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The FROSch Package – Algebraic and

Parallel Schwarz Preconditioners in

Trilinos



Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner

Overlap δ = 2h Solution of local problem

Based on an overlapping domain decomposition, we

define a one-level Schwarz operator

M−1
OS-1

A =
∑N

i=1
R⊤

i A−1
i

Ri A,

where Ri and R⊤
i are restriction and prolongation

operators corresponding to Ω′
i , and Ai := Ri AR⊤

i .

Condition number estimate:

κ
(

M−1
OS-1

A
)

≤ C



1 +
1

Hδ



with subdomain size H and overlap width δ.

Lagrangian coarse space

Coarse triangulation Coarse solution

The two-level overlapping Schwarz operator reads

M−1
OS-2

A = ΦA−1
0 Φ⊤A

︸ ︷︷ ︸
coarse level – global

+
∑N

i=1
R⊤

i A−1
i

Ri A

︸ ︷︷ ︸
first level – local

,

where Φ contains the coarse basis functions and

A0 := Φ⊤AΦ; cf., e.g., Toselli, Widlund (2005).

The construction of a Lagrangian coarse basis requires

a coarse triangulation.

Condition number estimate:

κ
(

M−1
OS-2

A
)

≤ C



1 +
H

δ



A. Heinlein (TU Delft) DD29 1/11



Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner

Overlap δ = 2h Solution of local problem

Based on an overlapping domain decomposition, we

define a one-level Schwarz operator

M−1
OS-1

A =
∑N

i=1
R⊤

i A−1
i

Ri A,

where Ri and R⊤
i are restriction and prolongation

operators corresponding to Ω′
i , and Ai := Ri AR⊤

i .

Condition number estimate:

κ
(

M−1
OS-1

A
)

≤ C



1 +
1

Hδ



with subdomain size H and overlap width δ.

Lagrangian coarse space

Coarse triangulation Coarse solution

The two-level overlapping Schwarz operator reads

M−1
OS-2

A = ΦA−1
0 Φ⊤A

︸ ︷︷ ︸
coarse level – global

+
∑N

i=1
R⊤

i A−1
i

Ri A

︸ ︷︷ ︸
first level – local

,

where Φ contains the coarse basis functions and

A0 := Φ⊤AΦ; cf., e.g., Toselli, Widlund (2005).

The construction of a Lagrangian coarse basis requires

a coarse triangulation.

Condition number estimate:

κ
(

M−1
OS-2

A
)

≤ C



1 +
H

δ



A. Heinlein (TU Delft) DD29 1/11



Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner

Overlap δ = 2h Solution of local problem

Lagrangian coarse space

Coarse triangulation Coarse solution

Diffusion model problem in two dimensions,

H/h = 100
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FROSch (Fast and Robust Overlapping Schwarz) Framework in Trilinos

Software

• Object-oriented C++ domain decomposition solver framework with

MPI-based distributed memory parallelization

• Part of Trilinos with the parallel linear algebra based on Tpetra

• Node-level parallelization and performance portability on CPU and GPU

architectures through Kokkos and KokkosKernels

• Accessible through unified Trilinos solver interface Stratimikos

Methodology

• Parallel scalable multi-level Schwarz domain decomposition

preconditioners

• Algebraic construction based on the parallel distributed system matrix

• Extension-based coarse spaces

Team (active)

• Filipe Cumaru (TU Delft)

• Alexander Heinlein (TU Delft)

• Kyrill Ho (UCologne)

• Sebastian Kinnewig (LUH)

• Axel Klawonn (UCologne)

• Jascha Knepper (UCologne)

• Stephan Köhler (TUBAF)

• Friederike Röver (TUBAF)

• Siva Rajamanickam (SNL)

• Oliver Rheinbach (TUBAF)

• Lea Saßmannshausen (UCologne)

• Ichitaro Yamazaki (SNL)
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Partition of Unity

The energy-minimizing extension vi = H∂Ωi →Ωi (vi,∂Ωi ) solves

−∆vi = 0 in Ωi ,

vi = vi,∂Ωi on ∂Ωi .

Hence, vi = E∂Ωi →Ωi (✶∂Ωi ) = ✶.

Due to linearity of the extension operator, we have
∑

i
φi = ✶∂Ωi ⇒

∑

i
E∂Ωi →Ωi (φi ) = ✶Ωi

Null space property

Any extension-based coarse space built from a partition of unity on the domain decomposition interface

satisfies the null space property necessary for numerical scalability:

∑

edges
⊂∂Ωi

+
∑

vertices
⊂∂Ωi

=

Algebraicity of the energy-minimizing extension

The computation of energy-minimizing extensions only requires KII

and KIΓ, submatrices of the fully assembled matrix Ki .
v =


−K−1

II KIΓ

IΓ



vΓ,
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Algorithmic Framework for FROSch Preconditioners

Overlapping domain decomposition

The overlapping subdomains

are constructed by recursively

adding layers of elements via

the sparsity pattern of K .

The corresponding matrices

Ki = Ri KRT
i

can easily be extracted from K .

Nonoverlapping DD
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Coarse space

1. Interface components 2. Interface basis (partition of unity × null space)

For scalar elliptic

problems, the null space
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constant functions.
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Algorithmic Framework for FROSch Preconditioners

Overlapping domain decomposition

The overlapping subdomains

are constructed by recursively

adding layers of elements via

the sparsity pattern of K .

The corresponding matrices

Ki = Ri KRT
i

can easily be extracted from K .

Nonoverlapping DD Overlap δ = 1h Overlap δ = 2h

Coarse space

1. Interface components 2. Interface basis (partition of unity × null space)

For scalar elliptic

problems, the null space

consists only of

constant functions.

3. Extension
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Examples of FROSch Coarse Spaces

GDSW (Generalized Dryja–Smith–Widlund)

• Dohrmann, Klawonn, Widlund (2008)

• Dohrmann, Widlund (2009, 2010, 2012)

RGDSW (Reduced dimension GDSW)

• Dohrmann, Widlund (2017)

• H., Klawonn, Knepper, Rheinbach, Widlund (2022)

MsFEM (Multiscale Finite Element Method)

• Hou (1997), Efendiev and Hou (2009)

• Buck, Iliev, and Andrä (2013)

• H., Klawonn, Knepper, Rheinbach (2018)

Q1 Lagrangian / piecewise bilinear

Piecewise linear interface partition of unity functions

and a structured domain decomposition.
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Examples of FROSch Coarse Spaces

GDSW (Generalized Dryja–Smith–Widlund)

• Dohrmann, Klawonn, Widlund (2008)

• Dohrmann, Widlund (2009, 2010, 2012)

RGDSW (Reduced dimension GDSW)

• Dohrmann, Widlund (2017)

• H., Klawonn, Knepper, Rheinbach, Widlund (2022)

For elliptic model problems, the condition number of the (R)GDSW two-level Schwarz operator is bounded by

κ



M−1
(R)GDSW

K



≤ C



1 +
H

δ

 

1 + log


H

h

α

,

where

C constant (does not depend on h, H, or δ),

H subdomain diameter,

h element size,

δ width of the overlap,

α ∈ {0, 1, 2} power (depends on problem dimension, regularity of the subdomains, and variant of the algorithm).
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Monolithic Coarse Spaces Multiphysics

Problems



Monolithic (R)GDSW Preconditioners for CFD Simulations

Consider the discrete saddle point problem

Ax =


K B⊤

B 0

 
u

p



=


f

0



= b.

Monolithic GDSW preconditioner

We construct a monolithic GDSW preconditioner

M
−1
GDSW

= ϕA−1
0 ϕ⊤ +

∑N

i=1
R

⊤
i PiA

−1
i

Ri ,

with block matrices A0 = ϕ⊤Aϕ, Ai = RiAR⊤
i ,

local pressure projections Pi , and

Ri =


Ru,i 0

0 Rp,i



and ϕ =


Φu,u0 Φu,p0

Φp,u0 Φp,p0



.

Using A to compute extensions: ϕI = −A
−1
II

AIΓϕΓ;

cf. Heinlein, Hochmuth, Klawonn (2019, 2020).

Φu,u0 Φp,u0 Φu,p0 Φp,p0

Stokes flow Navier–Stokes flow

Related work:

• Original work on monolithic Schwarz

preconditioners: Klawonn and Pavarino (1998,

2000)

• Other publications on monolithic Schwarz

preconditioners: e.g., Hwang and Cai (2006),

Barker and Cai (2010), Wu and Cai (2014),

and the presentation Dohrmann (2010) at the

Workshop on Adaptive Finite Elements and

Domain Decomposition Methods in Milan.
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Results for Blood Flow Simulations

• 3D unsteady flow simulation within

the geometry of a realistic artery

(from Balzani et al. (2012)) and

kinematic viscosity ν = 0.03 cm2/s

• Parabolic inflow profile at inlet

• Time discretization: BDF-2; space

discretization: P2-P1 elements
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More details in the talk by Lea Saßmannshausen in MS24, Thursday, 2.40pm.
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FROSch Preconditioners for Land Ice Simulations

https://github.com/SNLComputation/Albany

The velocity of the ice sheet in Antarctica and Greenland is

modeled by a first-order-accurate Stokes approximation model,

−∇ · (2µϵ̇1) + ρg
∂s

∂x
= 0, −∇ · (2µϵ̇2) + ρg

∂s

∂y
= 0,

with a nonlinear viscosity model (Glen’s law); cf., e.g., Blatter (1995) and Pattyn (2003).

Antarctica (velocity) Greenland (multiphysics vel. & temperature)

4 km resolution, 20 layers, 35 m dofs 1-10 km resolution, 20 layers, 69 m dofs

MPI ranks avg. its avg. setup avg. solve avg. its avg. setup avg. solve

512 41.9 (11) 25.10 s 12.29 s 41.3 (36) 18.78 s 4.99 s

1024 43.3 (11) 9.18 s 5.85 s 53.0 (29) 8.68 s 4.22 s

2048 41.4 (11) 4.15 s 2.63 s 62.2 (86) 4.47 s 4.23 s

4096 41.2 (11) 1.66 s 1.49 s 68.9 (40) 2.52 s 2.86 s

8192 40.2 (11) 1.26 s 1.06 s - - -

Computations performed on Cori (NERSC). Heinlein, Perego, Rajamanickam (2022)
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Land Ice Simulations – Fast Subdomain Solves Using Tacho

Tacho

• Multifrontal factorization with pivoting • Impl. using Kokkos and level-set scheduling

Cf. Kim, Edwards, Rajamanickam (2018).

Strong scaling results on a single compute node of Perlmutter (NERSC)

Cf. Yamazaki, Ellingwood, and Rajamanickam (subm. 2025).
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Robust Coarse Spaces for Heterogeneous

Problems



Spectral Extension-Based Coarse Spaces for Schwarz Preconditioners

Highly heterogeneous problems . . .

. . . appear in most areas of modern science and engineering:

Micro section of a

dual-phase steel.

Courtesy of J.

Schröder.

Groundwater flow

(SPE10);

cf. Christie and

Blunt (2001).

Composition of

arterial walls; taken

from O’Connell et

al. (2008).

Spectral coarse spaces

The coarse space is enhanced by eigenfunctions of

local edge and face eigenvalue problems with

eigenvalues below tolerances tolE and tolF:

κ
(

M−1
∗ K

)
≤ C



1 +
1

tolE
+

1

tolF
+

1

tolE · tolF



;

C does not depend on h, H, or the coefficients.

OS-ACMS & adaptive GDSW (AGDSW) (Heinlein,

Klawonn, Knepper, Rheinbach (2018, 2018, 2019)).

Local eigenvalue problems

Local generalized eigenvalue problems corresponding to the edges E and faces F of the domain decomposition:

∀E ∈ E : SEE τ∗,E = λ∗,E KEE τ∗,E , ∀τ∗,E ∈ VE ,

∀F ∈ F : SFF τ∗,F = λ∗,F KFF τ∗,F , ∀τ∗,F ∈ VF ,

with Schur complements SEE , SFF with Neumann boundary conditions and

submatrices KEE , KFF of K . We select eigenfunctions corresponding to eigenvalues

below tolerances tolE and tolF.

→ The corresponding coarse basis functions are energy-minimizing extensions into

the interior of the subdomains.

Ω1 Ω2 Ω3

Ω4 Ω5 Ω6

Ω7 Ω8 Ω9

E12 E23

E45 E56

E78 E89

E14 E25 E36

E47 E58 E69

Γ
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;

C does not depend on h, H, or the coefficients.

OS-ACMS & adaptive GDSW (AGDSW) (Heinlein,

Klawonn, Knepper, Rheinbach (2018, 2018, 2019)).

FROSch – Channel coefficient function example

Example: 2 × 2 subd.’s and H/h = 20

Red: α = 106; blue: α = 1

• 2D Diffusion problem on unit square discretized Q1 finite elements

• N × N subdomains, H/h = 20, minimal algebraic overlap

# subdomains # iterations

= # MPI ranks GDSW AGDSW

2 × 2 105 13

4 × 4 502 17

8 × 8 1451 19

16 × 16 2981 19

Joint work with Axel Klawonn, Jascha Knepper, and Ichitaro Yamazaki.
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Algebraic Multiscale Coarse Space

Multiscale Finite Element Method (MsFEM) (Hou and Wu, 1997)

MsFEM defines a set of coarse basis functions as the

solution of the local boundary condition problem:

−∇ · (α(x)∇φi (x)) = 0 in Ωk ,

φi = 0 on ∂Ω,

∇♣♣ (α(x)φi (x))♣♣ = 0 on Γ = ∂Ωk \ ∂Ω,

φi (xj) = δij for a coarse node xj .

3D heterogeneous problem on DelftBlue (TU Delft)

Red: α = 105; blue: α = 1
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Comparison of coarse spaces with H/h = 16, one layer of overlap

More details in the talk by Filipe Cumaru in MS05, Tuesday, 12.00pm.
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Summary

Advances of FROSch Preconditioners for Multiphysics and Multiscale Simulations

• FROSch leverages the Schwarz framework and extension-based coarse spaces to

achieve robustness and scalability while relying mostly on algebraic information.

• Monolithic coarse spaces ensure robust performance for multiphysics problems, e.g.,

strong convergence in CFD and scalability in land ice simulations.

• Robust convergence for heterogeneous problems requires tailored coarse spaces; recent

advances include robust multiscale and spectral coarse spaces in FROSch.

Further talks on FROSch

• Kyrill Ho in MS27, Monday, 2.20pm (Room T23)

• Filipe Cumaru in MS05, Tuesday, 12.00pm (Room T04)

• Thomas Wick in MS06, Tuesday, at 3.00pm (Room 16B11)

• Lea Saßmannshausen in MS24, Thursday, 2.40pm (16B21)

• Sebastian Kinnewig in MS17, Thursday, at 11.40am (Room T23)

Thank you for your attention!
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