

Domain Decomposition for Randomized Neural Networks

Alexander Heinlein¹

3rd IACM Digital Twins in Engineering Conference (DTE 2025) & 1st ECCOMAS Artificial Intelligence and Computational Methods in Applied Science (AICOMAS 2025), Paris, France, February 17–21, 2025

¹Delft University of Technology

Based on joint work with Siddhartha Mishra (ETH Zürich) and Yong Shang and Fei Wang (Xi'an Jiaotong University)

Numerical Analysis and Machine Learning

Numerical methods

Based on physical models

- + Robust and generalizable
- Require availability of mathematical models

Machine learning models

Driven by data

- + Do not require mathematical models
- Sensitive to data, limited extrapolation capabilities

Scientific machine learning (SciML)

Combining the strengths and compensating the weaknesses of the individual approaches:

numerical methods **improve** machine learning techniques machine learning techniques **assist** numerical methods

A. Heinlein (TU Delft)

Neural networks

A standard **multilayer perceptron (MLP)** with *L* hidden layers is a **parametric** model of the form

$$u(\mathbf{x}, \boldsymbol{\theta}) = \boldsymbol{F}_{L+1}^{\boldsymbol{A}} \cdot \boldsymbol{F}_{L}^{\boldsymbol{W}_{L}, \boldsymbol{b}_{L}} \circ \ldots \circ \boldsymbol{F}_{1}^{\boldsymbol{W}_{1}, \boldsymbol{b}_{1}}(\mathbf{x}),$$

where **A** is linear, and the *i*th hidden layer is nonlinear $F_i^{W_i, b_i}(\mathbf{x}) = \sigma(W_i \cdot \mathbf{x} + \mathbf{b}_i)$.

In order to optimize the loss function

$$\min_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}),$$
all parameters $\boldsymbol{\theta} = (\boldsymbol{A}, \boldsymbol{W}_1, \boldsymbol{b}_1, \dots, \boldsymbol{W}_L, \boldsymbol{b}_L)$ are trained.

Randomized neural networks

In randomized neural networks (RaNNs) as introduced by Pao and Takefuji (1992),

$$u(\mathbf{x}, \mathbf{A}) = \mathbf{F}_{L+1}^{\mathbf{A}} \cdot \mathbf{F}_{L}^{W_{L}, b_{L}} \circ \ldots \circ \mathbf{F}_{1}^{W_{1}, b_{1}}(\mathbf{x}),$$

the weights in the hidden layers are randomly initialized and **fixed**; only **A** is trainable.

The model is linear with respect to the trainable parameters A, and the optimization problem reads

$$\min_{\boldsymbol{A}} \mathcal{L}(\boldsymbol{A}).$$

This can simplify the training process.

A. Heinlein (TU Delft)

Physics-Informed Neural Networks (PINNs)

In the **physics-informed neural network (PINN)** approach introduced by **Raissi et al. (2019)**, a **neural network** is employed to **discretize a partial differential equation**

 $\mathcal{N}[u] = f, \text{ in } \Omega.$

PINNs use a hybrid loss function:

$$\mathcal{L}(\boldsymbol{\theta}) = \omega_{\mathsf{data}} \mathcal{L}_{\mathsf{data}}(\boldsymbol{\theta}) + \omega_{\mathsf{PDE}} \mathcal{L}_{\mathsf{PDE}}(\boldsymbol{\theta}),$$

where ω_{data} and ω_{PDE} are weights and

$$\begin{split} \mathcal{L}_{data}(\boldsymbol{\theta}) &= \frac{1}{N_{data}} \sum_{i=1}^{N_{data}} \left(u(\hat{\boldsymbol{x}}_i, \boldsymbol{\theta}) - u_i \right)^2, \\ \mathcal{L}_{PDE}(\boldsymbol{\theta}) &= \frac{1}{N_{PDE}} \sum_{i=1}^{N_{PDE}} \left(\mathcal{N}[u](\boldsymbol{x}_i, \boldsymbol{\theta}) - f(\boldsymbol{x}_i) \right)^2. \end{split}$$

See also Dissanayake and Phan-Thien (1994); Lagaris et al. (1998).

Advantages

- "Meshfree"
- Small data
- Generalization properties
- High-dimensional problems
- Inverse and parameterized problems

Drawbacks

- Training cost and robustness
- Convergence not well-understood
- Difficulties with scalability and multi-scale problems

Hybrid loss

- Known solution values can be included in L_{data}
- Initial and boundary conditions are also included in $\mathcal{L}_{\text{data}}$

A. Heinlein (TU Delft)

Scaling of PINNs for a Simple ODE Problem

Solve $u' = \cos(\omega \mathbf{x}),$ $u(\mathbf{0}) = \mathbf{0},$

for different values of ω using **PINNs with** varying network capacities.

Scaling issues

- Large computational domains
- Small frequencies

Cf. Moseley, Markham, and Nissen-Meyer (2023)

4/14

Scaling of PINNs for a Simple ODE Problem

Solve $u' = \cos(\omega \mathbf{x}),$ $u(\mathbf{0}) = 0,$

for different values of ω using **PINNs with** varying network capacities.

Scaling issues

- Large computational domains
- Small frequencies

Cf. Moseley, Markham, and Nissen-Meyer (2023)

Finite Basis Physics-Informed Neural Networks (FBPINNs)

FBPINNs (Moseley, Markham, Nissen-Meyer (2023))

FBPINNs employ the network architecture

$$u(\theta_1,\ldots,\theta_J)=\sum_{j=1}^J\omega_j u_j(\theta_j)$$

and the loss function

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} \left(n \left[\sum_{\mathbf{x}_i \in \Omega_j} \omega_j u_j \right] (\mathbf{x}_i, \theta_j) - f(\mathbf{x}_i) \right)^2$$

1D single-frequency problem

A. Heinlein (TU Delft)

Finite Basis Physics-Informed Neural Networks (FBPINNs)

FBPINNs (Moseley, Markham, Nissen-Meyer (2023))

FBPINNs employ the network architecture

$$u(\theta_1,\ldots,\theta_J)=\sum_{j=1}^J\omega_j u_j(\theta_j)$$

and the loss function

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} \left(n \left[\sum_{\mathbf{x}_i \in \Omega_j} \omega_j u_j \right] (\mathbf{x}_i, \theta_j) - f(\mathbf{x}_i) \right)^2$$

1D single-frequency problem

A. Heinlein (TU Delft)

Physics-Informed Randomized Neural Networks (PIRaNNs)

Physics-informed randomized neural networks (PIRaNNs) make use of the aforementioned linearization of the model with respect to the trainable parameters as well as the fact that RaNNs retain **universal approximation properties**, as shown in **Igelnik and Pao (1995)**.

Consider a linear differential operator $\ensuremath{\mathcal{A}}.$ Then, solving the PDE

 $\mathcal{A}[u] = f$, in Ω .

using PIRaNNs yields the linear equation system

 $\mathcal{A}[u](\mathbf{x}_i) = f(\mathbf{x}_i), \quad i = 1, \ldots, N_{\text{PDE}},$

where N_{PDE} is the number of collocation points. The resulting linear equation system **Hard enforcement of boundary conditions** We construct *u* to explicitly satisfy bcs:

 $u(\mathbf{x}, \mathbf{A}) = G(\mathbf{x}) + L(\mathbf{x})NN(\mathbf{x}, \mathbf{A})$

- *NN* is a feedforward neural network with trainable parameters *A*
- *G* and *L* are **fixed functions**, chosen such that *u* satisfies the boundary conditions

HA = f

generally does not have a unique solution. In fact, H is typically rectangular, dense, and ill-conditioned.

Solving the system using least squares corresponds to applying the classical PINN loss function to the RaNN model *u*. As we will see, this approach offers a **potentially efficient alternative**.

Randomized neural networks

- RaNNs: Pao, Takefuji (1992); Pao Park, Sobajic (1994); Igelnik, Pao (1995)
- Extreme Learning Machines (ELMs): Huang, Zhu, Siew (2006); Liu, Lin, Fang, Xu (2014); Gallicchio, Scardapane (2020); Calabrò, Fabiani, Siettos (2021); Ni, Dong (2023); Wang, Dong (2024)

Domain decomposition for neural networks and randomized neural networks

- cPINNs, XPINNs: Jagtap, Kharazmi, Karniadakis (2020); Jagtap, Karniadakis (2020)
- Schwarz it. for PINNs or DeepRitz (D3M, DeepDDM, etc):: Li, Tang, Wu, Liao (2019); Li, Xiang, Xu (2020); Mercier, Gratton, Boudier (arXiv 2021); Dolean, H., Mercier, Gratton (arXiv 2024); Li, Wang, Cui, Xiang, Xu (2023); Sun, Xu, Yi (arXiv 2023, 2024); Kim, Yang (2023, 2024, 2024)
- FBPINNs, FBKANs: Moseley, Markham, Nissen-Meyer (2023); Dolean, H., Mishra, Moseley (2024, 2024); H., Howard, Beecroft, Stinis (acc. 2024); Howard, Jacob, Murphy, H., Stinis (arXiv 2024)
- DD for RaNNs, ELMS, Random Feature Method: Dong, Li (2021); Dang, Wang (2024); Sun, Dong, Wang (2024); Sun, Wang (2024); Chen, Chi, E, Yang (2022); Shang, H., Mishra, Wang (subm. 2024)

An overview of the state-of-the-art in early 2021:

A. Heinlein, A. Klawonn, M. Lanser, J. Weber

Combining machine learning, domain decomposition methods for the solution of partial differential equations — A review

GAMM-Mitteilungen. 2021.

An overview of the state-of-the-art in mid 2024:

A. Klawonn, M. Lanser, J. Weber

Machine learning, domain decomposition methods – a survey

Computational Science, Engineering. 2024

Domain Decomposition-Based PIRaNNs

FBPINNs (Moseley, Markham, Nissen-Meyer (2023))

FBPINNs employ the network architecture

$$u(\theta_1,\ldots,\theta_J)=\sum_{j=1}^J\omega_j u_j(\theta_j)$$

and the loss function

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} \left(n \left[\sum_{\mathbf{x}_i \in \Omega_j} \omega_j u_j \right] (\mathbf{x}_i, \theta_j) - f(\mathbf{x}_i) \right)^2$$

Domain decomposition for RaNNs

We employ the FBPINNs approach; cf. Shang, Heinlein, Mishra, Wang (subm. 2024). This is closely related to the random feature method (RFM) by Chen, Chi, E, Yang (2022). In particular, we solve

$$\mathcal{R}[\sum_{j=1}^{J}\omega_{j}u_{j}(\boldsymbol{A}_{j})](\boldsymbol{x}_{i})=f(\boldsymbol{x}_{i}),$$

for $i = 1, ..., N_{PDE}$; the boundary condtions are incorporated directly into the u_j .

The hidden weights are randomly initialized, the resulting matrices \boldsymbol{H} and $\boldsymbol{H}^{\top}\boldsymbol{H}$ are block-sparse.

A. Heinlein (TU Delft)

Preconditioning for Domain Decomposition-Based PIRaNNs

One-level Schwarz preconditioner

Based on an overlapping domain decomposition, we define a one-level Schwarz operator for $K:=H^\top H$

$$\boldsymbol{M}_{\text{OS-1}}^{-1}\boldsymbol{K} = \sum_{i=1}^{N} \boldsymbol{R}_{i}^{\top}\boldsymbol{K}_{i}^{-1}\boldsymbol{R}_{i}\boldsymbol{K}$$

where R_i and R_i^{\top} are restriction and prolongation operators corresponding to Ω'_i , and $K_i := R_i K R_i^{\top}$. Here, the matrix K_i could be singular in which case we use a **pseudo inverse** K_i^+ instead of K_i^{-1} . We also consider restricted and scaled additive Schwarz preconditioners; cf. Cai, Sarkis (1999).

Singular Value Decomposition

As discussed before, on each subdomain Ω_j , the RaNN is

$$u_j(\mathbf{x}, \mathbf{A}_j) = \mathbf{F}_{L+1}^{\mathbf{A}} \cdot \mathbf{F}_{L}^{W_L, b_L} \circ \ldots \circ \mathbf{F}_{1}^{W_1, b_1}(\mathbf{x})$$
$$= \mathbf{A}_j \begin{bmatrix} \Phi_1(\mathbf{x}) & \cdots & \Phi_k(\mathbf{x}) \end{bmatrix}^\top,$$

where k is the width of the last hidden layer and the Φ_k are the randomized basis functions. Consider a reduced SVD $\Phi = U\Sigma V^{\top}$, where the entries

of the matrix are $\Phi_{i,k} = \Phi_k(\mathbf{x}_i)$. Then, we consider

$$\hat{u}_j(\boldsymbol{x}, \boldsymbol{A}_j) = \boldsymbol{A}_j \, \hat{\boldsymbol{V}}^{\top} \begin{bmatrix} \Phi_1(\boldsymbol{x}) & \cdots & \Phi_k(\boldsymbol{x}) \end{bmatrix}^{\top},$$

where $\hat{\mathbf{V}}^{\top}$ is obtained by omitting the right singular vectors corresponding to small singular values.

A. Heinlein (TU Delft)

Multi-Frequency Problem

Let us now consider the two-dimensional multi-frequency Laplace boundary value problem

$$-\Delta u = 2 \sum_{i=1}^{n} (\omega_i \pi)^2 \sin(\omega_i \pi x) \sin(\omega_i \pi y) \quad \text{in } \Omega = [0, 1]^2,$$
$$u = 0 \qquad \qquad \text{on } \partial\Omega,$$

with $\omega_i = 2^i$.

For increasing values of *n*, we obtain the **analytical solutions**:

A. Heinlein (TU Delft)

Numerical Results for the Multi-Frequency Problem (n = 2)

4 × 4 subdomains; DoF = 256; N = 1600; $\theta^0 \mathcal{U}(-1, 1)$; stop.: $\|\boldsymbol{M}^{-1} \boldsymbol{r}^k\|_{L^2} / \|\boldsymbol{M}^{-1} \boldsymbol{r}^0\|_{L^2} \le 10^{-5}$

Numerical Results for the Multi-Frequency Problem (n = 2) – Effect of the SVD

We now investigate the effect of omitting right singular vectors associated with singular values below a varying tolerance τ .

τ	DoF	M^{-1}	σ_{min}	σ_{max}	iter	e_{L^2}
10-4	512	None	10^{-10}	10 ⁶	> 2000	3.72e-2
		M_{AS}^{-1}	10^{-6}	10 ⁶	27	5.46e-5
		M_{SAS}^{-1}	10 ⁻⁷	10 ⁵	30	5.49e-5
10-3	436	None	10 ⁻⁸	10 ⁵	> 2000	3.75e-2
		M_{AS}^{-1}	10^{-5}	10 ⁵	16	1.28e-4
		M_{SAS}^{-1}	10 ⁻⁶	104	18	1.28e-4
10-2	335	None	10 ⁻⁵	10 ⁵	> 2000	4.51e-2
		M_{AS}^{-1}	10 ⁻³	104	14	7.14e-4
		M_{SAS}^{-1}	10 ⁻⁴	10 ³	13	7.11e-4
10 ⁻¹	212	None	10-3	10 ⁶	> 2000	5.01e-2
		M_{AS}^{-1}	10^2	10 ³	12	7.13e-3
		M_{SAS}^{-1}	10^{-3}	10 ²	11	7.10e-3

4 × 4 subdomains; $N = 1600; \ \theta^0; \ \mathcal{U}(-1,1); \ \text{stop.:} \ \|\boldsymbol{M}^{-1}\boldsymbol{r}^k\|_{L^2} / \|\boldsymbol{M}^{-1}\boldsymbol{r}^0\|_{L^2} \le 10^{-5}$

Numerical Results for the Multi-Frequency Problem

n = 1n = 2n = 3n = 4n = 5n = 6

Numerical Results for 1D Advection-Diffusion Problem

Given $\Omega = (-1, 1)$, we consider a **one-dimensional advection-diffusion equation**

$$\begin{aligned} \frac{\partial u}{\partial t} &+ \frac{\partial u}{\partial x} = \kappa \frac{\partial u^2}{\partial x^2} & \text{in } \Omega \times I, \\ u(-1,t) &= u(1,t) = 0 & \text{in } I, \\ u(x,0) &= -\sin(\pi x) & \text{in } \Omega, \end{aligned}$$

with I = (0, 1). Here, $\kappa = 0.1/\pi$ is the diffusivity coefficient, complicating the solution near x = 1 due to the no-slip boundary; see Kharazmi, Zhang, Karniadakis (2021).

A. Heinlein (TU Delft)

Co-organizers: Victorita Dolean (TU/e), Alexander Heinlein (TU Delft), Benjamin Sanderse (CWI), Jemima Tabbeart (TU/e), Tristan van Leeuwen (CWI)

- Autumn School (October 27–31, 2025):
 - Chris Budd (University of Bath)
 - Ben Moseley (Imperial College London)
 - Gabriele Steidl (Technische Universität Berlin)
 - Andrew Stuart (California Institute of Technology)
 - Andrea Walther (Humboldt-Universität zu Berlin)
- Workshop (December 1–3, 2025):
 - 3 days with plenary talks (academia & industry) and an industry panel
 - Confirmed plenary speakers:
 - Marta d'Elia (Meta)
 - Benjamin Peherstorfer (New York University)
 - Andreas Roskopf (Fraunhofer Institute)

CWI Centrum Wiskunde & Informatica

Join us for inspiring talks, hands-on sessions, and industry collaboration!

Physics-informed neural networks and randomized neural networks

- PINNs incorporate physics the loss, improving accuracy and generalization. RaNNs use random weights and biases, while only training the last layer. This can simplify the training and reduce computational cost.
- Nonetheless, both approaches suffer from ill-conditioning leading to a challenging training process.

Domain decomposition architectures and preconditioning

- Domain decomposition-based architectures improve the scalability of PINNs to large domains / high frequencies, keeping the complexity of the local networks low.
- Preconditioning, using a combination of Schwarz preconditioning and SVD, can improve the conditioning of the RaNN problem and significantly reduce the number of iterations needed for convergence.

Thank you for your attention!

Topical Activity Group Scientific Machine Learning

