.22 (77)<br>0.84 (57)<br>0.93 (58) | 2.1×<br>1.90 (69)<br>2.21 (75)<br>1.70 (86)<br>1.19 (66)<br>0.91 (57)<br>1.22 (69) |  |  |  |

Computations on Summit (OLCF): 42 IBM Power9 CPU cores and 6 NVIDIA V100 GPUs per node.

#### Yamazaki, Heinlein, Rajamanickam (2023)

Alexander Heinlein (Delft University of Technology)

## Three-Dimensional Linear Elasticity – ILU Subdomain Solver

| ILU | J level  | 0          | 1            | 2            | 3            |  |  |
|-----|----------|------------|--------------|--------------|--------------|--|--|
|     | setup    |            |              |              |              |  |  |
| Ū   | No       | 1.5        | 1.9          | 3.0          | 4.8          |  |  |
| G   | ND       | 1.6        | 2.6          | 4.4          | 7.4          |  |  |
|     | KK(No)   | 1.4        | 1.5          | 1.8          | 2.4          |  |  |
|     | KK(ND)   | 1.7        | 2.0          | 2.9          | 5.2          |  |  |
| В   | Fast(No) | 1.5        | 1.6          | 2.1          | 3.2          |  |  |
|     | Fast(ND) | 1.5        | 1.7          | 2.5          | 4.5          |  |  |
| spe | eedup    | 1.0×       | <b>1</b> .2× | <b>1</b> .4× | 1.5	imes     |  |  |
|     |          |            | solve        |              |              |  |  |
| ∩.  | No       | 2.55 (158) | 3.60 (112)   | 5.28 (99)    | 6.85 (88)    |  |  |
| Ы   | ND       | 4.17 (227) | 5.36 (134)   | 6.61 (105)   | 7.68 (88)    |  |  |
|     | KK(No)   | 3.81 (158) | 4.12 (112)   | 4.77 (99)    | 5.65 (88)    |  |  |
|     | KK(ND)   | 2.89 (227) | 4.27 (134)   | 5.57 (105)   | 6.36 (88)    |  |  |
| 5   | Fast(No) | 1.14 (173) | 1.11 (141)   | 1.26 (134)   | 1.43 (126)   |  |  |
|     | Fast(ND) | 1.49 (227) | 1.15 (137)   | 1.10 (109)   | 1.22 (100)   |  |  |
| spe | eedup    | 2.2×       | 3.2×         | <b>4</b> .3× | <b>4.8</b> × |  |  |

#### Computations on Summit (OLCF): 42 IBM Power9 CPU cores and 6 NVIDIA V100 GPUs per node.

Yamazaki, Heinlein, Rajamanickam (2023)

#### **ILU** variants

- KokkosKernels ILU (KK)
- Iterative FASTILU (Fast); cf. Chow, Patel (2015) and Boman, Patel, Chow, Rajamanickam (2016)

No reordering  $(\mbox{No})$  and nested dissection  $(\mbox{ND})$ 





total time

## Three-Dimensional Linear Elasticity – Weak Scalability Using ILU(1)

| # r | odes  | 1            | 2            | 4            | 8            | 16           |  |  |
|-----|-------|--------------|--------------|--------------|--------------|--------------|--|--|
| # c | lofs  | 648 K        | 1.2 M        | 2.6 M        | 5.2 M        | 10.3 M       |  |  |
|     | setup |              |              |              |              |              |  |  |
| CP  | U     | 1.9          | 2.2          | 2.4          | 2.4          | 2.6          |  |  |
| Ŋ   | KK    | 1.4          | 2.0          | 2.2          | 2.4          | 2.8          |  |  |
| GF  | Fast  | 1.5          | 2.2          | 2.3          | 2.5          | 2.8          |  |  |
| spe | edup  | 1.3×         | 1.0	imes     | <b>1</b> .0× | <b>1</b> .0× | <b>0.9</b> × |  |  |
|     |       |              | sol          | ve           |              |              |  |  |
| CP  | U     | 3.60 (112)   | 7.26 (84)    | 6.93 (78)    | 6.41 (75)    | 4.1 (109)    |  |  |
| Ŋ   | KK    | 4.3 (119)    | 3.9 (110)    | 4.8 (105)    | 4.3 (97)     | 4.9 (109)    |  |  |
| GF  | Fast  | 1.2 (154)    | 1.0 (133)    | 1.1 (130)    | 1.3 (117)    | 1.6 (131)    |  |  |
| spe | edup  | <b>3</b> .3× | <b>3.8</b> × | <b>3</b> .4× | <b>2</b> .5× | <b>2.6</b> × |  |  |

Computations on Summit (OLCF): 42 IBM Power9 CPU cores and 6 NVIDIA V100 GPUs per node.

Yamazaki, Heinlein, Rajamanickam (2023)

#### **Related works**

- One-level Schwarz with local solves on GPUs: Luo, Yang, Zhao, Cai (2011)
- Solves of dense local Schur complement matrices in the balancing domain decomposition by constraints (BDDC) method on GPUs: Šístek & Oberhuber (2022)

# Learning Extension Operators Using Graph Neural Networks

## Why Learning Extension Operators

Most coarse spaces for Schwarz preconditioners are constructed based on a characteristic functions

$$\varphi_i(\omega_j)=\delta_{ij},$$

on specifically chosen sets of nodes  $\{\omega_j\}_j$ . The values in the remaining nodes are then obtained by extending the values into the adjacent subdomains. Examples:



## Why Learning Extension Operators

Most coarse spaces for Schwarz preconditioners are constructed based on a characteristic functions

$$\varphi_i(\omega_j)=\delta_{ij},$$

on specifically chosen sets of nodes  $\{\omega_j\}_j$ . The values in the remaining nodes are then obtained by extending the values into the adjacent subdomains. Examples:

#### **Observation** 1

Energy-minimizing extensions

are algebraic:

 $\mathbf{v}_{l} = -\mathbf{K}_{ll}^{-1}\mathbf{K}_{l\Gamma}\mathbf{v}_{\Gamma}$ 

(with Dirichlet b. c.)

 can be costly: solving a problem in the interior





Heterogeneous:  $\alpha_{\text{light}} = 1$ ;  $\alpha_{\text{dark}} = 10^8$ 

The performance may strongly depend on extension operator:

| coarse space | its. | ĸ                  |
|--------------|------|--------------------|
| —            | 163  | $4.06 \cdot 10^7$  |
| Q1           | 138  | $1.07\cdot 10^{6}$ |
| MsFEM        | 24   | 8.05               |

 $\rightarrow$  Improving efficiency & robustness via machine learning.



- Lagrangian: geometric ext.
- MsFEM: geometric and energy-minimizing exts.
- RGDSW: algebraic and energy-minimizing exts.

Alexander Heinlein (Delft University of Technology)

## **Related Works**

This overview is not exhaustive:

#### Coarse spaces for domain decomposition methods

- Prediction of the geometric location of adaptive constraints (adaptive BDDC & FETI–DP as well as AGDSW): Heinlein, Klawonn, Lanser, Weber (2019, 2020, 2021, 2021, 2021, 2022)
- Prediction of the adaptive constraints: Klawonn, Lanser, Weber (preprint 2023, 2024)
- Prediction of spectral coarse spaces for BDDC for stochastic heterogeneities: Chung, Kim, Lam, Zhao (2021)
- Learning interface conditions and coarse interpolation operators: Taghibakhshi et al. (2022, 2023)

#### Algebraic multigrid (AMG)

- Prediction of coarse grid operators: Luz et al. (2020), Tomasi, Krause (2023)
- Coarsening: Taghibakhshi, MacLachlan, Olson, West (2021); Antonietti, Caldana, Dede (2023)

An overviews of the state-of-the-art on domain decomposition and machine learning in early 2021 and 2023:



A. Heinlein, A. Klawonn, M. Lanser, J. Weber

Combining machine learning and domain decomposition methods for the solution of partial differential equations — A review GAMM-Mitteilungen. 2021.



A. Klawonn, M. Lanser, J. Weber

Machine learning and domain decomposition methods – a survey arXiv:2312.14050...2023

## Prediction via Graph Convolutional Networks

Graph neural networks (GNNs) introduced in Gori, Monfardini, and Scarselli (2005) are well-suited for learning on data based on simulation meshes:

- Generalization of classical convolutional neural networks (CNNs) LeCun (1998) to graph-based data sets.
- Aggregation and transmission of features of neighboring nodes in the graph via message passing layers.
- Invariance and equivariance with respect to position and permutation of the nodes of the graph.

#### Local approach

- Input: subdomain matrix K<sub>i</sub>
- Output: basis functions {φ<sub>j</sub><sup>Ω<sub>i</sub></sup>}
   on the same subdomain
- Training on subdomains with varying geometry
- Inference on unseen subdomains







## Theory-Inspired Design of the GNN-Based Coarse Space

#### Null space property

Any extension-based coarse space built from a partition of unity on the domain decomposition interface satisfies the **null space property necessary for numerical scalability**:



## Explicit partition of unity

To **explicitly enforce** that the basis functions  $(\varphi_j)_i$  form a partition of unity

$$\varphi_j = \frac{\hat{\varphi}_j}{\sum_k \hat{\varphi}_k},$$

where the  $\hat{\varphi}_k$  are the outputs of the GNN.

## Initial and target

- Initial function: partition of unity that is constant in the interior
- Target function:
  - linear on the edges
  - energy-minimizing in the interior
- $\rightarrow \mbox{ Information transport via} \\ \mbox{ message passing }$





Alexander Heinlein (Delft University of Technology)

## Numerical Results for Homogeneous Laplacian – Weak Scaling Study

**Model problem:** 2D Laplacian model problem discretized using finite differences on a structured grid

$$-\Delta u = 1$$
 in  $\Omega$ ,

$$u = 0$$
 on  $\partial \Omega$ ,

decomposed using METIS:



 The GNN has been trained on 64 subdomains.



Yamazaki, Heinlein, Rajamanickam (in prep.)

## Numerical Results for Heterogeneous Laplacian – Weak Scaling Study

Heterogeneous Laplacian with  $\alpha_{max}/\alpha_{min} = 10^3$ :



 $-\nabla \cdot (\alpha(x)\nabla u(x)) = f \text{ in } \Omega = [0,1]^2, \qquad u = 0 \text{ on } \partial\Omega.$ 

Yamazaki, Heinlein, Rajamanickam (in prep.)

#### **FROSch**

 FROSCH is based on the Schwarz framework and energy-minimizing coarse spaces, which provide numerical scalability using only algebraic information for a variety of applications

#### Subdomain solves on GPUs

- Subdomain solves make up a major part of the total solver time.
- Using the GPU triangular solve from KOKKOSKERNELS, we can speed up the solve phase of FROSCH. It can be further improved using ILU.

#### Learning extension operators

- Extensions are a major component in the construction of coarse spaces for domain decomposition methods.
- Using GNNs and known properties from the theory, we can learn extension operators that lead to a scalable coarse spaces.

# Thank you for your attention!