%
H=4),"/TAy 4 TUDelft

Fast and Robust Overlapping Schwarz (FROSch)
Preconditioners in Trilinos

Alexander Heinlein
Seminar talk, Sandia National Laboratories, Albuquerque, U.S., March 19, 2024

Delft University of Technology

Solving A Model Problem

a(x)=1 heterogeneous a(x)

Consider a diffusion model problem:
—V - (a(x)Vau(x)) = f in Q=]0,1]%,
u=0 ondQ.
Discretization using finite elements yields a

sparse linear system of equations

Ku=Tf.

Direct solvers

For fine meshes, solving the system using a direct
solver is not feasible due to superlinear
complexity and memory cost.

Iterative solvers

Iterative solvers are efficient for solving sparse
linear systems of equations, however, the
convergence rate generally depends on the
condition number x (A). It deteriorates, e.g., for

= fine meshes, that is, small element sizes h

maxy a(x)

= |arge contrasts mine 2 ()

Solving A Model Problem

a(x)=1 heterogeneous a(x)

Consider a diffusion model problem:
—V - (a(x)Va(x)) = f in Q=[0,1],
wu=0 ondQ.

Discretization using finite elements yields a
sparse linear system of equations

Ku=Tf.

Direct solvers

For fine meshes, solving the system using a direct
solver is not feasible due to superlinear
complexity and memory cost.

Iterative solvers

Iterative solvers are efficient for solving sparse
linear systems of equations, however, the
convergence rate generally depends on the
condition number x (A). It deteriorates, e.g., for

= fine meshes, that is, small element sizes h

maxy a(x)

= |arge contrasts mine 2 ()

= We introduce a preconditioner M~! ~ A~! to improve the condition number:

M tAu= M"1f

Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner

Overlap 6 = 1h Solution of local problem

Based on an overlapping domain decomposition, we
define a one-level Schwarz operator

N
—1 g T1e—1p.
Mos K= RTK'RK

where R; and R,.T are restriction and prolongation
operators corresponding to Q/, and K := R,-KR,.T.

Condition number estimate:
1
Mzl K)<C (1 —)
& (051) S s
with subdomain size H and overlap width 9.

A. Heinlein (TU Delft)

Lagrangian coarse space

Coarse triangulation Coarse solution

The two-level overlapping Schwarz operator reads

N

Myl K= oK, 'oTK + E i RTK 'RK,
i=

coarse level — global first level — local

where ® contains the coarse basis functions and

Ky := ®TK®; cf., e.g., Toselli, Widlund (2005).

The construction of a Lagrangian coarse basis requires
a coarse triangulation.

Condition number estimate:
H
=il
K (Mog,K) < C (1 + E)

Sandia 2/21

Two-Level Schwarz Preconditioners

Lagrangian coarse space

One-level Schwarz preconditioner
Coarse triangulation

Overlap 6 = 1h Solution of local problem Coarse solution

200

Diffusion model problem in two dimensions, 1
H/h =100 al- —B— Mg ,, 6 =1h |
2 -B- Mg ,,5=2h il
S —B—M5s,,6=1h
% ?ﬁ'” __--m
s - B- MOS_2,5:2h T
o i--
2 = .
BiS

h

| | | | |
200 400 600 800 1,000
subdomains (= # MPI ranks)

SENIE]

A. Heinlein (TU Delft)

FROSch (Fast and Robust Overlapping Schwarz) Framework in Trilinos

Software

= Object-oriented C++ domain decomposition solver framework with

MPI-based distributed memory parallelization
iNES = Part of TRILINOS with support for both parallel linear algebra packages

Z Rils
EPETRA and TPETRA

= Node-level parallelization and performance portability on CPU and GPU

architectures through KOkkos and KOKKOSKERNELS
= Accessible through unified TRILINOS solver interface STRATIMIKOS

Methodology

= Parallel scalable multi-level Schwarz domain decomposition
preconditioners

= Algebraic construction based on the parallel distributed system matrix

= Extension-based coarse spaces

Team (active)

= Filipe Cumaru (TU Delft) = Alexander Heinlein (TU Delft)
= Kyrill Ho (UCologne) = Axel Klawonn (UCologne)

= Jascha Knepper (UCologne) = Siva Rajamanickam (SNL)

= Friederike Réver (TUBAF) = Oliver Rheinbach (TUBAF)

= Lea SaBmannshausen (UCologne) = Ichitaro Yamazaki (SNL)

A. Heinlein (TU Delft) SENGIE]

Algorithmic Framework for FROSch Overlapping Domain Decompositions

Overlapping domain decomposition

In FROScH, the overlapping subdomains €1, ...,), are constructed by recursively adding
layers of elements to the nonoverlapping subdomains; this can be performed based on the

sparsity pattern of K.

Nonoverlapping DD

A. Heinlein (TU Delft)

Algorithmic Framework for FROSch Overlapping Domain Decompositions

Overlapping domain decomposition

In FROScH, the overlapping subdomains €1, ...,), are constructed by recursively adding
layers of elements to the nonoverlapping subdomains; this can be performed based on the

sparsity pattern of K.

Nonoverlapping DD Overlap § = 1h

A. Heinlein (TU Delft)

Algorithmic Framework for FROSch Overlapping Domain Decompositions

Overlapping domain decomposition

In FROScH, the overlapping subdomains €1, ...,), are constructed by recursively adding
layers of elements to the nonoverlapping subdomains; this can be performed based on the

sparsity pattern of K.

Nonoverlapping DD Overlap § = 1h Overlap § = 2h

A. Heinlein (TU Delft)

Algorithmic Framework for FROSch Overlapping Domain Decompositions

Overlapping domain decomposition

In FROScH, the overlapping subdomains €1, ...,), are constructed by recursively adding
layers of elements to the nonoverlapping subdomains; this can be performed based on the

sparsity pattern of K.

Nonoverlapping DD Overlap § = 1h Overlap § = 2h

Computation of the overlapping matrices

The overlapping matrices
K; = RIKR"

can easily be extracted from K since R; is just a global-to-local index mapping.

A. Heinlein (TU Delft) Sandia

Algorithmic Framework for FROSch Coarse Spaces

1. Identification interface components

K: Tl

Identification from parallel distribution of matrix:
distributed map overlapping map

repeated map

i

1l l

interface comp.

A. Heinlein (TU Delft)

Algorithmic Framework for FROSch Coarse Spaces

2. Interface partition of unity (IPOU)

vertex & edge functions vertex functions

Based on the interface components,
ﬁ construct an interface partition of

= B unity:

£ + +
) 1 I mi=1lonTl
y , E ;

A. Heinlein (TU Delft)

Algorithmic Framework for FROSch Coarse Spaces

3. Interface basis

null space basis
(e.g., linear elasticity: translations,
linearized rotation(s))

The interface values of the basis of the coarse space is
obtained by multiplication with the null space.

A. Heinlein (TU Delft)

Algorithmic Framework for FROSch Coarse Spaces

@
b— > +|¥ 3 +|ﬁ ‘
R PP 9 [A
s s e o 5 e >—o—0]

4. Extension into the interior
edge basis function vertex basis function

The values in the interior of the subdomains are
computed via the extension operator:

o_ % _ K, 'K or
S or| o i

(For elliptic problems: energy-minimizing extension)

A. Heinlein (TU Delft) Sandia

1. Identification interface components

Identification from parallel distribution of matrix:

overlapping map repeated map interface comp.

Lkl | I

distributed map

eees

|

3. Interface basis

null space basis
(e.g., linear elasticity: translations,
linearized rotation(s))

The interface values of the basis of the coarse space is
obtained by multiplication with the null space.

A. Heinlein (TU Delft)

Algorithmic Framework for FROSch Coarse Spaces

2. Interface partition of unity (IPOU)

vertex & edge functions vertex functions

Based on the interface components,
construct an interface partition of

Z_mzlonr
i

4. Extension into the interior
edge basis function vertex basis function

ARy
Mt

The values in the interior of the subdomains are
computed via the extension operator:

o @] _ ki 1KT<1>r
~ o] ¢r

(For elliptic problems: energy-minimizing extension)

unity:

7\

Sandia

Examples of FROSch Coarse Spaces

GDSW (Generalized Dryja—Smith—Widlund)

NN
N

= Dohrmann, Klawonn, Widlund (2008)
= Dohrmann, Widlund (2009, 2010, 2012)

MsFEM (Multiscale Finite Element Method)

= Hou (1997), Efendiev and Hou (2009)
= Buck, lliev, and Andra (2013)
= H., Klawonn, Knepper, Rheinbach (2018)

A. Heinlein (TU Delft)

RGDSW (Reduced dimension GDSW)

RN

= Dohrmann, Widlund (2017)
= H., Klawonn, Knepper, Rheinbach, Widlund (2022)

Q1 Lagrangian / piecewise bilinear

Piecewise linear interface partition of unity functions
and a structured domain decomposition.

RENIE

Examples of FROSch Coarse Spaces

GDSW (Generalized Dryja—Smith—Widlund) RGDSW (Reduced dimension GDSW)

NN

= Dohrmann, Klawonn, Widlund (2008) = Dohrmann, Widlund (2017)
= Dohrmann, Widlund (2009, 2010, 2012) = H., Klawonn, Knepper, Rheinbach, Widlund (2022)

MsFEM (Multiscale Finite Element Method) Q1 Lagrangian / piecewise bilinear

= Hou (1997), Efendiev and Hou (2009) Piecewise linear interface partition of unity functions

® Buck, lliev, and Andri (2013) and a structured domain decomposition.
= H., Klawonn, Knepper, Rheinbach (2018)

A. Heinlein (TU Delft) Sandia

Weak Scalability up to 64k MPI ranks /

Model problem: Poisson equation in 3D

1.7b Unknowns (3D Poisson; Juqueen)

Coarse solver: MUMPS (direct)

Largest problem: 374805361 / 1732323601 unknowns

O GDSW lterations
© RGDSW Option 1 Iterations
0 RGDSW Option 2.2 lterations
80
70
60
. 50
2
@ e OO OO0
ﬁ % P
30
20
10
0
100 1000 10000 100000
Cores

O GDSW Total © RGDSW Option 1 Total © RGDSW Option 2.2 Total
GDSW Setup # RGDSW Option 1 Setup # RGDSW Option 2.2 Setup
+ GDSW Solver &+ RGDSW Option 1 Solver & RGDSW Option 2.2 Solver

140

105 j
0 //
c
‘© 70 Vs
£
F fl/

* ﬁé&#
0
100 1000 10000 100000

Cores

Cf. Heinlein, Klawonn, Rheinbach, Widlund (2017);

A. Heinlein (TU Delft)

computations performed on Juqueen, JSC, Germany.

Multilevel Schwarz Preconditioners in FROScH
Based on joint work with Oliver Rheinbach and Friederike Rover (Technische Universitat Bergakademie

Freiberg)

Monolithic Schwarz Preconditioners in FROScH
Based on joint work with Christian Hochmuth, Axel Klawonn, and Lea SaBmannshausen (Universitit zu

KéIn) and Mauro Perego and Sivasankaran Rajamanickam (Sandia National Laboratories)

FROSCcH Preconditioners With Inexact Solvers
Based on joint work with Sivasankaran Rajamanickam and Ichitaro Yamazaki (Sandia National

Laboratories)

Multilevel Schwarz Preconditioners in
FROSch

Multi-Level GDSW Preconditioner

domain subregion €, subdomain € "
o ’ Recursive implementat

= |nstead of solving the coarse problem

0 exactly, we construct and apply a FROSch
i0 i
preconditioner as an inexact coarse solver
— Hierarchy of domain decompositions
H_ 1 L | — — .
& A H 5 h = [Interpolation of the null space to coarse
Heinlein, Klawonn, Rheinbach, Réver (2019, 2020), spaces

Heinlein, Rheinbach, Réver (2022, 2023)

Algorithm 1: Application of the /th level of an L level FROSCH preconditioner
Function FROScH (K, x,/):

x=o"x: /* coarse interpolation */
if | < L then x = FROScH(Kp,x,/ +1); /* exact coarse solver */
else x = K(;lx; /* inexact coarse solver */
x = Px; /* fine interpolation */
fori:=1to N) do x = x + R,.TKflR,-x; /* fine level updates */
return x;

end

Compare a two-level FROSCH preconditioner: MF_éOSCH = d>K0_1¢TK + Z,N:l RI.TK'._IR,-K

A. Heinlein (TU Delft) Sandia

Weak Scalability of the Three-Level RGDSW Preconditioner — SuperMUC-

In Heinlein, Rheinbach, Rover (2022), it has been shown that the null space can be
transferred algebraically to higher levels.

Model problem: Linear elasticity in 3D Coarse solver level 3: Intel MKL Pardiso (direct)
Largest problem: 2044416 000 unknowns

100 T T T T 100

90 | = & ~Solver| | o0 | —pe—Comm. K,]
wade Krylov =-5=Fact.

80 | —&—Setup] a0 | i

70 g 701
wvi B0 w60
£ £
o 50F @ S0f
£ E
= a0t F oao0f

30+ 30+

20 | 20+

: I N [EERCEERERE Ea i
100y 10 [p— 1 5 [T g
0 1 i L 0 =
20K 40K 60K 80K 20K 40K 60K 80K
subdomains # subdomains

Cf. Heinlein, Rheinbach, Réver (2022); computations performed on SuperMUC-NG, LRZ, Germany.

A. Heinlein (TU Delft) Sandia

Monolithic Schwarz Preconditioners in
FROSch

Monolithic (R)GDSW Preconditioners for CFD Simulations

Consider the discrete saddle point problem

SRR

Monolithic GDSW preconditioner

We construct a monolithic GDSW preconditioner

N
—1 —1.,T T 7z—1
Mepew = 045 6T +) _ RATR,

Stokes fl Navier—Stokes fl
with block matrices Ao = ¢ T A, A; = RiART, and ores Tow aviermstoes tow
R; = Ry 0 and = [‘bu,uo %,ﬂ . Related work:
0 Rp,i Pous Ppipo = Original work on monolithic Schwarz
Using A to compute extensions: ¢; = _ﬂﬁlﬂlr¢r; preconditioners: Klawonn and Pavarino (1998,
cf. Heinlein, Hochmuth, Klawonn (2019, 2020). 2000)

o 05 am o MBAE. 0P ST = Other publications on monolithic Schwarz
i

000 025 05 om
— —

preconditioners: e.g., Hwang and Cai (2006),
Barker and Cai (2010), Wu and Cai (2014),
and the presentation Dohrmann (2010) at the
Workshop on Adaptive Finite Elements and
Dy uy Dpug Dy py by po Domain Decomposition Methods in Milan.

A. Heinlein (TU Delft) SENIE

Monolithic (R)GDSW Preconditioners for CFD Simulations

Consider the discrete saddle point problem Monolithic vs. SIMPLE preconditioner
K BT| |u f)

Monolithic GDSW preconditioner

We construct a monolithic GDSW preconditioner

N
—1 —1,T T 7—1
Mmgle, = 45 ¢ +Z,~=1 R AR,
with block matrices Ay = q&Tﬂq&, A; = geiﬂge,T.
SIMPLE block preconditioner

velocity magnitude

Steady-state Navier—Stokes equations

We employ the SIMPLE (Semi-Implicit Method for prec. ﬁnl\im 243 1125 15562
Pressure Linked Equations) block preconditioner Monolithic setup 396s 579s 9555
m=1 _ I -D7'B . K1 AO . RGDSW solve 57.6s 69.2s 74.9s
SIMPLE ™ 1 0 al -S5-1Bk—! §°t|” (FROSCH) total 97.2s 127.7s 170.4s

see Patankar and Spalding (1972). Here, SIMPLE setup 39.2s 38.2s 68.6s
= 5= _BD BT, with D = diagK RGDSW (TEKO | solve 86.2s 106.6s 127.4s
=« is an under-relaxation parameter & FROSCH) total 125.4s 144.8s 196.0s

We approximate the inverses using (R)GDSW Computations on Piz Daint (CSCS). Implementation in the

preconditioners. finite element software FEDDLib.

A. Heinlein (TU Delft) Sandia

Coarse Spaces for Monolithic FROSch Preconditioners for CFD Simulations

P1-Plstab P2.P1 Q2-Pldisc FROScH allows for the flexible
300 . : : : :

construction of extension-based
250 - + + - | coarse spaces based on various
choices for the interface
partition of unity (IPOU):
IPOUHARMONICCOARSEOPERATOR

J_l_l_l_ll Comparison of coarse
50| T T 8
— spaces

400 — : : : : : : :
= G (GDSW):
IPOU: faces, edges, vertices
= G* (GDSW*):
IPOU: faces, vertex-based
= R (RGDSW):
100’. I I I II I I I I I” b IPOU: vertex-based
® o - | = &= || Cf. Heinlein, Klawonn,
ST e & e 0T SaBmannshausen (in

W243M11251 4608 MPIranks preparation)

o
S
S
T
I
T
I
T
I

iterations
—
=
S
T
|
f
|
t
Il

w
=]
S
T
I
T
I
T
I

I

=}

S
T
I
T
I
T
I

time in s

A. Heinlein (TU Delft)

Coarse Spaces for Monolithic FROSch Preconditioners for CFD Simulations

P1-Plstab P2.P1 Q2-Pldisc FROScH allows for the flexible
300 . : : : :

construction of extension-based
250 - + + - | coarse spaces based on various
choices for the interface
partition of unity (IPOU):
IPOUHARMONICCOARSEOPERATOR

J_l_l_l_ll Comparison of coarse
50| T T 8
— spaces

400 — : : : : : : :
= G (GDSW):
IPOU: faces, edges, vertices
= G* (GDSW*):
IPOU: faces, vertex-based
= R (RGDSW):
100’. I I I II I I I I I” b IPOU: vertex-based
® o - | = &= || Cf. Heinlein, Klawonn,
N A R SaBmannshausen (in

W243M11251 4608 MPIranks preparation)

o
S
S
T
I
T
I
T
I

iterations
—
=
S
T
|
f
|
t
Il

w
=]
S
T
I
T
I
T
I

time in s

I

=}

S
T
I
T
I
T
I

= Generally good performance for stabilized or discontinuous pressure discretizations. Otherwise,
performance depends on the combination of velocity and pressure coarse spaces.

A. Heinlein (TU Delft) Sandia

FROSch Preconditioners With Inexact
Solvers

Inexact Subdomain Solvers in FROSch

N
Myl K = K10 K + Z;l R'K'RK

3D Laplacian; 512 MPI ranks = 512 (= 8 x 8 x 8) subdomains; H/J = 10; RGDSW coarse space.

subdomain solver

direct ILU(k) symm. GauB-Seidel Chebyshev polyn.

solver k=2 k=3 | 5sweeps 10 sweeps p==6 p=28
H/h = 20 iter 26 33 30 31 28 34 31
- 14; doivrs setup time 1.89s 0.97s 1.01s 0.89s 0.91s 0.73s 0.71s
- r rank apply time 0.39s 0.27s 0.31s 0.31s 0.35s 0.30s 0.30s
T prec. time 2.28s | 124s 1.32s 1.20s 1.26s | 1.03s 1.01s
R iter 30 55 46 52 41 59 51
- 105_k d'ofs setup time 12.09s 6.14s 6.26s 5.74s 5.89s 5.55s 5.64s
- ¢ rank apply time 4.21s 1.84s 1.96s 2.66s 3.28s 2.52s 2.47s
T prec. time || 16.30s | 7.98s 8.22s 8.40s 9.18s | 8.16s 8.1ls
H/h = 60 iter OOM 81 64 76 56 88 74
- 350_k d’ofs setup time - | 47.29s 47.87s 45.14s 45.08s | 45.44s 45.49s
- ¢ rank apply time - | 10.79s 9.98s 13.00s 16.16s | 11.95s 12.09s
e prec. time - | 58.08s 57.85s | 58.15s 61.25s | 57.39s 57.59s

INTEL MKL PARDISO; ILU / symmetric GauB-Seidel / Chebyshev polynomials from IFPACK2.

Parallel computations on dual-socket Intel Xeon Platinum machine at Sandia National Laboratories (Blake).

A. Heinlein (TU Delft) Sandia

Inexact Subdomain Solvers in FROSch

N
Myl K = K10 K + Z;l R'K'RK

3D Laplacian; 512 MPI ranks = 512 (= 8 x 8 x 8) subdomains; H/J = 10; RGDSW coarse space.

subdomain solver

direct ILU(k) symm. GauB-Seidel Chebyshev polyn.

solver k=2 k=3 | 5sweeps 10 sweeps p=2©6 p=28
H/h = 20 iter 26 33 30 31 28 34 31
- 14; doivrs setup time 1.89s 0.97s 1.01s 0.89s 0.91s 0.73s 0.71s
- r rank apply time 0.39s 0.27s 0.31s 0.31s 0.35s 0.30s 0.30s
T prec. time 228s | 124s 1.32s 1.20s 126s | 1.03s 1.01s
R iter 30 55 46 52 41 59 51
- 105_k d'ofs setup time 12.09s 6.14s 6.26s 5.74s 5.89s 5.55s 5.64s
- ¢ rank apply time 4.21s 1.84s 1.96s 2.66s 3.28s 2.52s 2.47s
T prec. time || 16.30s | 7.98s 8.22s 8.40s 9.18s | 8.16s 8.1ls
H/h = 60 iter OOM 81 64 76 56 88 74
- 350_k d’ofs setup time - | 47.29s 47.87s 45.14s 45.08s | 45.44s 45.49s
- ¢ rank apply time - | 10.79s 9.98s 13.00s 16.16s | 11.95s 12.09s
e prec. time - | 58.08s 57.85s | 58.15s 61.25s | 57.39s 57.59s

INTEL MKL PARDISO; ILU / symmetric GauB-Seidel / Chebyshev polynomials from IFPACK2.

Parallel computations on dual-socket Intel Xeon Platinum machine at Sandia National Laboratories (Blake).

A. Heinlein (TU Delft) Sandia

Inexact Extension Solvers in FROSch

©_ ~Ki K or] [
Pr or|”
3D Laplacian; 512 MPI ranks = 512 (= 8 x 8 x 8) subdomains; H/§ = 10; RGDSW coarse space.
extension solver direct preconditioned GMRES (rel. tol. = 10~%)
10 Gauss—Seidel sweeps for ILU(k symm. GauB-Seidel Chebyshev polyn.
Iver

the subdomain solver) solve k=2 k=3 | 5sweeps 10 sweeps p==©6 p=28
H/h = 20 iter 28 28 28 28 28 28 28
N 14; do;’s setup time 0.89s 0.93s 0.89s 0.78s 0.83s 0.79s 0.84s
- ' rank apply time 0.35s 0.35s 0.34s 0.36s 0.34s 0.35s 0.34s
i prec. time 123s | 1.28s 123s 1.14s 117s | 1.14s 1.18s
H/h = 40 iter 41 41 41 41 41 41 41
~ 105_k d’ofs setup time 5.72s 4.16s 4.61s 4.26s 4.64s 4.27s 4.33s
- ' rank apply time 3.33s 3.33s 3.30s 3.33s 3.30s 3.28s 3.29s
el prec. time 9.04s 7.49s 7.92s 7.59s 7.95s 7.55s 7.62s
H/h = 60 iter 56 56 56 56 56 56 56
N 350_k d’ofs setup time 45.16s | 17.75s 18.16s 17.98s 19.34s | 17.93s 18.04s
- K apply time 15.83s | 18.04s 17.08s 16.26s 15.81s | 16.19s 16.44s
el prec. time || 60.99s | 35.79s 35.25s | 34.24s 35.15s | 34.12s 34.49s

INTEL MKL PARDISO; ILU / symmetric GauB-Seidel / Chebyshev polynomials from IFPACK2.

Parallel computations on dual-socket Intel Xeon Platinum machine at Sandia National Laboratories (Blake).
A. Heinlein (TU Delft) Sandia

Inexact Extension Solvers in FROSch

-2}

Pr br
3D Laplacian; 512 MPI ranks = 512 (= 8 x 8 x 8) subdomains; H/§ = 10; RGDSW coarse space.
extension solver direct preconditioned GMRES (rel. tol. = 10~%)
10 Gauss—Seidel sweeps for ILU(k symm. GauB-Seidel Chebyshev polyn.
Iver

the subdomain solver) solve k=2 k=3 | 5sweeps 10 sweeps p==©6 p=28
H/h = 20 iter 28 28 28 28 28 28 28
N 14; do;’s setup time 0.89s 0.93s 0.89s 0.78s 0.83s 0.79s 0.84s
- ' rank apply time 0.35s 0.35s 0.34s 0.36s 0.34s 0.35s 0.34s
i prec. time 123s | 1.28s 123s 1.14s 117s | 1.14s 1.18s
H/h = 40 iter 41 41 41 41 41 41 41
~ 105_k d’ofs setup time 5.72s 4.16s 4.61s 4.26s 4.64s 4.27s 4.33s
- ' rank apply time 3.33s 3.33s 3.30s 3.33s 3.30s 3.28s 3.29s
el prec. time 9.04s | 7.49s 7.92s 7.59s 7.95s | 7.55s 7.62s
H/h = 60 iter 56 56 56 56 56 56 56
N 350_k d’ofs setup time 45.16s | 17.75s 18.16s 17.98s 19.34s | 17.93s 18.04s
- K apply time 15.83s | 18.04s 17.08s 16.26s 15.81s | 16.19s 16.44s
el prec. time || 60.99s | 35.79s 35.25s | 34.24s 35.15s | 34.12s 34.49s

INTEL MKL PARDISO; ILU / symmetric GauB-Seidel / Chebyshev polynomials from IFPACK2.

Parallel computations on dual-socket Intel Xeon Platinum machine at Sandia National Laboratories (Blake).
A. Heinlein (TU Delft) Sandia

Sparse Triangular Solver in KokkosKernels (Amesos2 — SuperLU/Tacho)

uperLU & SpTRSV

= Supernodal LU factorization
with partial pivoting

= Triangular solver with level-set
scheduling (KOKKOSKERNELS);
cf. Yamazaki, Rajamanickam,
Ellingwood (2020)

Lovl 4

Level 3

ovel 2

O 1

= Multifrontal factorization with

pivoting inside frontal matrices
= |Implementation using KOKKOS
using level-set scheduling

Cf. Kim, Edwards, Rajamanickam (2018)

Three-Dimensional Linear Elasticity
SUPERLU - weak scaling

— Weak Scalability of FROSch

TACHO — weak scaling

10% — T T :e— T 10? T T T T T T
{B—e/” —— 42 MPI ranks / node
—&— 6 GPUs & 6 MPI ranks (MPS) / node
—&— 6 GPUs & 12 MPI ranks (MPS) / node
S—E/E’——E‘E —5— 6 GPUs & 24 MPI ranks (MPS) / node
© —&— 6 GPUs & 36 MPI ranks (MPS) / node
g 6 GPUs & 42 MPI ranks (MPS) / node
b W et e 10 F el
3 By g ——— R

100 L L L L L I I

10— T T T T T T

10°

solve time
i \\‘ Lf

42 MPI ranks / node
—5—6 GPUs & 6 MPI ranks (MPS) / node
—&— 6 GPUs & 12 MPI ranks (MPS) / node
—5— 6 GPUs & 24 MPI ranks (MPS) / node
~5— 6 GPUs & 36 MPI ranks (MPS) / node
6 GPUs & 42 MPI ranks (MPS) / node

nodes
Computations on Summit (OLCF): 42 IBM

Power9 CPU cores and 6 NVIDIA V100 GPUs

per node.

SENIE]

nodes
Yamazaki, Heinlein,
Rajamanickam (2023)

Three-Dimensional Linear Elasticity — ILU Subdomain Solver

[ILU level 0 1 2 3]
setup
2 No 1.5 1.9 3.0 4.8
O | ND 1.6 2.6 4.4 7.4
KK(No) 1.4 15 1.8 24
2| KK(ND) 1.7 2.0 2.9 5.2
Q© | Fast(No) 1.5 1.6 2.1 3.2
Fast(ND) 1.5 1.7 2.5 4.5
speedup 1.0x 1.2x 1.4x 1.5x
solve
a No 2.55 (158) 3.60 (112) 5.28 (99) 6.85 (88)
G| ND 4.17 (227) 5.36 (134) 6.61 (105) 7.68 (88)
KK(No) [3.81 (158) 4.12 (112) 4.77 (99) 5.65 (88)
S| KK(ND) | 2.89 (227) 4.27 (134) 557 (105) 6.36 (88)
O | Fast(No) | 1.14 (173) 1.11 (141) 1.26 (134) 1.43 (126)
Fast(ND) | 1.49 (227) 1.15 (137) 1.10 (109) 1.22 (100)
speedup 2.2x 3.2x 4.3x 4.8x

Computations on Summit (OLCF):
42 IBM Power9 CPU cores and 6 NVIDIA
V100 GPUs per node.

A. Heinlein (TU Delft)

Yamazaki, Heinlein,
Rajamanickam (2023)

SENIE]

ILU variants
= KOKKOSKERNELS ILU (KK)

= Iterative FASTILU (Fast); cf. Chow,
Patel (2015) and Boman, Patel,
Chow, Rajamanickam (2016)

No reordering (No) and nested dissection
(ND)

ILU

12 T

—x— ILU (CPU)
—&— ILU (GPU)
10 (| —=— FasTILU (GPU) B

total time

ILU level

Three-Dimensional Linear Elasticity — Weak Scalability Using ILU(1)

nodes 1 2 4 8 16
dofs 648 K 1.2M 2.6 M 5.2M 10.3M
setup
CPU 1.9 2.2 2.4 2.4 2.6
2 KK 1.4 2.0 2.2 2.4 2.8
O | Fast 1.5 2.2 2.3 2.5 2.8
speedup 1.3x 1.0x 1.0x 1.0x 0.9x

solve ‘
CPU 3.60 (112) 7.26 (84) 6.93 (78) 6.41 (75) 4.1 (109)
2 KK 43 (119) 3.9(110) 4.8(105) 4.3 (97) 4.9(109)
O | Fast 1.2 (154) 1.0 (133) 1.1 (130) 1.3 (117) 1.6 (131)
speedup 3.3x 3.8x 3.4x 2.5x% 2.6x

Computations on Summit (OLCF): 42 IBM Power9 CPU cores and 6

NVIDIA V100 GPUs per node.
Related works

Yamazaki, Heinlein, Rajamanickam (2023)

= One-level Schwarz with local solves on GPU: Luo, Yang, Zhao, Cai (2011)
= Solves of dense local Schur complement matrices in BDDC on GPUs: Sistek & Oberhuber

(2022)

A. Heinlein (TU Delft)

SENIE]

Why Learning Extension Operators

Most coarse spaces for Schwarz preconditioners are constructed based on a characteristic functions
pi(w;) = 6,

on specifically chosen sets of nodes {w;};. The values in the remaining nodes are then obtained by
extending the values into the adjacent subdomains. Examples:

Subdomain-based GDSW

[] [] o] o] o] o]

[] [] o] o] o] o]

(<] (<] o]] o] o]

(<] (<] o] o] o] o]

= The w; are based on = The wj are based on = Lagrangian: geometric ext.

nonoverl. subdomains €; partition of the interface = MsFEM: geometric and
= No extensions needed = Energy-minimizing exts. energy-minimizing exts.
Cf. Nicolaides (1987) B Bl rEe e

energy-minimizing exts.

A. Heinlein (TU Delft)

Why Learning Extension Operators

Most coarse spaces for Schwarz preconditioners are constructed based on a characteristic functions

pi(w;) = 6,

on specifically chosen sets of nodes {w;};. The values in the remaining nodes are then obtained by
extending the values into the adjacent subdomains. Examples:

Observation 1
Energy-minimizing extensions
= are algebraic:
v, = —K”_lK,rvr
(with Dirichlet b. c.)

= can be costly: solving a
problem in the interior

A. Heinlein (TU Delft)

Observation 2

Heterogeneous: ajight = 1; Qdark = 10°

The performance may strongly
depend on extension operator:

coarse space | its. K

= Lagrangian: geometric ext.

= MsFEM: geometric and
energy-minimizing exts.

= RGDSW: algebraic and
energy-minimizing exts.

Why Learning Extension Operators

Most coarse spaces for Schwarz preconditioners are constructed based on a characteristic functions

pi(w;) = 6,

on specifically chosen sets of nodes {w;};. The values in the remaining nodes are then obtained by

extending the values into the adjacent subdomains. Examples:

Observation 1
Energy-minimizing extensions
= are algebraic:
v, = —K”_lK,rvr
(with Dirichlet b. c.)

= can be costly: solving a
problem in the interior

Observation 2

Heterogeneous: ajight = 1; Qdark = 10°

The performance may strongly
depend on extension operator:

coarse space | its. K

— Improving efficiency & robustness via machine learning.

A. Heinlein (TU Delft)

SENIE]

= Lagrangian: geometric ext.

= MsFEM: geometric and
energy-minimizing exts.

= RGDSW: algebraic and
energy-minimizing exts.

Related Works

This overview is not exhaustive:
Coarse spaces for domain decomposition methods

= Prediction of the geometric location of adaptive constraints (adaptive BDDC & FETI-DP as well as
AGDSW): Heinlein, Klawonn, Lanser, Weber (2019, 2020, 2021, 2021, 2021, 2022)

= Prediction of the adaptive constraints: Klawonn, Lanser, Weber (preprint 2023, 2024)

= Prediction of spectral coarse spaces for BDDC for stochastic heterogeneities: Chung, Kim, Lam, Zhao
(2021)

= Learning interface conditions and coarse interpolation operators: Taghibakhshi et al. (2022, 2023)
Algebraic multigrid (AMG)
= Prediction of coarse grid operators: Tomasi, Krause (2023)

= Coarsening: Taghibakhshi, MacLachlan, Olson, West (2021); Antonietti, Caldana, Dede (2023)

An overviews of the state-of-the-art on domain decomposition and machine learning in early 2021 and 2023:

\ A. Heinlein, A. Klawonn, M. Lanser, J. Weber \ A. Klawonn, M. Lanser, J. Weber
Combining machine learning and domain Machine learning and domain decomposition
decomposition methods for the solution of methods — a survey
partial differential equations — A review arXiv:2312.14050. 2023

GAMM-Mitteilungen. 2021.

A. Heinlein (TU Delft)

Prediction via Graph Convolutional Networks

Graph convolutional networks (GCNs) introduced in Kipf and
Welling (2017) are an example of graph neural networks (GNNs)
and are well-suited for learning operations on simulation meshes:

= Generalization of classical convolutional neural networks
(CNNs) LeCun (1998) to graph-based data sets.

= Consist of message passing layers, which perform a graph
convolution operation on each node of the graph.

= Graph convolutions are invariant to position and
permutation of the input vector.

graph convolution

y = E apakx
k

A graph Laplacian,
X input, Y output,
(ap)) train. params

Local approach ‘ |

= Input: subdomain matrix K; ‘

= Output: basis functions {(pj-li}j
on the same subdomain

= Training on subdomains with
varying geometry

= Inference on unseen
subdomains

A. Heinlein (TU Delft)

Theory-Inspired Design of the GNN-Based Coarse Space

Null space property Explicit partition of unity

Any extension-based coarse space built from a partition of To explicitly enforce that the basis

unity on the domain decomposition interface satisfies the functions (cpj)j form a partition of unity
null space property necessary for numerical scalability: B
SOJ - Zk @k’
Z + Z where the ¢ are the outputs of the
by o, GNN.

” Initial Learned
Initial and target 1 Message-Passing 5 Message-Passing

= Initial function: partition of
unity that is constant in the
interior

= Target function:

= linear on the edges

= energy-minimizing in the
interior

A. Heinlein (TU Delft)

Theory-Inspired Design of the GNN-Based Coarse Space

Null space property Explicit partition of unity

Any extension-based coarse space built from a partition of To explicitly enforce that the basis

unity on the domain decomposition interface satisfies the functions (cpj)j form a partition of unity
null space property necessary for numerical scalability: B
SOJ - Zk @k’
Z + Z where the ¢ are the outputs of the
by o, GNN.

” Initial Learned
Initial and target 1 Message-Passing 5 Message-Passing

= Initial function: partition of
unity that is constant in the
interior

= Target function:

= linear on the edges

= energy-minimizing in the
interior
— Information transport via
message passing
A. Heinlein (TU Delft)

Numerical Results — Weak Scaling Study

Model problem: 2D Laplacian
model problem discretized
using finite differences on a
structured grid

—Au=1 inQ,
u=0 on 0%,

decomposed using METIS:

A. Heinlein (TU Delft)

100 nx=128 with np=64
T

nx=256 with np=256
T

nx=512 with np=1024

10° 10°
——one-level
—— two-level (target)
— — two-level (init)
— — two-level(interior predict)
1 -+ two-level(edge & interior predict) 10—1 10—1
one-level : 58 one-level : 104 one-level : 262
two-level : 19 two-level : 20 two-level : 21
107 init 42 107 init :48 107 init 149
interior : 26 interior :21 interior : 26
full 019 full full 122
10°= E
10 = 1
10 - E|
10° = 1
107
-8 I
1
0 0 50 100

21/21

= FROSCH is based on the Schwarz framework and energy-minimizing coarse spaces, which
provide numerical scalability using only algebraic information for a variety of applications.
= Recently, the following directions have been further developed:
= Multi-level preconditioners
= Monolithic coarse spaces
= GPU capabilities
= Integration of machine learning techniques

= Nonlinear Schwarz preconditioners
= Robust coarse spaces for heterogeneous problems — Next talk by Jascha Knepper

Acknowledgements
= Financial support: DFG (KL2094/3-1, RH122/4-1), DFG SPP 2311 project number 465228106,
DOE SciDAC-5 FASTMath Institute (Contract no. DE-AC02-05CH11231)

= Computing resources: Summit (OLCF), Cori (NERSC), magnitUDE (UDE), Piz Daint (CSCS),
Fritz (FAU)

Thank you for your attention!

	Multilevel Schwarz Preconditioners in FROSch Based on joint work with Oliver Rheinbach and Friederike Röver (Technische Universität Bergakademie Freiberg)
	Monolithic Schwarz Preconditioners in FROSch Based on joint work with Christian Hochmuth, Axel Klawonn, and Lea Saßmannshausen (Universität zu Köln) and Mauro Perego and Sivasankaran Rajamanickam (Sandia National Laboratories)
	FROSch Preconditioners With Inexact Solvers Based on joint work with Sivasankaran Rajamanickam and Ichitaro Yamazaki (Sandia National Laboratories)

