
When One Level Is Not Enough
Multilevel Domain Decomposition Methods for Physics and Data-Driven
Problems

Alexander Heinlein1

Scientific Computing Seminar, IWR, Heidelberg University, Germany, December 5, 2024
1Delft University of Technology

Numerical Analysis and Machine Learning

Numerical methods
Based on physical models

+ Robust and generalizable
– Require availability of mathematical

models

Machine learning models
Driven by data

+ Do not require mathematical models
– Sensitive to data, limited extrapolation

capabilities

Scientific machine learning (SciML)
Combining the strengths and compensating the weaknesses of the individual approaches:

numerical methods improve machine learning techniques
machine learning techniques assist numerical methods

Alexander Heinlein (TU Delft) Scientific Computing Seminar 1/30

Outline

1 Classical Schwarz Domain Decomposition Methods

2 Schwarz Domain Decomposition Preconditioners
Based on joint work with

Axel Klawonn and Jascha Knepper (University of Cologne)
Mauro Perego and Siva Rajamanickam (Sandia National Laboratories)
Oliver Rheinbach and Friederik Röver (TU Bergakademie Freiberg)
Kathrin Smetana (Stevens Institute of Technology)
Olof Widlund (New York University)

3 Domain Decomposition for Neural Networks
Based on joint work with

Eric Cyr (Sandia National Laboratories)
Victorita Dolean (Eindhoven University of Technology)
Siddhartha Mishra (ETH Zürich)
Ben Moseley (Imperial College London)
Corné Verburg (Delft University of Technology)

Classical Schwarz Domain Decomposition
Methods

Domain Decomposition Methods

Images based on Heinlein, Perego, Rajamanickam (2022)

Idea
Decomposing a large global problem into
smaller local problems:

• Better robustness and scalability of
numerical solvers

• Improved computational efficiency
• Introduce parallelism

Historical remarks: The alternating
Schwarz method is the earliest domain
decomposition method (DDM), which has
been invented by H. A. Schwarz and
published in 1870:

• Schwarz used the algorithm to establish
the existence of harmonic functions
with prescribed boundary values on
regions with non-smooth boundaries.

Ω

Γ2

Γ1
Ω′

1

∂Ω′
1

Ω′
2

∂Ω′
2

Alexander Heinlein (TU Delft) Scientific Computing Seminar 2/30

The Alternating Schwarz Algorithm

For the sake of simplicity, instead of the two-dimensional geometry,

Ω

Γ2

Γ1
Ω′

1

∂Ω′
1

Ω′
2

∂Ω′
2

we consider the one-dimensional Poisson
equation

−u′′ = 1 in [0, 1],
u(0) = u(1) = 0.

Overlapping domain decomposition:

0 Ω 1Ω′
1

Γ1

Ω′
2

Γ2

Solution: u(x) = −1
2x(x − 1).

Alexander Heinlein (TU Delft) Scientific Computing Seminar 3/30

Let us consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform an alternating Schwarz iteration:

Figure 1: Iterate (left) and error (right) in iteration 0.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 4/30

Let us consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform an alternating Schwarz iteration:

Figure 1: Iterate (left) and error (right) in iteration 1.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 4/30

Let us consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform an alternating Schwarz iteration:

Figure 1: Iterate (left) and error (right) in iteration 2.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 4/30

Let us consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform an alternating Schwarz iteration:

Figure 1: Iterate (left) and error (right) in iteration 3.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 4/30

Let us consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform an alternating Schwarz iteration:

Figure 1: Iterate (left) and error (right) in iteration 4.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 4/30

Let us consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform an alternating Schwarz iteration:

Figure 1: Iterate (left) and error (right) in iteration 5.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 4/30

The alternating Schwarz algorithm is sequential because each local boundary value
problem depends on the solution of the previous Dirichlet problem:

(D1)


−∆un+1/2 = f in Ω′

1,

un+1/2 = un on ∂Ω′
1

un+1/2 = un on Ω \ Ω′
1

(D2)


−∆un+1 = f in Ω2,

un+1 = un+1/2 on ∂Ω′
2

un+1 = un+1/2 on Ω \ Ω′
2

???

Idea: For all red terms, we use the values from the previous iteration. Then, the both
Dirichlet problem can be solved at the same time.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 5/30

The alternating Schwarz algorithm is sequential because each local boundary value
problem depends on the solution of the previous Dirichlet problem:

(D1)


−∆un+1/2 = f in Ω′

1,

un+1/2 = un on ∂Ω′
1

un+1/2 = un on Ω \ Ω′
1

(D2)


−∆un+1 = f in Ω2,

un+1 = un+1/2 on ∂Ω′
2

un+1 = un+1/2 on Ω \ Ω′
2

???

Idea: For all red terms, we use the values from the previous iteration. Then, the both
Dirichlet problem can be solved at the same time.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 5/30

The Parallel Schwarz Algorithm

The parallel Schwarz algorithm has been introduced by Lions (1988). Here, we solve the
local problems

(D1)
{

−∆un+1
1 = f in Ω′

1,

un+1
1 = un

2 on ∂Ω′
1,

(D2)
{

−∆un+1
2 = f in Ω2,

un+1
2 = un

1 on ∂Ω′
2.

Ω

Γ2

Γ1
Ω′

1

∂Ω′
1

Ω′
2

∂Ω′
2

Since un
1 and un

2 are both computed in the previous iteration, the problems can be solved
independent of each other.

This method is suitable for parallel computing!

!!!

Alexander Heinlein (TU Delft) Scientific Computing Seminar 6/30

The Parallel Schwarz Algorithm

The parallel Schwarz algorithm has been introduced by Lions (1988). Here, we solve the
local problems

(D1)
{

−∆un+1
1 = f in Ω′

1,

un+1
1 = un

2 on ∂Ω′
1,

(D2)
{

−∆un+1
2 = f in Ω2,

un+1
2 = un

1 on ∂Ω′
2.

Ω

Γ2

Γ1
Ω′

1

∂Ω′
1

Ω′
2

∂Ω′
2

Since un
1 and un

2 are both computed in the previous iteration, the problems can be solved
independent of each other.

This method is suitable for parallel computing!

!!!

Alexander Heinlein (TU Delft) Scientific Computing Seminar 6/30

Let us again consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform a parallel Schwarz iteration:

Figure 2: Iterate (left) and error (right) in iteration 0.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 7/30

Let us again consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform a parallel Schwarz iteration:

Figure 2: Iterate (left) and error (right) in iteration 1.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 7/30

Let us again consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform a parallel Schwarz iteration:

Figure 2: Iterate (left) and error (right) in iteration 2.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 7/30

Let us again consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform a parallel Schwarz iteration:

Figure 2: Iterate (left) and error (right) in iteration 3.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 7/30

Let us again consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform a parallel Schwarz iteration:

Figure 2: Iterate (left) and error (right) in iteration 4.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 7/30

Let us again consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform a parallel Schwarz iteration:

Figure 2: Iterate (left) and error (right) in iteration 5.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 7/30

Effect of the Size of the Overlap

We investigate the convergence of the methods (using the alternating method as an example)
depending on the size of the overlap:

0 Ω 1Ω′
1

Γ1

Ω′
2

Γ2

Overlap 0.05

0 Ω 1Ω′
1

Γ1

Ω′
2

Γ2

Overlap 0.1

⇒ A larger overlap leads to faster convergence.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 8/30

Effect of the Size of the Overlap

0 Ω 1Ω′
1

Γ1

Ω′
2

Γ2

Overlap 0.05

0 Ω 1Ω′
1

Γ1

Ω′
2

Γ2

Overlap 0.1

Figure 3: Error in iteration 0.

⇒ A larger overlap leads to faster convergence.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 8/30

Effect of the Size of the Overlap

0 Ω 1Ω′
1

Γ1

Ω′
2

Γ2

Overlap 0.05

0 Ω 1Ω′
1

Γ1

Ω′
2

Γ2

Overlap 0.1

Figure 3: Error in iteration 1.

⇒ A larger overlap leads to faster convergence.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 8/30

Effect of the Size of the Overlap

0 Ω 1Ω′
1

Γ1

Ω′
2

Γ2

Overlap 0.05

0 Ω 1Ω′
1

Γ1

Ω′
2

Γ2

Overlap 0.1

Figure 3: Error in iteration 2.

⇒ A larger overlap leads to faster convergence.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 8/30

Effect of the Size of the Overlap

0 Ω 1Ω′
1

Γ1

Ω′
2

Γ2

Overlap 0.05

0 Ω 1Ω′
1

Γ1

Ω′
2

Γ2

Overlap 0.1

Figure 3: Error in iteration 3.

⇒ A larger overlap leads to faster convergence.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 8/30

Effect of the Size of the Overlap

0 Ω 1Ω′
1

Γ1

Ω′
2

Γ2

Overlap 0.05

0 Ω 1Ω′
1

Γ1

Ω′
2

Γ2

Overlap 0.1

Figure 3: Error in iteration 4.

⇒ A larger overlap leads to faster convergence.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 8/30

Effect of the Size of the Overlap

0 Ω 1Ω′
1

Γ1

Ω′
2

Γ2

Overlap 0.05

0 Ω 1Ω′
1

Γ1

Ω′
2

Γ2

Overlap 0.1

Figure 3: Error in iteration 5.

⇒ A larger overlap leads to faster convergence.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 8/30

Effect of the Size of the Overlap

Overlap 0.05 Overlap 0.1

Figure 3: Error in iteration 5.

⇒ A larger overlap leads to faster convergence.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 8/30

Schwarz Domain Decomposition
Preconditioners

Solvers for Partial Different Equations
Consider a diffusion model problem:

−∆u(x) = f in Ω = [0, 1]2,

u = 0 on ∂Ω.

Discretization using finite elements yields a sparse system of linear
equations

Ku = f .

The accuracy of the finite element solution depends on the refinement
level of the mesh h: higher refinement ⇒ better accuracy.

Direct solvers
For fine meshes, solving the
system using a direct solver is
not feasible due to superlinear
complexity and memory
cost.

Iterative solvers
Iterative solvers are efficient for
solving sparse systems, however,
the convergence rate depends on
the condition number:
κ(K) = λmax(K)

λmin(K) ≤ C
h2

⇒ Introduce a preconditioner M−1 ≈ K−1 to improve convergence:

M−1Ku = M−1f

Alexander Heinlein (TU Delft) Scientific Computing Seminar 9/30

Solvers for Partial Different Equations
Consider a diffusion model problem:

−∆u(x) = f in Ω = [0, 1]2,

u = 0 on ∂Ω.

We solve Ku = f using the conjugate gradient (CG) method:

0 50 100 150 200 250
10−13

10−7

10−1

iterations

∥b
−
A
x
∥

16 × 16

32 × 32

64 × 64

128 × 128

⇒ Introduce a preconditioner M−1 ≈ K−1 to improve convergence:

M−1Ku = M−1f

Alexander Heinlein (TU Delft) Scientific Computing Seminar 9/30

Solvers for Partial Different Equations
Consider a diffusion model problem:

−∆u(x) = f in Ω = [0, 1]2,

u = 0 on ∂Ω.

We solve Ku = f using the conjugate gradient (CG) method:

0 50 100 150 200 250
10−13

10−7

10−1

iterations

∥b
−
A
x
∥

16 × 16

32 × 32

64 × 64

128 × 128

⇒ Introduce a preconditioner M−1 ≈ K−1 to improve convergence:

M−1Ku = M−1f

Alexander Heinlein (TU Delft) Scientific Computing Seminar 9/30

Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner
Overlap δ = 1h Solution of local problem

Based on an overlapping domain decomposition, we
define a one-level Schwarz operator

M−1
OS-1K =

∑N

i=1
R⊤

i K−1
i Ri K ,

where Ri and R⊤
i are restriction and prolongation

operators corresponding to Ω′
i , and Ki := Ri KR⊤

i .
Condition number estimate:

κ
(

M−1
OS-1K

)
≤ C

(
1 + 1

Hδ

)
with subdomain size H and overlap width δ.

∂Ω

Information (in particular, boundary data) is only
exchanged via the overlapping regions, leading to
slow convergence → establish a faster / global
transport of information.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 10/30

Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner
Overlap δ = 1h Solution of local problem

0 50 100 150 200 250
10−13

10−9

10−5

10−1

iterations

∥b
−
A
x
∥

16 × 16

32 × 32

64 × 64

128 × 128

M−1
OS-1

4 × 4 subd.

∂Ω

Information (in particular, boundary data) is only
exchanged via the overlapping regions, leading to
slow convergence → establish a faster / global
transport of information.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 10/30

Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner
Overlap δ = 1h Solution of local problem

0 50 100 150 200 250
10−13

10−9

10−5

10−1

iterations

∥b
−
A
x
∥

16 × 16

32 × 32

64 × 64

128 × 128

M−1
OS-1

4 × 4 subd.

∂Ω

Information (in particular, boundary data) is only
exchanged via the overlapping regions, leading to
slow convergence → establish a faster / global
transport of information.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 10/30

Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner
Overlap δ = 1h Solution of local problem

0 50 100 150 200 250
10−13

10−9

10−5

10−1

iterations

∥b
−
A
x
∥

16 × 16

32 × 32

64 × 64

128 × 128

M−1
OS-1

4 × 4 subd.

∂Ω

Information (in particular, boundary data) is only
exchanged via the overlapping regions, leading to
slow convergence → establish a faster / global
transport of information.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 10/30

Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner
Overlap δ = 1h Solution of local problem

0 50 100 150 200 250
10−13

10−9

10−5

10−1

iterations

∥b
−
A
x
∥

16 × 16

32 × 32

64 × 64

128 × 128

M−1
OS-1

4 × 4 subd.

∂Ω

Information (in particular, boundary data) is only
exchanged via the overlapping regions, leading to
slow convergence → establish a faster / global
transport of information.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 10/30

Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner
Overlap δ = 1h Solution of local problem

0 50 100 150 200 250
10−13

10−9

10−5

10−1

iterations

∥b
−
A
x
∥

16 × 16

32 × 32

64 × 64

128 × 128

M−1
OS-1

4 × 4 subd.

∂Ω

Information (in particular, boundary data) is only
exchanged via the overlapping regions, leading to
slow convergence → establish a faster / global
transport of information.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 10/30

Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner
Overlap δ = 1h Solution of local problem

0 50 100 150 200 250
10−13

10−9

10−5

10−1

iterations

∥b
−
A
x
∥

16 × 16

32 × 32

64 × 64

128 × 128

M−1
OS-1

4 × 4 subd.

∂Ω

Information (in particular, boundary data) is only
exchanged via the overlapping regions, leading to
slow convergence → establish a faster / global
transport of information.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 10/30

Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner
Overlap δ = 1h Solution of local problem

Based on an overlapping domain decomposition, we
define a one-level Schwarz operator

M−1
OS-1K =

∑N

i=1
R⊤

i K−1
i Ri K ,

where Ri and R⊤
i are restriction and prolongation

operators corresponding to Ω′
i , and Ki := Ri KR⊤

i .
Condition number estimate:

κ
(

M−1
OS-1K

)
≤ C

(
1 + 1

Hδ

)
with subdomain size H and overlap width δ.

Lagrangian coarse space
Coarse triangulation Coarse solution

The two-level overlapping Schwarz operator reads

M−1
OS-2K = ΦK−1

0 Φ⊤K︸ ︷︷ ︸
coarse level – global

+
∑N

i=1
R⊤

i K−1
i Ri K︸ ︷︷ ︸

first level – local

,

where Φ contains the coarse basis functions and
K0 := Φ⊤KΦ; cf., e.g., Toselli, Widlund (2005).
The construction of a Lagrangian coarse basis requires
a coarse triangulation.
Condition number estimate:

κ
(

M−1
OS-2K

)
≤ C

(
1 + H

δ

)
Alexander Heinlein (TU Delft) Scientific Computing Seminar 10/30

Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner
Overlap δ = 1h Solution of local problem

0 50 100 150 200 250
10−13

10−9

10−5

10−1

iterations

∥b
−
A
x
∥

16 × 16

32 × 32

64 × 64

128 × 128

M−1
OS-1

4 × 4 subd.

Lagrangian coarse space
Coarse triangulation Coarse solution

0 50 100 150 200 250
10−13

10−9

10−5

10−1

iterations

∥b
−
A
x
∥

16 × 16

32 × 32

64 × 64

128 × 128

M−1
OS-2

4 × 4 subd.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 10/30

Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner
Overlap δ = 1h Solution of local problem

Lagrangian coarse space
Coarse triangulation Coarse solution

Diffusion model problem in two dimensions,
H/h = 100

200 400 600 800 1,000
0

200

400

subdomains (= # MPI ranks)

#
it
er
a
ti
on

s

M−1
OS-1, δ = 1h

M−1
OS-1, δ = 2h

M−1
OS-2, δ = 1h

M−1
OS-2, δ = 2h

Alexander Heinlein (TU Delft) Scientific Computing Seminar 10/30

FROSch (Fast and Robust Overlapping Schwarz) Framework in Trilinos
Software

• Object-oriented C++ domain decomposition solver framework with
MPI-based distributed memory parallelization

• Part of Trilinos with support for both parallel linear algebra packages
Epetra and Tpetra

• Node-level parallelization and performance portability on CPU and GPU
architectures through Kokkos and KokkosKernels

• Accessible through unified Trilinos solver interface Stratimikos

Methodology
• Parallel scalable multi-level Schwarz domain decomposition

preconditioners
• Algebraic construction based on the parallel distributed system matrix
• Extension-based coarse spaces

Team (active)
• Filipe Cumaru (TU Delft)
• Kyrill Ho (UCologne)
• Jascha Knepper (UCologne)
• Friederike Röver (TUBAF)
• Lea Saßmannshausen (UCologne)

• Alexander Heinlein (TU Delft)
• Axel Klawonn (UCologne)
• Siva Rajamanickam (SNL)
• Oliver Rheinbach (TUBAF)
• Ichitaro Yamazaki (SNL)

Alexander Heinlein (TU Delft) Scientific Computing Seminar 11/30

Algorithmic Framework for FROSch Preconditioners

Overlapping domain decomposition
The overlapping subdomains
are constructed by recursively
adding layers of elements via
the sparsity pattern of K .

The corresponding matrices
Ki = Ri KRT

i

can easily be extracted from K .

Nonoverlapping DD

Overlap δ = 1h Overlap δ = 2h

Alexander Heinlein (TU Delft) Scientific Computing Seminar 12/30

Algorithmic Framework for FROSch Preconditioners

Overlapping domain decomposition
The overlapping subdomains
are constructed by recursively
adding layers of elements via
the sparsity pattern of K .

The corresponding matrices
Ki = Ri KRT

i

can easily be extracted from K .

Nonoverlapping DD Overlap δ = 1h

Overlap δ = 2h

Alexander Heinlein (TU Delft) Scientific Computing Seminar 12/30

Algorithmic Framework for FROSch Preconditioners

Overlapping domain decomposition
The overlapping subdomains
are constructed by recursively
adding layers of elements via
the sparsity pattern of K .

The corresponding matrices
Ki = Ri KRT

i

can easily be extracted from K .

Nonoverlapping DD Overlap δ = 1h Overlap δ = 2h

Alexander Heinlein (TU Delft) Scientific Computing Seminar 12/30

Algorithmic Framework for FROSch Preconditioners

Overlapping domain decomposition
The overlapping subdomains
are constructed by recursively
adding layers of elements via
the sparsity pattern of K .

The corresponding matrices
Ki = Ri KRT

i

can easily be extracted from K .

Nonoverlapping DD Overlap δ = 1h Overlap δ = 2h

Coarse space – Example of Generalized Dryja–Smith–Widlund (GDSW)
1. Interface components

Alexander Heinlein (TU Delft) Scientific Computing Seminar 12/30

Algorithmic Framework for FROSch Preconditioners

Overlapping domain decomposition
The overlapping subdomains
are constructed by recursively
adding layers of elements via
the sparsity pattern of K .

The corresponding matrices
Ki = Ri KRT

i

can easily be extracted from K .

Nonoverlapping DD Overlap δ = 1h Overlap δ = 2h

Coarse space – Example of Generalized Dryja–Smith–Widlund (GDSW)
1. Interface components 2. Interface basis (partition of unity × null space)

For scalar elliptic
problems, the null space
consists only of
constant functions.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 12/30

Algorithmic Framework for FROSch Preconditioners

Overlapping domain decomposition
The overlapping subdomains
are constructed by recursively
adding layers of elements via
the sparsity pattern of K .

The corresponding matrices
Ki = Ri KRT

i

can easily be extracted from K .

Nonoverlapping DD Overlap δ = 1h Overlap δ = 2h

Coarse space – Example of Generalized Dryja–Smith–Widlund (GDSW)
1. Interface components 2. Interface basis (partition of unity × null space)

For scalar elliptic
problems, the null space
consists only of
constant functions.

3. Extension

Alexander Heinlein (TU Delft) Scientific Computing Seminar 12/30

Examples of FROSch Coarse Spaces
GDSW (Generalized Dryja–Smith–Widlund)

• Dohrmann, Klawonn, Widlund (2008)
• Dohrmann, Widlund (2009, 2010, 2012)

RGDSW (Reduced dimension GDSW)

• Dohrmann, Widlund (2017)
• H., Klawonn, Knepper, Rheinbach, Widlund (2022)

MsFEM (Multiscale Finite Element Method)

• Hou (1997), Efendiev and Hou (2009)
• Buck, Iliev, and Andrä (2013)
• H., Klawonn, Knepper, Rheinbach (2018)

Q1 Lagrangian / piecewise bilinear

Piecewise linear interface partition of unity functions
and a structured domain decomposition.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 13/30

Examples of FROSch Coarse Spaces
GDSW (Generalized Dryja–Smith–Widlund)

• Dohrmann, Klawonn, Widlund (2008)
• Dohrmann, Widlund (2009, 2010, 2012)

RGDSW (Reduced dimension GDSW)

• Dohrmann, Widlund (2017)
• H., Klawonn, Knepper, Rheinbach, Widlund (2022)

MsFEM (Multiscale Finite Element Method)

• Hou (1997), Efendiev and Hou (2009)
• Buck, Iliev, and Andrä (2013)
• H., Klawonn, Knepper, Rheinbach (2018)

Q1 Lagrangian / piecewise bilinear

Piecewise linear interface partition of unity functions
and a structured domain decomposition.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 13/30

Weak Scalability up to 64 k MPI Ranks / 1.7 b Unknowns (3D Poisson; Juqueen)

GDSW vs RGDSW (reduced dimension)
Heinlein, Klawonn, Rheinbach, Widlund (2019).

Two-level vs three-level GDSW
Heinlein, Klawonn, Rheinbach, Röver (2019, 2020).

Alexander Heinlein (TU Delft) Scientific Computing Seminar 14/30

FROSch Preconditioners for Land Ice Simulations

https://github.com/SNLComputation/Albany

The velocity of the ice sheet in Antarctica and Greenland is
modeled by a first-order-accurate Stokes approximation model,

−∇ · (2µϵ̇1) + ρg ∂s
∂x = 0, −∇ · (2µϵ̇2) + ρg ∂s

∂y = 0,

with a nonlinear viscosity model (Glen’s law); cf., e.g., Blatter (1995) and Pattyn (2003).
Antarctica (velocity) Greenland (multiphysics vel. & temperature)

4 km resolution, 20 layers, 35 m dofs 1-10 km resolution, 20 layers, 69 m dofs
MPI ranks avg. its avg. setup avg. solve avg. its avg. setup avg. solve
512 41.9 (11) 25.10 s 12.29 s 41.3 (36) 18.78 s 4.99 s
1 024 43.3 (11) 9.18 s 5.85 s 53.0 (29) 8.68 s 4.22 s
2 048 41.4 (11) 4.15 s 2.63 s 62.2 (86) 4.47 s 4.23 s
4 096 41.2 (11) 1.66 s 1.49 s 68.9 (40) 2.52 s 2.86 s
8 192 40.2 (11) 1.26 s 1.06 s - - -

Computations performed on Cori (NERSC). Heinlein, Perego, Rajamanickam (2022)

Alexander Heinlein (TU Delft) Scientific Computing Seminar 15/30

https://github.com/SNLComputation/Albany

Spectral Extension-Based Coarse Spaces for Schwarz Preconditioners

Highly heterogeneous problems . . .
. . . appear in most areas of modern science and engineering:

Micro section of a
dual-phase steel.
Courtesy of J.
Schröder.

Groundwater flow
(SPE10);
cf. Christie and
Blunt (2001).

Composition of
arterial walls; taken
from O’Connell et
al. (2008).

Spectral coarse spaces
The coarse space is enhanced by eigenfunctions of
local edge and face eigenvalue problems with
eigenvalues below tolerances tolE and tolF:

κ
(

M−1
∗ K

)
≤ C

(
1 + 1

tolE
+ 1

tolF
+ 1

tolE · tolF

)
;

C does not depend on h, H, or the coefficients.
OS-ACMS & adaptive GDSW (AGDSW) (Heinlein,
Klawonn, Knepper, Rheinbach (2018, 2018, 2019)).

Related works (non-exhaustive)
• FETI & Neumann–Neumann: Bjørstad, Krzyzanowski (2002); Bjørstad, Koster, Krzyzanowski (2001); Rixen, Spillane

(2013); Spillane (2015, 2016) . . .
• BDDC & FETI-DP: Mandel, Sousedík (2007); Sousedík (2010); Sístek, Mandel, Sousedík (2012); Dohrmann,

Pechstein (2013, 2016); Klawonn, Radtke, Rheinbach (2014, 2015, 2016); Klawonn, Kühn, Rheinbach (2015, 2016,
2017); Kim, Chung (2015); Kim, Chung, Wang (2017); Beirão da Veiga et al. (2017); Calvo, Widlund (2016); Oh et
al. (2017) . . .

• Overlapping Schwarz: Galvis, Efendiev (2010, 2011); Nataf, Xiang, Dolean, Spillane (2011); Spillane et al. (2011);
Gander, Loneland, Rahman (preprint 2015); Eikeland, Marcinkowski, Rahman (TR 2016); Marcinkowski, Rahman
(2018), Al Daas, Grigori, Jolivet, Tournier (2021); Bastian, Scheichl, Seelinger, Strehlow (2022); Spillane (preprint
2021, acc. 2024); Al Daas, Jolivet (2022); Bootland, Dolean, Graham, Ma, Scheichl (2023) . . .

• Spectral AMGe (ρAMGe): Chartier, Falgout, Henson, Jones, Manteuffel, McCormick, Ruge, Vassilevski (2003) . . .

Alexander Heinlein (TU Delft) Scientific Computing Seminar 16/30

Spectral Extension-Based Coarse Spaces for Schwarz Preconditioners

Local eigenvalue problems
Local generalized eigenvalue problems corresponding to the edges E and faces F of the domain decomposition:

∀E ∈ E : SEE τ∗,E = λ∗,E KEE τ∗,E , ∀τ∗,E ∈ VE ,

∀F ∈ F : SFF τ∗,F = λ∗,F KFF τ∗,F , ∀τ∗,F ∈ VF ,

with Schur complements SEE , SFF with Neumann boundary conditions and
submatrices KEE , KFF of K . We select eigenfunctions corresponding to eigenvalues
below tolerances tolE and tolF.
→ The corresponding coarse basis functions are energy-minimizing extensions into
the interior of the subdomains.

Ω1 Ω2 Ω3

Ω4 Ω5 Ω6

Ω7 Ω8 Ω9

E12 E23

E45 E56

E78 E89

E14 E25 E36

E47 E58 E69

Γ

Extensions in the generalized eigenvalue problem
Blue α = 1; yellow α = 106 Low energy extension SEE High energy extension KEE Coarse basis function

The extensions on the two sides of the generalized eigenvalue problem correspond
to low and high energy extensions of the trace → detects coefficient jumps.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 16/30

Spectral Extension-Based Coarse Spaces for Schwarz Preconditioners

Highly heterogeneous problems . . .
. . . appear in most areas of modern science and engineering:

Micro section of a
dual-phase steel.
Courtesy of J.
Schröder.

Groundwater flow
(SPE10);
cf. Christie and
Blunt (2001).

Composition of
arterial walls; taken
from O’Connell et
al. (2008).

Spectral coarse spaces
The coarse space is enhanced by eigenfunctions of
local edge and face eigenvalue problems with
eigenvalues below tolerances tolE and tolF:

κ
(

M−1
∗ K

)
≤ C

(
1 + 1

tolE
+ 1

tolF
+ 1

tolE · tolF

)
;

C does not depend on h, H, or the coefficients.
OS-ACMS & adaptive GDSW (AGDSW) (Heinlein,
Klawonn, Knepper, Rheinbach (2018, 2018, 2019)).

Foam coefficient function example

Solid phase: α = 106; transparent phase: α = 1; 100 subdomains
V0 tolE tolF it. κ dim V0 dim V0/ dof
VGDSW — — 565 1.3·106 1 601 0.27 %
VAGDSW 0.05 0.05 60 30.2 1 968 0.33 %
VOS−ACMS 0.001 0.001 57 30.3 690 0.12 %

Cf. Heinlein, Klawonn, Knepper, Rheinbach (2018, 2019).

Alexander Heinlein (TU Delft) Scientific Computing Seminar 16/30

Algebraic Spectral Extension-Based Coarse Spaces

Two algebraic eigenvalue problems
Use the a-orthogonal decomposition

VΩe = V 0
Ωe ⊕ {E∂Ωe→Ωe (v) : v ∈ V∂Ωe }

to “split the AGDSW (Neumann) eigenvalue
problem” into two:

• Dirichlet eigenvalue problem on V 0
Ωe

• Transfer eigenvalue problem on
VΩe ,harm; cf. Smetana, Patera (2016)

Condition number estimate
κ

(
M−1

DIR&TRK
)

≤ C max {1/TOLDIR, TOLTR/αmin} ,

where C is independent of H, h, and the
contrast of the coefficient function α.
Heinlein & Smetana (acc. 2024; preprint arXiv).

Numerical results – SPE10 benchmark
Layer 70 from model 2; cf. Christie and Blunt (2001)

V0 TOLDIR TOLTR dim V0 κ its.
VGDSW - - 85 2.0·105 57
VAGDSW 1.0·10−2 93 19.3 38
VDIR&TR−a 1.0·10−3 1.0·105 90 19.4 39
VDIR&TR−l2 1.0·10−3 1.0·105 147 9.6 31

Original coefficient (without thresholding)
VGDSW - - 85 20.6 42

Alexander Heinlein (TU Delft) Scientific Computing Seminar 17/30

Domain Decomposition for Neural
Networks

Domain Decomposition Methods and Machine Learning – Literature

A non-exhaustive literature overview:
• Machine Learning for adaptive BDDC, FETI–DP, and AGDSW: Heinlein, Klawonn, Lanser, Weber

(2019, 2020, 2021, 2021, 2021, 2022); Klawonn, Lanser, Weber (2024)
• cPINNs, XPINNs: Jagtap, Kharazmi, Karniadakis (2020); Jagtap, Karniadakis (2020)
• Classical Schwarz iteration for PINNs or DeepRitz (D3M, DeepDDM, etc):: Li, Tang, Wu, and Liao

(2019); Li, Xiang, Xu (2020); Mercier, Gratton, Boudier (arXiv 2021); Dolean, Heinlein, Mercier,
Gratton (subm. 2024 / arXiv:2408.12198); Li, Wang, Cui, Xiang, Xu (2023); Sun, Xu, Yi (arXiv 2022,
arXiv 2023); Kim, Yang (2022, arXiv 2023)

• FBPINNs, FBKANs: Moseley, Markham, and Nissen-Meyer (2023); Dolean, Heinlein, Mishra, Moseley
(2024, 2024); Heinlein, Howard, Beecroft, Stinis (acc. 2024 / arXiv:2401.07888); Howard, Jacob,
Murphy, Heinlein, Stinis (arXiv:2406.19662)

• DDMs for CNNs: Gu, Zhang, Liu, Cai (2022); Lee, Park, Lee (2022); Klawonn, Lanser, Weber (2024);
Verburg, Heinlein, Cyr (subm. 2024)

An overview of the state-of-the-art in early 2021:

A. Heinlein, A. Klawonn, M. Lanser, J. Weber
Combining machine learning and domain
decomposition methods for the solution of
partial differential equations — A review
GAMM-Mitteilungen. 2021.

An overview of the state-of-the-art in mid 2024:
A. Klawonn, M. Lanser, J. Weber
Machine learning and domain decomposition
methods – a survey
Computational Science and Engineering. 2024

Alexander Heinlein (TU Delft) Scientific Computing Seminar 18/30

https://arxiv.org/abs/2408.12198
https://arxiv.org/abs/2401.07888
https://arxiv.org/abs/2406.19662

Physics-Informed Neural Networks (PINNs)
In the physics-informed neural network (PINN) approach
introduced by Raissi et al. (2019), a neural network is
employed to discretize a partial differential equation

N[u] = f, in Ω.

PINNs use a hybrid loss function:
L(θ) = ωdataLdata(θ) + ωPDELPDE(θ),

where ωdata and ωPDE are weights and

Ldata(θ) = 1
Ndata

∑Ndata

i=1
(u(x̂i , θ) − ui)2 ,

LPDE(θ) = 1
NPDE

∑NPDE

i=1
(N[u](xi , θ) − f(xi))2 .

See also Dissanayake and Phan-Thien (1994); Lagaris et al. (1998).

Advantages
• “Meshfree”
• Small data
• Generalization properties
• High-dimensional problems
• Inverse and parameterized

problems

Drawbacks
• Training cost and

robustness
• Convergence not

well-understood
• Difficulties with scalability

and multi-scale problems

x

t
...

...

...

...

...

...

...

...

u L

∂u
∂t ,
∂u
∂x ,
. . .

Hybrid loss
Small data Some data Big data

Lots of physics Some physics No physics

• Known solution values can be
included in Ldata

• Initial and boundary conditions
are also included in Ldata

Alexander Heinlein (TU Delft) Scientific Computing Seminar 19/30

Theoretical Result for PINNs

Estimate of the generalization error (Mishra and Molinaro (2022))
The generalization error (or total error) satisfies

EG ≤ CPDEET + CPDEC1/p
quadN−α/p

• EG = EG (X , θ) := ∥u − u∗∥V general. error (V Sobolev space, X training data set)
• ET training error (lp loss of the residual of the PDE)
• N number of the training points and α convergence rate of the quadrature

• CPDE and Cquad constants depending on the PDE, quadrature, and neural network

Rule of thumb: “As long as the PINN is trained well, it also generalizes well”

100 iterations 1 000 iterations 10 000 iterations 80 000 iterations
Rahaman et al., On the spectral bias of neural networks, ICML (2019)

Alexander Heinlein (TU Delft) Scientific Computing Seminar 20/30

Finite Basis Physics-Informed Neural Networks (FBPINNs)
In the finite basis physics informed neural
network (FBPINNs) method introduced in
Moseley, Markham, and Nissen-Meyer (2023),
we employ the PINN approach and hard
enforcement of the boundary conditions;
cf. Lagaris et al. (1998).
FBPINNs use the network architecture

u(θ1, . . . , θJ) = C
∑J

j=1
ωjuj (θj)

and the loss function

L(θ1, . . . , θJ) = 1
N

N∑
i=1

(
N[C

∑
xi ∈Ωj

ωj uj](xi , θj)−f(xi)
)2

.

Here:

• Overlapping DD: Ω =
⋃J

l=1 Ωj

• Partition of unity ωj with supp(ωj) ⊂ Ωj

and
∑J

j=1 ωj ≡ 1 on Ω

0

0.5

1

0 0.2 0.4 0.6 0.8 1

−1

0

1

u

Ω1

ω1

ω1u1 (θ1)

Ω2

ω2

ω2u2 (θ2)

Ω3

ω3

ω3u3 (θ3)

Ω4

ω4

ω4u4 (θ4)

Hard enf. of boundary conditions
Loss function

L(θ) = 1
N

∑N

i=1
(N[Cu](xi , θ) − f(xi))2 ,

with constraining operator C, which explicitly
enforces the boundary conditions.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 21/30

Numerical Results for FBPINNs

PINN vs FBPINN (Moseley et al. (2023))
FBPINN local solutions

FBPINN global solution

Scalability of FBPINNs
Consider the simple
boundary value problem

−u′′ = 1 in [0, 1],
u(0) = u(1) = 0,

which has the solution

u(x) = 1/2x(1 − x).
0 0.2 0.4 0.6 0.8 1

0

0.05

0.10.1

0.15

0.2

x

Laplace solution

u(x) = 1
2
x(1− x)

0 0.5 1 1.5 2

·104

10−4

10−3

10−2

10−1

iterations

l 2
er
ro
r

Weak scaling Laplace

2 subdomains
4 subdomains
8 subdomains

16 subdomains

co
n
v
erg

en
ce

d
eterio

ra
tes

Alexander Heinlein (TU Delft) Scientific Computing Seminar 22/30

Multi-Level FBPINN Algorithm
Extension of FBPINNs to L levels; Cf. Dolean, Heinlein,
Mishra, Moseley (2024).

Ω

level 1 Ω
(1)
1

level 2 Ω
(2)
1 Ω

(2)
2

level 3 Ω
(3)
1 Ω

(3)
2 Ω

(3)
3 Ω

(3)
4

level 4 Ω
(4)
1 Ω

(4)
2 Ω

(4)
3 Ω

(4)
4 Ω

(4)
5 Ω

(4)
6 Ω

(4)
7 Ω

(4)
8

...

L-level network architecture

u
(

θ
(1)
1 , . . . , θ

(L)
J(L)

)
= C

(L∑
l=1

N(l)∑
i=1

ω
(l)
j u(l)

j
(

θ
(l)
j

))

1 0 1 2
x

0.0

0.2

0.4

0.6

0.8

1.0
(a) Window functions

0.0 0.5 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
(c) FBPINN solution

Exact solution
FBPINN solution

0.0 0.5 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
(b) Individual subdomain solutions

Level 1
Level 2
Level 3

1 0 1 2
x1

1

0

1

2

x
2

(d) Domain decomposition level 2

1 0 1 2
x1

1

0

1

2

x
2

(e) Domain decomposition level 3

Example subdomain boundary
Example collocation points

0.0 0.5 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(f) FBPINN solution

0.0

0.2

0.4

0.6

0.8

Multi-Frequency Problem
Let us now consider the two-dimensional
multi-frequency Laplace boundary value problem

−∆u = 2
n∑

i=1

(ωi π)2 sin (ωi πx) sin (ωi πy) in Ω,

u = 0 on ∂Ω,

with ωi = 2i .

For increasing values of n, we obtain the analytical
solutions:

n = 1 n = 2 n = 3

n = 4 n = 5 n = 6

Alexander Heinlein (TU Delft) Scientific Computing Seminar 23/30

Multi-Level FBPINN Algorithm
Extension of FBPINNs to L levels; Cf. Dolean, Heinlein,
Mishra, Moseley (2024).

Ω

level 1 Ω
(1)
1

level 2 Ω
(2)
1 Ω

(2)
2

level 3 Ω
(3)
1 Ω

(3)
2 Ω

(3)
3 Ω

(3)
4

level 4 Ω
(4)
1 Ω

(4)
2 Ω

(4)
3 Ω

(4)
4 Ω

(4)
5 Ω

(4)
6 Ω

(4)
7 Ω

(4)
8

...

L-level network architecture

u
(

θ
(1)
1 , . . . , θ

(L)
J(L)

)
= C

(L∑
l=1

N(l)∑
i=1

ω
(l)
j u(l)

j
(

θ
(l)
j

))

1 0 1 2
x

0.0

0.2

0.4

0.6

0.8

1.0
(a) Window functions

0.0 0.5 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
(c) FBPINN solution

Exact solution
FBPINN solution

0.0 0.5 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
(b) Individual subdomain solutions

Level 1
Level 2
Level 3

1 0 1 2
x1

1

0

1

2

x
2

(d) Domain decomposition level 2

1 0 1 2
x1

1

0

1

2

x
2

(e) Domain decomposition level 3

Example subdomain boundary
Example collocation points

0.0 0.5 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(f) FBPINN solution

0.0

0.2

0.4

0.6

0.8

Multi-Frequency Problem
Let us now consider the two-dimensional
multi-frequency Laplace boundary value problem

−∆u = 2
n∑

i=1

(ωi π)2 sin (ωi πx) sin (ωi πy) in Ω,

u = 0 on ∂Ω,

with ωi = 2i .

For increasing values of n, we obtain the analytical
solutions:

n = 1 n = 2 n = 3

n = 4 n = 5 n = 6

Alexander Heinlein (TU Delft) Scientific Computing Seminar 23/30

Multi-Level FBPINNs for a Multi-Frequency Problem – Strong Scaling

0 5000 10000 15000 20000 25000 30000
Training step

10 3

10 2

10 1

100

101

No
rm

al
ise

d
L1

 te
st

 lo
ss

102 103

Total time elapsed (s)

10 3

10 2

10 1

100

101

No
rm

al
ise

d
L1

 te
st

 lo
ss

FBPINN
[1, 2]

(320, 320)

FBPINN
[1, 2, 4]

(320, 320)

FBPINN
[1, 2, 4, 8]
(320, 320)

FBPINN
[1, 2, 4, 8, 16]

(320, 320)

FBPINN
[1, 2, 4, 8, 16, 32]

(320, 320)

FBPINN
[1, 2, 4, 8, 16, 32, 64]

(320, 320)

FBPINN
[64]

(320, 320)

FBPINN
[1, 8, 64]

(320, 320) Exact solution

0.0 0.5 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

PINN
5-256

(320, 320)

FourierPINN
5-256

(320, 320)

SA-PINN
5-256

(320, 320)

0 5000 10000 15000 20000 25000 30000
Training step

10 3

10 2

10 1

100

101

No
rm

ali
se

d L
1 t

es
t lo

ss

102 103

Total time elapsed (s)

10 3

10 2

10 1

100

101

No
rm

ali
se

d L
1 t

es
t lo

ss

FBPINN
[1, 2]

(320, 320)

FBPINN
[1, 2, 4]

(320, 320)

FBPINN
[1, 2, 4, 8]
(320, 320)

FBPINN
[1, 2, 4, 8, 16]

(320, 320)

FBPINN
[1, 2, 4, 8, 16, 32]

(320, 320)

FBPINN
[1, 2, 4, 8, 16, 32, 64]

(320, 320)

FBPINN
[64]

(320, 320)

FBPINN
[1, 8, 64]

(320, 320) Exact solution

0.0 0.5 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

PINN
5-256

(320, 320)

FourierPINN
5-256

(320, 320)

SA-PINN
5-256

(320, 320)

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

Alexander Heinlein (TU Delft) Scientific Computing Seminar 24/30

Multi-Frequency Problem – What the FBPINN Learns

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00

FBPINN
[1, 2, 4, 8, 16]

(80, 80)

0.5

0.0

0.5

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00
Level 1

0.5

0.0

0.5

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00
Level 2

0.5

0.0

0.5

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00
Level 3

0.5

0.0

0.5

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00
Level 4

0.5

0.0

0.5

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00
Level 5

0.5

0.0

0.5

Cf. Dolean, Heinlein, Mishra, Moseley (2024).

Alexander Heinlein (TU Delft) Scientific Computing Seminar 25/30

Multi-Level FBPINNs for a Multi-Frequency Problem – Weak Scaling

0 5000 10000 15000 20000 25000 30000
Training step

10 3

10 2

10 1

100

No
rm

al
ise

d
L1

 te
st

 lo
ss

102

Total time elapsed (s)

10 3

10 2

10 1

100

No
rm

al
ise

d
L1

 te
st

 lo
ss

Exact solution

FBPINN
[1, 2]

(10, 10)

Exact solution

FBPINN
[1, 2, 4]
(20, 20)

Exact solution

FBPINN
[1, 2, 4, 8]
(40, 40)

Exact solution

FBPINN
[1, 2, 4, 8, 16]

(80, 80)

Exact solution

FBPINN
[1, 2, 4, 8, 16, 32]

(160, 160)

Exact solution

FBPINN
[1, 2, 4, 8, 16, 32, 64]

(320, 320)

0 5000 10000 15000 20000 25000 30000
Training step

10 3

10 2

10 1

100

No
rm

ali
se

d
L1

 te
st

 lo
ss

102

Total time elapsed (s)

10 3

10 2

10 1

100

No
rm

ali
se

d
L1

 te
st

 lo
ss

Exact solution

FBPINN
[1, 2]

(10, 10)

Exact solution

FBPINN
[1, 2, 4]
(20, 20)

Exact solution

FBPINN
[1, 2, 4, 8]
(40, 40)

Exact solution

FBPINN
[1, 2, 4, 8, 16]

(80, 80)

Exact solution

FBPINN
[1, 2, 4, 8, 16, 32]

(160, 160)

Exact solution

FBPINN
[1, 2, 4, 8, 16, 32, 64]

(320, 320)

Cf. Dolean, Heinlein, Mishra, Moseley (2024).

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

Alexander Heinlein (TU Delft) Scientific Computing Seminar 26/30

Memory Requirements for CNN Training
• As an example for a convolutional neural

network (CNN), we employ the U-Net
architecture introduced in Ronneberger,
Fischer, and Brox (2015).

• The U-Net yields state-of-the-art accuracy
in semantic image segmentation and
other image-to-image tasks.

Below: memory consumption for training on a
single 1024 × 1024 image.

name size # channels mem. feature maps mem. weights
input output # of values MB # of values MB

input block 1 024 3 64 268 M 1 024.0 38 848 0.148
encoder block 1 512 64 128 167 M 704.0 221 696 0.846
encoder block 2 256 128 256 84 M 352.0 885 760 3.379
encoder block 3 128 256 512 42 M 176.0 3 540 992 13.508
encoder block 4 64 512 1 024 21 M 88.0 14 159 872 54.016
decoder block 1 64 1,024 512 50 M 192.0 9 177 088 35.008
decoder block 2 128 512 256 101 M 384.0 2 294 784 8.754
decoder block 3 256 256 128 201 M 768.0 573 952 2.189
decoder block 4 512 128 64 402 M 1 536.0 143 616 0.548
output block 1 024 64 3 3.1 M 12.0 195 0.001

Alexander Heinlein (TU Delft) Scientific Computing Seminar 27/30

Decomposing the U-Net

Cf. Verburg, Heinlein, Cyr (subm. 2024).

Alexander Heinlein (TU Delft) Scientific Computing Seminar 28/30

Decomposing the U-Net

Local network
We train the subnetwork(s)
with shared weights → the
subnetwork(s) are fully
convolutional.

Communication network
The communication network
is a fully convolutional
network operating on a part
of the coarse feature maps.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 28/30

Decomposing the U-Net

Local network
We train the subnetwork(s)
with shared weights → the
subnetwork(s) are fully
convolutional.

Communication network
The communication network
is a fully convolutional
network operating on a part
of the coarse feature maps.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 28/30

Decomposing the U-Net

• Distribution of feature maps results in significant reduction of memory usage on a single GPU

• Moderate additional memory usage due to the communication network

Alexander Heinlein (TU Delft) Scientific Computing Seminar 28/30

Results – Synthetic Data Set

Task: Connect two dots via a line segment
Input Target (segmentation mask)

Result: Communication

True mask

Pred. (no comm.)

Pred. (comm.)

Testing on 6 subimages

Tr
ai

ni
ng

&
te

st
in

g
on

#
of

su
bi

m
ag

es
(3

2
×

32
pi

xe
ls)

feature maps communicated

Tr
ai

ni
ng

on
#

su
bi

m
ag

es
(3

2
×

32
pi

xe
ls)

feature maps communicated

Alexander Heinlein (TU Delft) Scientific Computing Seminar 29/30

DeepGlobe 2018 Satellite Image Data Set (Demir et al. (2018))
class pixel count proportion
urban 642.4M 9.35 %
agriculture 3898.0M 56.76 %
rangeland 701.1M 10.21 %
forest 944.4M 13.75 %
water 256.9M 3.74 %
barren 421.8M 6.14 %
unknown 3.0M 0.04 %

Input Target

Avoiding overfitting
The data set includes only 803 images. To avoid overfitting, we

• apply batch normalization, use random dropout layers and
data augmentation, and

• initialize the encoder using the ResNet-18 (He, Zhang,
Ren, and Sun (2016))

image true mask without comm. with comm.

Alexander Heinlein (TU Delft) Scientific Computing Seminar 30/30

DeepGlobe 2018 Satellite Image Data Set (Demir et al. (2018))
class pixel count proportion
urban 642.4M 9.35 %
agriculture 3898.0M 56.76 %
rangeland 701.1M 10.21 %
forest 944.4M 13.75 %
water 256.9M 3.74 %
barren 421.8M 6.14 %
unknown 3.0M 0.04 %

Input Target

Avoiding overfitting
The data set includes only 803 images. To avoid overfitting, we

• apply batch normalization, use random dropout layers and
data augmentation, and

• initialize the encoder using the ResNet-18 (He, Zhang,
Ren, and Sun (2016))

U-Net DDU-Net (no comm.) DDU-Net (comm.)
Alexander Heinlein (TU Delft) Scientific Computing Seminar 30/30

Schwarz Domain Decomposition Preconditioners
• Numerical scalability and robust convergence for

• heterogeneous problems
• multiphysics problems
• highly nonlinear problems

→ Algebraic and parallel implementation in FROSch

Domain Decomposition for Neural Networks
• Schwarz domain decomposition architectures improve the scalability of PINNs to

large domains / high frequencies, keeping the complexity of the local networks low.
• Novel DDU-Net approach decouples the training on the sub-images, allowing us to

distribute the memory load among multiple GPUs. It limits communication to
deepest level of the U-Net architecture using a communication network.

Thank you for your attention!

	Classical Schwarz Domain Decomposition Methods
	Schwarz Domain Decomposition Preconditioners [2mm] Based on joint work with [1.5mm] math text inlined[fg]math text inlinedfgmath text inlined[fg]math text inlinedfgtbl/hmode/beginp65mml Axel Klawonn and Jascha Knepper (University of Cologne) Mauro Perego and Siva Rajamanickam (Sandia National Laboratories) Oliver Rheinbach and Friederik Röver (TU Bergakademie Freiberg) Kathrin Smetana (Stevens Institute of Technology) Olof Widlund (New York University) tbl/finalizetbl/hmode/end
	Domain Decomposition for Neural Networks [2mm] Based on joint work with [1.5mm] math text inlined[fg]math text inlinedfgmath text inlined[fg]math text inlinedfgtbl/hmode/beginp65mml Eric Cyr (Sandia National Laboratories) Victorita Dolean (Eindhoven University of Technology) Siddhartha Mishra (ETH Zürich) Ben Moseley (Imperial College London) Corné Verburg (Delft University of Technology) tbl/finalizetbl/hmode/end
	Appendix

