

Algebraic Domain Decomposition Solvers for Large-Scale Problems Using Graph Techniques

Alexander Heinlein¹

Graphs&Data@TUDelft Seminar, Delft University of Technology, April 3, 2025

¹Delft University of Technology

Outline

- 1 Introduction to Schwarz Domain Decomposition Methods
- 2 The FROSCH Package Algebraic and Parallel Schwarz Preconditioners in TRILINOS

Based on joint work with

Axel Klawonn Siva Rajamanickam Oliver Rheinbach and Friederike Röver Olof Widlund

3 Some Challenging Application Problems

Based on joint work with

Filipe Cumaru and Hadi Hajibeygi Axel Klawonn, Jascha Knepper, and Lea Saßmannshausen Mauro Perego and Siva Rajamanickam Oliver Rheinbach Kathrin Smetana Olof Widlund (University of Cologne) (Sandia National Laboratories) (TU Bergakademie Freiberg) (New York University)

(Delft University of Technology) (University of Cologne) (Sandia National Laboratories) (TU Bergakademie Freiberg) (Stevens Institute of Technology) (New York University)

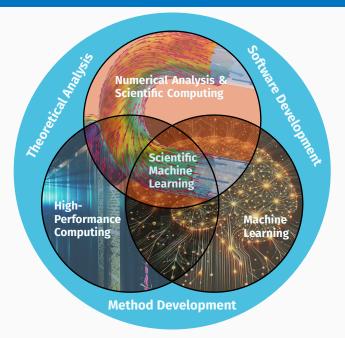
4 Learning Extension Operators Using Graph Neural Networks

Based on joint work with

Siva Rajamanickam and Ichitaro Yamazaki

(Sandia National Laboratories)

SCaLA – Scalable Scientific Computing and Learning Algorithms



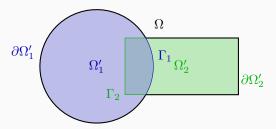
Introduction to Schwarz Domain Decomposition Methods

Domain Decomposition Methods

Graphics based on results from Heinlein, Perego, Rajamanickam (2022)

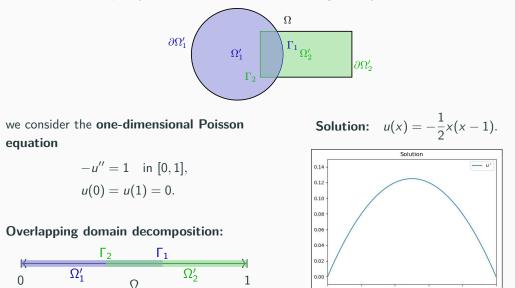
Historical remarks: The alternating Schwarz method is the earliest domain decomposition method (DDM), which has been invented by H. A. Schwarz and published in 1870:

 Schwarz used the algorithm to establish the existence of harmonic functions with prescribed boundary values on regions with non-smooth boundaries.



The Alternating Schwarz Algorithm

For the sake of simplicity, instead of the two-dimensional geometry,



Graphs&Data@TUDelft

0.0

0.2

0.4

0.6

0.8

1.0

Let us consider the simple boundary value problem: Find u such that

$$-u'' = 1$$
, in $[0, 1]$, $u(0) = u(1) = 0$

We perform an alternating Schwarz iteration:

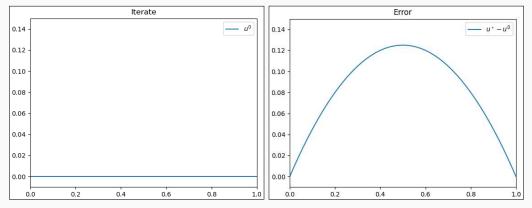


Figure 1: Iterate (left) and error (right) in iteration 0.

Let us consider the simple boundary value problem: Find u such that

$$-u'' = 1$$
, in $[0, 1]$, $u(0) = u(1) = 0$

We perform an alternating Schwarz iteration:

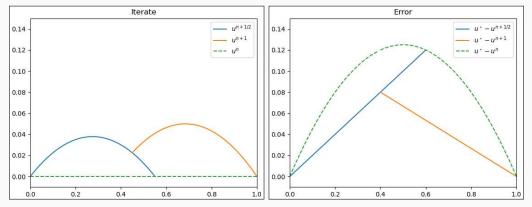


Figure 1: Iterate (left) and error (right) in iteration 1.

Let us consider the simple boundary value problem: Find u such that

$$-u'' = 1$$
, in $[0, 1]$, $u(0) = u(1) = 0$

We perform an alternating Schwarz iteration:

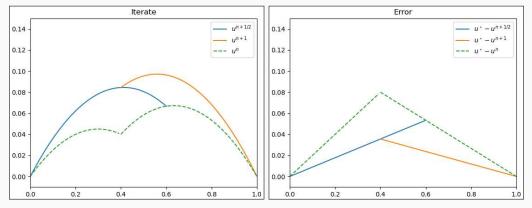


Figure 1: Iterate (left) and error (right) in iteration 2.

Let us consider the simple boundary value problem: Find u such that

$$-u'' = 1$$
, in $[0, 1]$, $u(0) = u(1) = 0$

We perform an alternating Schwarz iteration:

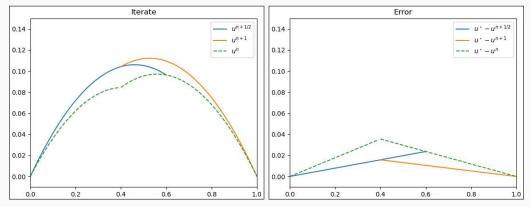


Figure 1: Iterate (left) and error (right) in iteration 3.

Let us consider the simple boundary value problem: Find u such that

$$-u'' = 1$$
, in $[0, 1]$, $u(0) = u(1) = 0$

We perform an alternating Schwarz iteration:

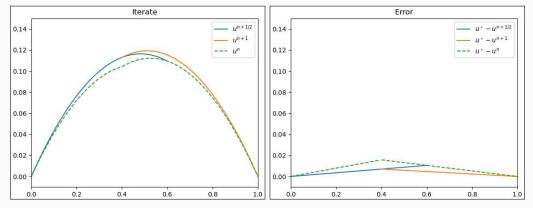


Figure 1: Iterate (left) and error (right) in iteration 4.

Let us consider the simple boundary value problem: Find u such that

$$-u'' = 1$$
, in $[0, 1]$, $u(0) = u(1) = 0$

We perform an alternating Schwarz iteration:

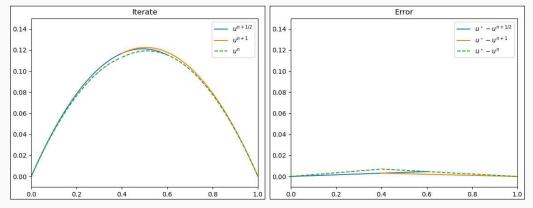


Figure 1: Iterate (left) and error (right) in iteration 5.

The alternating Schwarz algorithm is **sequential** because **each local boundary value problem** depends on the solution of the **previous Dirichlet problem**:

$$(D_1) \begin{cases} -\Delta u^{n+1/2} = f & \text{in } \Omega'_1, \\ u^{n+1/2} = \mathbf{u}^n & \text{on } \partial \Omega'_1 \\ u^{n+1/2} = \mathbf{u}^n & \text{on } \Omega \setminus \overline{\Omega'_1} \end{cases}$$
$$(D_2) \begin{cases} -\Delta u^{n+1} = f & \text{in } \Omega_2, \\ u^{n+1} = \mathbf{u}^{n+1/2} & \text{on } \partial \Omega'_2 \\ u^{n+1} = \mathbf{u}^{n+1/2} & \text{on } \Omega \setminus \overline{\Omega'_2} \end{cases}$$

Idea: For all red terms, we **use the values from the previous iteration**. Then, the both Dirichlet problem **can be solved at the same time**.

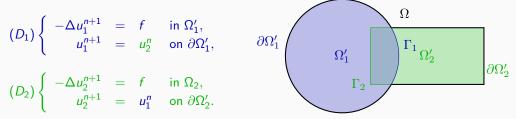
The alternating Schwarz algorithm is **sequential** because **each local boundary value problem** depends on the solution of the **previous Dirichlet problem**:

$$(D_1) \begin{cases} -\Delta u^{n+1/2} = f \quad \text{in } \Omega'_1, \\ u^{n+1/2} = \mathbf{u}^n \quad \text{on } \partial \Omega'_1 \\ u^{n+1/2} = \mathbf{u}^n \quad \text{on } \Omega \setminus \overline{\Omega'_1} \end{cases}$$
$$(D_2) \begin{cases} -\Delta u^{n+1} = f \quad \text{in } \Omega_2, \\ u^{n+1} = \mathbf{u}^{n+1/2} \quad \text{on } \partial \Omega'_2 \\ u^{n+1} = \mathbf{u}^{n+1/2} \quad \text{on } \Omega \setminus \overline{\Omega'_2} \end{cases}$$

Idea: For all red terms, we **use the values from the previous iteration**. Then, the both Dirichlet problem **can be solved at the same time**.

The Parallel Schwarz Algorithm

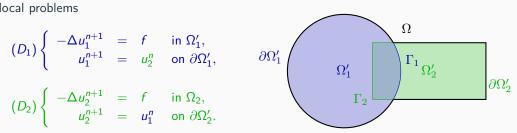
The **parallel Schwarz algorithm** has been introduced by **Lions (1988)**. Here, we solve the local problems



Since u_1^n and u_2^n are both computed in the previous iteration, the problems can be solved independent of each other.

The Parallel Schwarz Algorithm

The **parallel Schwarz algorithm** has been introduced by **Lions (1988)**. Here, we solve the local problems



Since u_1^n and u_2^n are both computed in the previous iteration, the problems can be solved independent of each other.

This method is suitable for **parallel computing**!

Let us again consider the simple boundary value problem: Find u such that

$$-u'' = 1$$
, in $[0, 1]$, $u(0) = u(1) = 0$.

We perform a parallel Schwarz iteration:

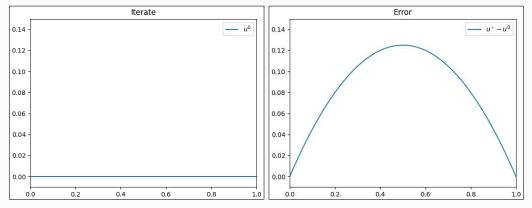


Figure 2: Iterate (left) and error (right) in iteration 0.

Let us again consider the simple boundary value problem: Find u such that

$$-u'' = 1$$
, in $[0, 1]$, $u(0) = u(1) = 0$.

We perform a parallel Schwarz iteration:

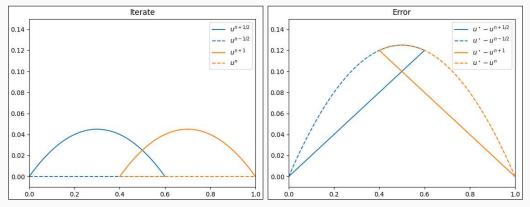


Figure 2: Iterate (left) and error (right) in iteration 1.

Let us again consider the simple boundary value problem: Find u such that

$$-u'' = 1$$
, in $[0, 1]$, $u(0) = u(1) = 0$.

We perform a parallel Schwarz iteration:

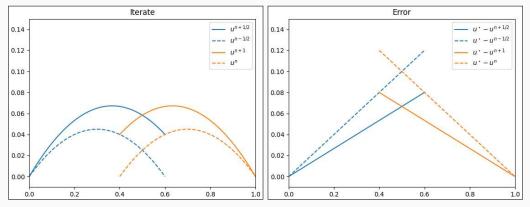


Figure 2: Iterate (left) and error (right) in iteration 2.

Let us again consider the simple boundary value problem: Find u such that

$$-u'' = 1$$
, in $[0, 1]$, $u(0) = u(1) = 0$.

We perform a parallel Schwarz iteration:

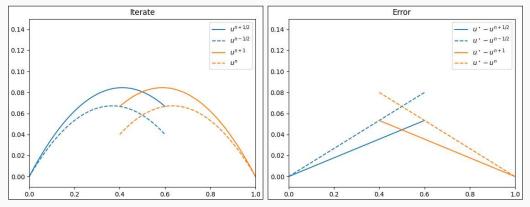


Figure 2: Iterate (left) and error (right) in iteration 3.

Let us again consider the simple boundary value problem: Find u such that

$$-u'' = 1$$
, in $[0, 1]$, $u(0) = u(1) = 0$.

We perform a parallel Schwarz iteration:

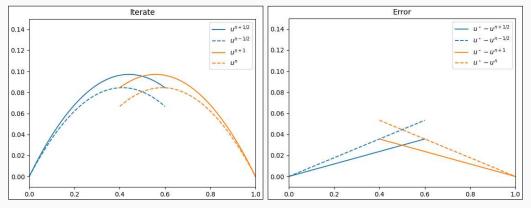


Figure 2: Iterate (left) and error (right) in iteration 4.

Let us again consider the simple boundary value problem: Find u such that

$$-u'' = 1$$
, in $[0, 1]$, $u(0) = u(1) = 0$.

We perform a parallel Schwarz iteration:

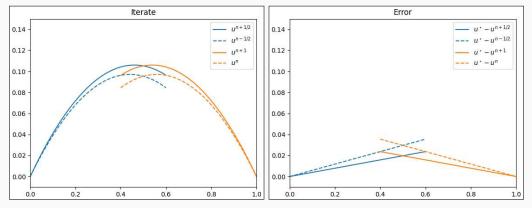
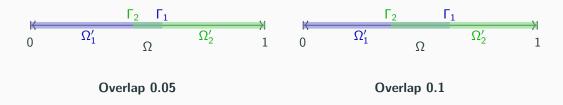


Figure 2: Iterate (left) and error (right) in iteration 5.

We investigate the convergence of the methods (using the alternating method as an example) depending on the **size of the overlap**:



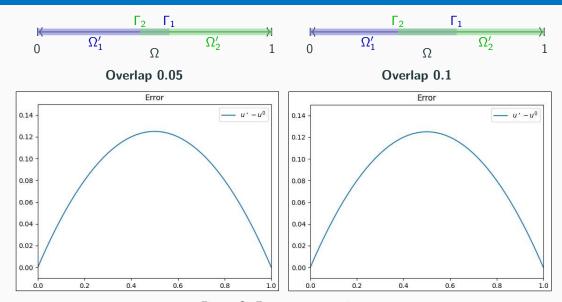


Figure 3: Error in iteration 0.

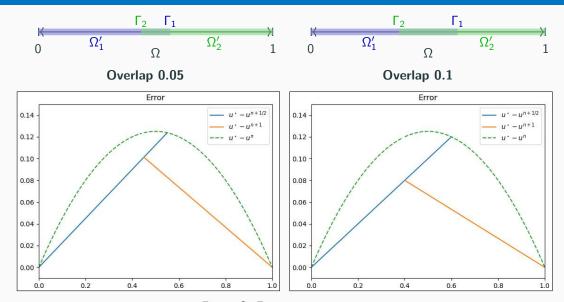


Figure 3: Error in iteration 1.

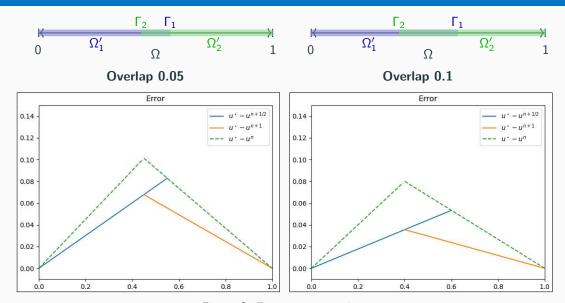


Figure 3: Error in iteration 2.

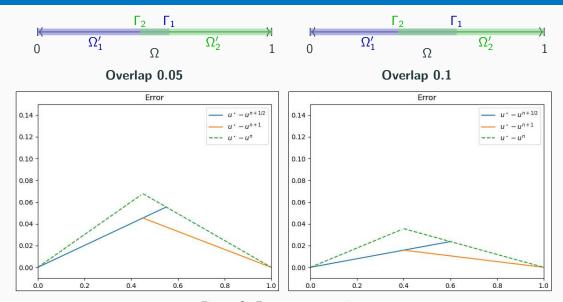


Figure 3: Error in iteration 3.

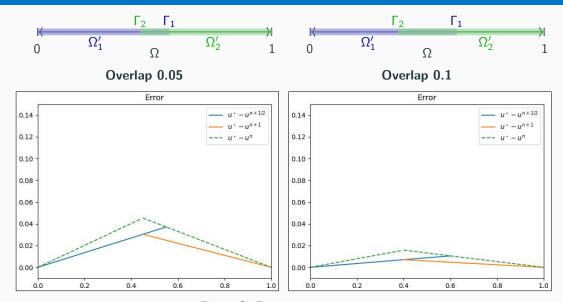


Figure 3: Error in iteration 4.

Graphs&Data@TUDelft

7/26

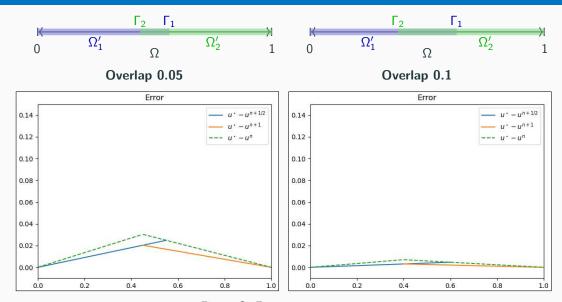


Figure 3: Error in iteration 5.

Overlap 0.05

Overlap 0.1

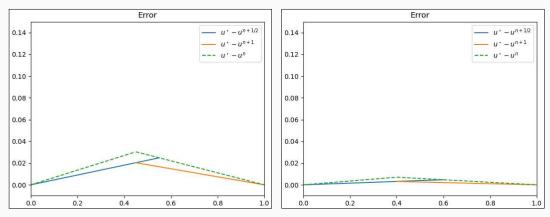


Figure 3: Error in iteration 5.

 \Rightarrow A larger overlap leads to faster convergence.

Solvers for Partial Different Equations

Consider a diffusion model problem:

$$-\Delta u(x) = f \quad \text{in } \Omega = [0, 1]^2,$$
$$u = 0 \quad \text{on } \partial \Omega.$$

Discretization using finite elements yields a **sparse** system of linear equations

Ku = f.

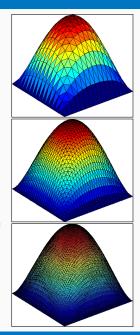
The accuracy of the finite element solution depends on the refinement level of the mesh *h*: **higher refinement** \Rightarrow **better accuracy**.

Direct solvers

For fine meshes, solving the system using a direct solver is not feasible due to **superlinear complexity and memory cost**.

Iterative solvers

Iterative solvers are efficient for solving **sparse systems**, however, the **convergence rate depends on the spectral properties of** *K*.

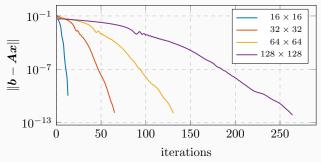


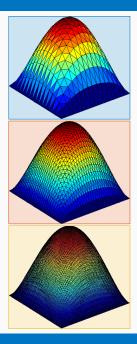
Solvers for Partial Different Equations

Consider a diffusion model problem:

$$-\Delta u(x) = f \quad \text{in } \Omega = [0, 1]^2,$$
$$u = 0 \quad \text{on } \partial \Omega.$$

We solve Ku = f using the conjugate gradient (CG) method:



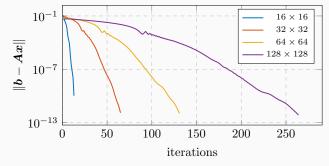


Solvers for Partial Different Equations

Consider a diffusion model problem:

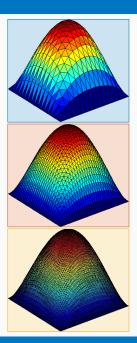
$$-\Delta u(x) = f \quad \text{in } \Omega = [0, 1]^2,$$
$$u = 0 \quad \text{on } \partial \Omega.$$

We solve Ku = f using the conjugate gradient (CG) method:

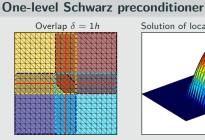


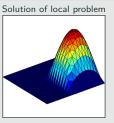
 \Rightarrow Introduce a preconditioner $M^{-1} \approx K^{-1}$ to improve convergence:

$$\mathbf{M}^{-1}\mathbf{K}\mathbf{u} = \mathbf{M}^{-1}\mathbf{f}$$



Two-Level Schwarz Preconditioners





Based on an overlapping domain decomposition, we define a one-level Schwarz operator

$$\boldsymbol{M}_{\text{OS-1}}^{-1}\boldsymbol{K} = \sum_{i=1}^{N} \boldsymbol{R}_{i}^{\top}\boldsymbol{K}_{i}^{-1}\boldsymbol{R}_{i}\boldsymbol{K}_{i}$$

where \boldsymbol{R}_i and \boldsymbol{R}_i^{\top} are restriction and prolongation operators corresponding to Ω'_i , and $\mathbf{K}_i := \mathbf{R}_i \mathbf{K} \mathbf{R}_i^{\top}$.

Condition number estimate:

$$\kappa\left(\pmb{M}_{\mathsf{OS-1}}^{-1}\pmb{K}
ight)\leq C\left(1+rac{1}{\pmb{H}\delta}
ight)$$

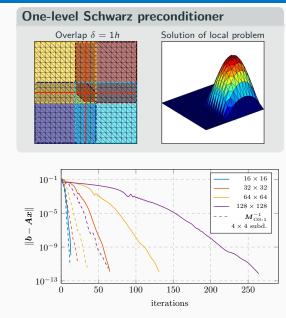
with subdomain size H and overlap width δ .

$$\boldsymbol{M}_{\text{OS-2}}^{-1}\boldsymbol{K} = \underbrace{\boldsymbol{\Phi}\boldsymbol{K}_{0}^{-1}\boldsymbol{\Phi}^{\top}\boldsymbol{K}}_{\text{coarse level - global}} + \underbrace{\sum_{i=1}^{N}\boldsymbol{R}_{i}^{\top}\boldsymbol{K}_{i}^{-1}\boldsymbol{R}_{i}\boldsymbol{K}}_{\text{first level - local}},$$

$$\kappa\left(\pmb{M}_{\mathsf{OS-2}}^{-1}\pmb{K}
ight) \leq C\left(1+rac{\pmb{H}}{\delta}
ight)$$

A. Heinlein (TU Delft)

Two-Level Schwarz Preconditioners



Coarse triangulation Coarse solution

The two-level overlapping Schwarz operator reads

$$M_{\text{OS-2}}^{-1}K = \underbrace{\Phi K_0^{-1} \Phi^\top K}_{\text{coarse level} - \text{global}} + \underbrace{\sum_{i=1}^{N} R_i^\top K_i^{-1} R_i K}_{\text{first level} - \text{local}},$$

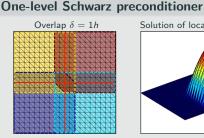
where Φ contains the coarse basis functions and $K_0 := \Phi^\top K \Phi$; cf., e.g., **Toselli, Widlund (2005)**. The construction of a Lagrangian coarse basis requires a coarse triangulation.

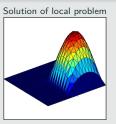
Condition number estimate:

$$\kappa\left(\boldsymbol{M}_{\mathsf{OS-2}}^{-1}\boldsymbol{K}
ight)\leq C\left(1+rac{H}{\delta}
ight)$$

A. Heinlein (TU Delft)

Two-Level Schwarz Preconditioners





Based on an overlapping domain decomposition, we define a one-level Schwarz operator

$$\boldsymbol{M}_{\text{OS-1}}^{-1}\boldsymbol{K} = \sum_{i=1}^{N} \boldsymbol{R}_{i}^{\top}\boldsymbol{K}_{i}^{-1}\boldsymbol{R}_{i}\boldsymbol{K}_{i}$$

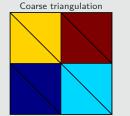
where \boldsymbol{R}_i and \boldsymbol{R}_i^{\top} are restriction and prolongation operators corresponding to Ω'_i , and $K_i := R_i K R_i^{\top}$.

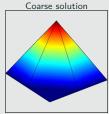
Condition number estimate:

$$\kappa\left(\pmb{M}_{\mathsf{OS-1}}^{-1}\pmb{K}
ight) \leq C\left(1+rac{1}{H\delta}
ight)$$

with subdomain size H and overlap width δ .

Lagrangian coarse space





The two-level overlapping Schwarz operator reads

$$\boldsymbol{M}_{\text{OS-2}}^{-1}\boldsymbol{K} = \underbrace{\boldsymbol{\Phi}\boldsymbol{K}_{0}^{-1}\boldsymbol{\Phi}^{\top}\boldsymbol{K}}_{\text{coarse level - global}} + \underbrace{\sum_{i=1}^{N}\boldsymbol{R}_{i}^{\top}\boldsymbol{K}_{i}^{-1}\boldsymbol{R}_{i}\boldsymbol{K}}_{\text{first level - local}},$$

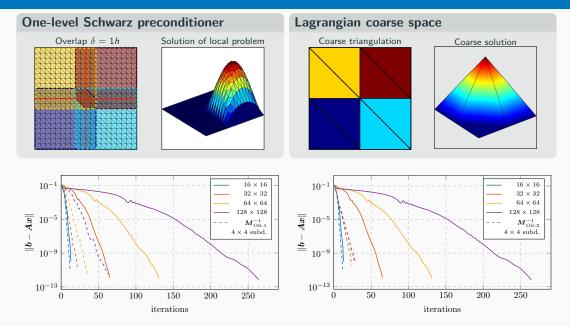
where Φ contains the coarse basis functions and $K_0 := \Phi^\top K \Phi$; cf., e.g., Toselli, Widlund (2005). The construction of a Lagrangian coarse basis requires a coarse triangulation.

Condition number estimate

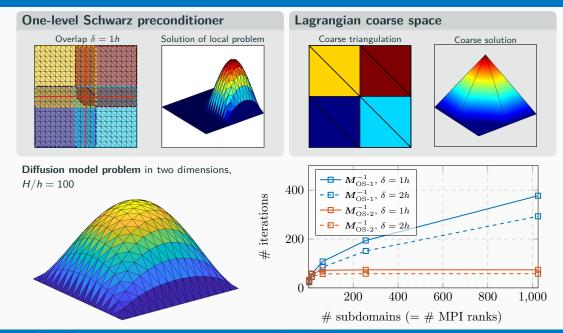
$$\kappa\left(\boldsymbol{M}_{\mathsf{OS-2}}^{-1}\boldsymbol{K}
ight)\leq C\left(1+rac{\boldsymbol{H}}{\delta}
ight)$$

A. Heinlein (TU Delft)

Two-Level Schwarz Preconditioners



Two-Level Schwarz Preconditioners



The FROSch Package – Algebraic and Parallel Schwarz Preconditioners in Trilinos

FROSch (Fast and Robust Overlapping Schwarz) Framework in Trilinos

Software

- Object-oriented C++ domain decomposition solver framework with $\rm MPI\text{-}based$ distributed memory parallelization
- Part of TRILINOS with support for both parallel linear algebra packages EPETRA and TPETRA
- Node-level parallelization and performance portability on CPU and GPU architectures through KOKKOS and KOKKOSKERNELS
- Accessible through unified ${\rm TRILINOS}$ solver interface ${\rm STRATIMIKOS}$

Methodology

- Parallel scalable multi-level Schwarz domain decomposition preconditioners
- Algebraic construction based on the parallel distributed system matrix
- Extension-based coarse spaces

Team (active)

- Filipe Cumaru (TU Delft)
- Kyrill Ho (UCologne)
- Jascha Knepper (UCologne)
- Friederike Röver (TUBAF)
- Lea Saßmannshausen (UCologne)

- Alexander Heinlein (TU Delft)
- Axel Klawonn (UCologne)
- Siva Rajamanickam (SNL)
- Oliver Rheinbach (TUBAF)
- Ichitaro Yamazaki (SNL)

Partition of Unity

The energy-minimizing extension $v_i = H_{\partial \Omega_i \to \Omega_i}(v_{i,\partial \Omega_i})$ solves

 $\begin{array}{rcl} -\Delta v_i &=& 0 & \text{ in } \Omega_i, \\ v_i &=& v_{i,\partial\Omega_i} & \text{ on } \partial\Omega_i. \end{array}$

Hence, $v_i = E_{\partial \Omega_i \to \Omega_i} (\mathbb{1}_{\partial \Omega_i}) = \mathbb{1}$.

Due to linearity of the extension operator, we have

$$\sum\nolimits_{i} \varphi_{i} = \mathbb{1}_{\partial \Omega_{i}} \Rightarrow \sum\nolimits_{i} E_{\partial \Omega_{i} \to \Omega_{i}} \left(\varphi_{i} \right) = \mathbb{1}_{\Omega_{i}}$$

Null space property

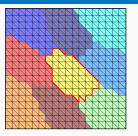
Any extension-based coarse space built from a partition of unity on the domain decomposition interface satisfies the **null space property necessary for numerical scalability**:

Algebraicity of the energy-minimizing extension

The computation of energy-minimizing extensions only requires K_{II} and $K_{I\Gamma}$, submatrices of the fully assembled matrix K_i .

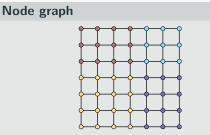
$$\mathbf{v} = \begin{bmatrix} -\mathbf{K}_{II}^{-1}\mathbf{K}_{I\Gamma} \\ \mathbf{I}_{\Gamma} \end{bmatrix} \mathbf{v}_{\Gamma},$$

A. Heinlein (TU Delft)



FROSch Construction – Graph View

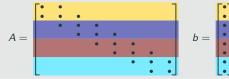
In the algebraic construction of FROSCH preconditioners, we use **two different graphs**:



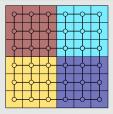
The node graph coincides with the simulation mesh of the computational domain:

- Graph nodes \equiv mesh nodes
- Graph edges \equiv mesh element edges

In parallel simulations:



Dual graph



The dual graph represents the connectivity of mesh elements:

- Graph nodes \equiv mesh elements
- Graph edges ≡ shared edges between mesh elements

In parallel finite element simulations, where the matrix assembly is element-based, the distribution of the data is done based on a partition of the dual graph.

A. Heinlein (TU Delft)

Overlapping domain decomposition

The overlapping subdomains are constructed by recursively adding layers of elements.

The corresponding matrices $\boldsymbol{K}_i = \boldsymbol{R}_i \boldsymbol{K} \boldsymbol{R}_i^{\mathsf{T}}$

can easily be extracted from \boldsymbol{K} .

Overlapping domain decomposition

The overlapping subdomains are constructed by recursively adding layers of elements.

The corresponding matrices $K_i = R_i K R_i^T$ can easily be extracted from K.

Nonoverlapping DD

Overlap $\delta = 1h$

Overlapping domain decomposition

The overlapping subdomains are constructed by recursively adding layers of elements.

The corresponding matrices $K_i = R_i K R_i^T$

can easily be extracted from K.

Overlapping domain decomposition

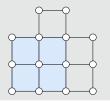
The overlapping subdomains are constructed by recursively adding layers of elements.

The corresponding matrices $\boldsymbol{K}_i = \boldsymbol{R}_i \boldsymbol{K} \boldsymbol{R}_i^T$

can easily be extracted from \boldsymbol{K} .

Implementation as a graph search problem

The overlapping subdomains can be seen as the result of a limited **breadth first search** on the graph representing the sparsity pattern of K.



Overlapping domain decomposition

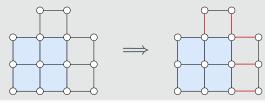
The overlapping subdomains are constructed by recursively adding layers of elements.

The corresponding matrices $\boldsymbol{K}_{i} = \boldsymbol{R}_{i} \boldsymbol{K} \boldsymbol{R}_{i}^{T}$

can easily be extracted from K.

Implementation as a graph search problem

The overlapping subdomains can be seen as the result of a limited **breadth first search** on the graph representing the sparsity pattern of K.



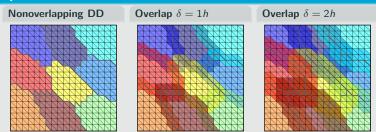
A. Heinlein (TU Delft)

Overlapping domain decomposition

The overlapping subdomains are constructed by recursively adding layers of elements.

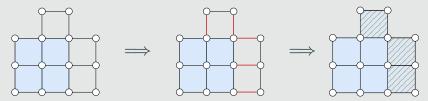
The corresponding matrices $\boldsymbol{K}_{i} = \boldsymbol{R}_{i} \boldsymbol{K} \boldsymbol{R}_{i}^{T}$

can easily be extracted from K.



Implementation as a graph search problem

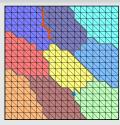
The overlapping subdomains can be seen as the result of a limited **breadth first search** on the graph representing the sparsity pattern of K.



A. Heinlein (TU Delft)

Coarse space

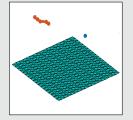
1. Interface components



Coarse space

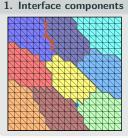
1. Interface components

2. Interface basis (partition of unity \times null space)

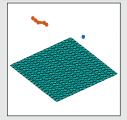


For scalar elliptic problems, the null space consists only of constant functions.

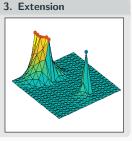
Coarse space



2. Interface basis (partition of unity \times null space)



For scalar elliptic problems, the null space consists only of constant functions.

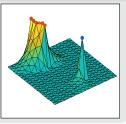


Coarse space

1. Interface components

2. Interface basis (partition of unity \times null space)

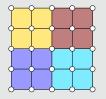
For scalar elliptic problems, the null space consists only of constant functions.



Construction of the interface entities

A partition of interface entities can be found by inspecting the **dual graph of the mesh**.

If it is not given as an input, it can generally not be retained from the sparsity pattern of K, but we can approximate it.

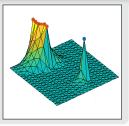


Coarse space

1. Interface components

2. Interface basis (partition of unity \times null space)

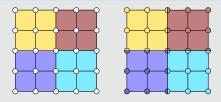
For scalar elliptic problems, the null space consists only of constant functions.



Construction of the interface entities

A partition of interface entities can be found by inspecting the **dual graph of the mesh**.

If it is not given as an input, it can generally not be retained from the sparsity pattern of K, but we can approximate it.

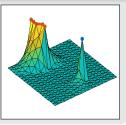


Coarse space

1. Interface components

2. Interface basis (partition of unity \times null space)

For scalar elliptic problems, the null space consists only of constant functions.



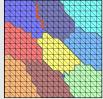
Construction of the interface entities

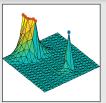
A partition of interface entities can be found by inspecting the **dual graph of the mesh**.

If it is not given as an input, it can generally not be retained from the sparsity pattern of K, but we can approximate it.

Examples of FROSch Coarse Spaces

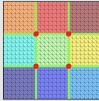
GDSW (Generalized Dryja-Smith-Widlund)

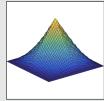




- Dohrmann, Klawonn, Widlund (2008)
- Dohrmann, Widlund (2009, 2010, 2012)

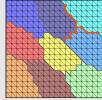
MsFEM (Multiscale Finite Element Method)

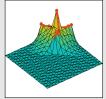




- Hou (1997), Efendiev and Hou (2009)
- Buck, Iliev, and Andrä (2013)
- H., Klawonn, Knepper, Rheinbach (2018)

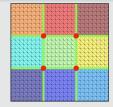
RGDSW (Reduced dimension GDSW)





- Dohrmann, Widlund (2017)
- H., Klawonn, Knepper, Rheinbach, Widlund (2022)

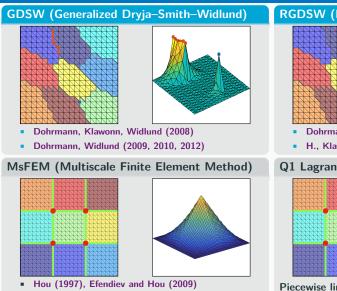
Q1 Lagrangian / piecewise bilinear



Piecewise linear interface partition of unity functions and a **structured domain decomposition**.

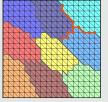
A. Heinlein (TU Delft)

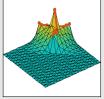
Examples of FROSch Coarse Spaces



- Buck, Iliev, and Andrä (2013)
- H., Klawonn, Knepper, Rheinbach (2018)

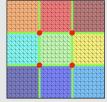
RGDSW (Reduced dimension GDSW)

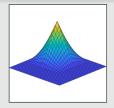




- Dohrmann, Widlund (2017)
- H., Klawonn, Knepper, Rheinbach, Widlund (2022)

Q1 Lagrangian / piecewise bilinear





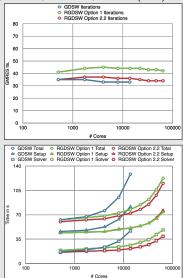
Piecewise linear interface partition of unity functions and a **structured domain decomposition**.

A. Heinlein (TU Delft)

Weak Scalability up to 64 k MPI Ranks / 1.7 b Unknowns (3D Poisson; Juqueen)

GDSW vs RGDSW (reduced dimension)

Heinlein, Klawonn, Rheinbach, Widlund (2019).



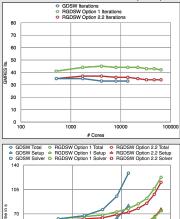
Two-level vs three-level GDSW

Heinlein, Klawonn, Rheinbach, Röver (2019, 2020).

A. Heinlein (TU Delft)

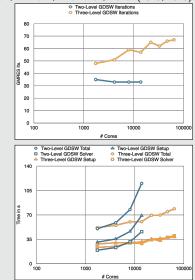
Weak Scalability up to 64 k MPI Ranks / 1.7 b Unknowns (3D Poisson; Juqueen)

GDSW vs RGDSW (reduced dimension)



Two-level vs three-level GDSW

Heinlein, Klawonn, Rheinbach, Röver (2019, 2020).



A. Heinlein (TU Delft)

35

0

100

1000

Cores

10000

100000

Graphs&Data@TUDelft

15/26

Some Challenging Application Problems

Monolithic (R)GDSW Preconditioners for CFD Simulations

Consider the discrete saddle point problem

$$\mathcal{A}_{X} = \begin{bmatrix} \mathbf{K} & \mathbf{B}^{\top} \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} \mathbf{f} \\ \mathbf{0} \end{bmatrix} = \mathbf{6}.$$

Monolithic GDSW preconditioner

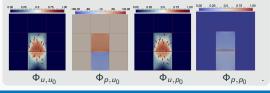
We construct a monolithic GDSW preconditioner

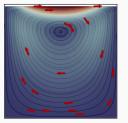
$$\mathcal{M}_{\mathsf{GDSW}}^{-1} = \phi \mathcal{R}_0^{-1} \phi^\top + \sum\nolimits_{i=1}^N \mathcal{R}_i^\top \overline{\mathscr{P}}_i \mathcal{R}_i^{-1} \mathcal{R}_i$$

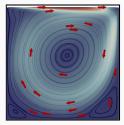
with block matrices $\mathcal{A}_0 = \phi^\top \mathcal{A} \phi$, $\mathcal{A}_i = \mathcal{R}_i \mathcal{A} \mathcal{R}_i^\top$, local pressure projections $\overline{\mathcal{P}}_i$, and

$$\mathcal{R}_i = \begin{bmatrix} \mathcal{R}_{u,i} & \mathbf{0} \\ \mathbf{0} & \mathcal{R}_{p,i} \end{bmatrix} \quad \text{and} \quad \phi = \begin{bmatrix} \Phi_{u,u_0} & \Phi_{u,p_0} \\ \Phi_{p,u_0} & \Phi_{p,p_0} \end{bmatrix}.$$

Using \mathcal{A} to compute extensions: $\phi_I = -\mathcal{A}_{II}^{-1}\mathcal{A}_{I\Gamma}\phi_{\Gamma}$; cf. Heinlein, Hochmuth, Klawonn (2019, 2020).







Stokes flow

Navier-Stokes flow

Related work:

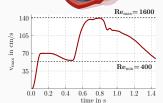
- Original work on monolithic Schwarz preconditioners: Klawonn and Pavarino (1998, 2000)
- Other publications on monolithic Schwarz preconditioners: e.g., Hwang and Cai (2006), Barker and Cai (2010), Wu and Cai (2014), and the presentation Dohrmann (2010) at the Workshop on Adaptive Finite Elements and Domain Decomposition Methods in Milan.

A. Heinlein (TU Delft)

Results for Blood Flow Simulations

- 3D unsteady flow simulation within the geometry of a realistic artery (from Balzani et al. (2012)) and kinematic viscosity ν = 0.03 cm²/s
- Parabolic inflow profile is prescribed at inlet of geometry
- Time discretization: BDF-2; space discretization: P2-P1 elements





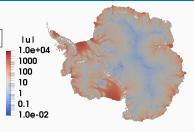
prec.	# MPI ranks	16	64	256	prec.	# MPI ranks	16	64	256
Monolithic	avg. #its.	33	31	30	Monolithic	avg. #its.	36	36	36
RGDSW	setup	4 825 s	$1422\mathrm{s}$	701 s	RGDSW	setup	4 808 s	1448 s	688 s
(FROSCH)	solve	3198s	1004s	463 s	(FROSch)	solve	3 490 s	1186 s	538 s
(FROSCH)	total	8 023 s	2 426 s	1 164 s	(FROSCH)	total	8 298 s	2634 s	1 226 s
SIMPLE	avg. #its.	82	82	87	SIMPLE	avg. #its.	157	164	169
RGDSW (TEKO	setup	3 046 s	824 s	428 s	RGDSW (TEKO & FROSCH)	setup	3071s	842 s	432 s
& FROSCH)	solve	4679s	$1533\mathrm{s}$	801 s		solve	9541 s	3210 s	$1585\mathrm{s}$
& FILOSCH)	total	7 725 s	2 357 s	1 229 s	& F1(050H)	total	12612s	4052 s	2017 s

FROSch Preconditioners for Land Ice Simulations

https://github.com/SNLComputation/Albany

The velocity of the ice sheet in Antarctica and Greenland is modeled by a **first-order-accurate Stokes approximation model**,

$$-\nabla \cdot (2\mu \dot{\epsilon}_1) + \rho g \frac{\partial s}{\partial x} = 0, \quad -\nabla \cdot (2\mu \dot{\epsilon}_2) + \rho g \frac{\partial s}{\partial y} = 0,$$



with a nonlinear viscosity model (Glen's law); cf., e.g., Blatter (1995) and Pattyn (2003).

	Ant	arctica (veloc	city)	Greenland (multiphysics vel. & temperature)		
	4 km resolu	ition, 20 layers	s, 35 m dofs	1-10 km resolution, 20 layers, 69 m dofs		
MPI ranks	avg. its	avg. setup	avg. solve	avg. its	avg. setup	avg. solve
512	41.9 (11)	25.10 s	12.29 s	41.3 (36)	18.78 s	4.99 s
1 024	43.3 (11)	9.18 s	5.85 s	53.0 (29)	8.68 s	4.22 s
2 048	41.4 (11)	4.15 s	2.63 s	62.2 (86)	4.47 s	4.23 s
4 096	41.2 (11)	1.66 s	1.49 s	68.9 (40)	2.52 s	2.86 s
8 192	40.2 (11)	1.26 s	1.06 s	-	-	-

Computations performed on Cori (NERSC).

Heinlein, Perego, Rajamanickam (2022)

Spectral Extension-Based Coarse Spaces for Schwarz Preconditioners

Highly heterogeneous problems ...

... appear in most areas of modern science and engineering:

Micro section of a dual-phase steel. Courtesy of J. Schröder. Groundwater flow (SPE10); cf. Christie and Blunt (2001). Composition of arterial walls; taken from **O'Connell et al. (2008)**.

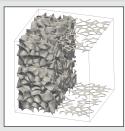
Spectral coarse spaces

The coarse space is **enhanced** by eigenfunctions of **local edge and face eigenvalue problems** with eigenvalues below tolerances $tol_{\&}$ and $tol_{\mathcal{F}}$:

$$\kappa\left(\mathbf{M}_{*}^{-1}\mathbf{K}\right) \leq C\left(1 + \frac{1}{\operatorname{tol}_{\mathcal{B}}} + \frac{1}{\operatorname{tol}_{\mathcal{F}}} + \frac{1}{\operatorname{tol}_{\mathcal{B}} \cdot \operatorname{tol}_{\mathcal{F}}}\right);$$

C does not depend on *h*, *H*, or the coefficients. OS-ACMS & adaptive GDSW (AGDSW) (Heinlein, Klawonn, Knepper, Rheinbach (2018, 2018, 2019)).

Foam coefficient function example



Solid phase: $\alpha = 10^6$; transparent phase: $\alpha = 1$; 100 subdomains

V ₀	tol ₈	$tol_\mathcal{F}$	it.	к	dim V_0	dim V_0 / dof
$V_{ m GDSW}$		—	565	$1.3 \cdot 10^{6}$	1 601	0.27 %
$V_{ m AGDSW}$	0.05	0.05	60	30.2	1 968	0.33 %
$V_{\rm OS-ACMS}$	0.001	0.001	57	30.3	690	0.12 %

Cf. Heinlein, Klawonn, Knepper, Rheinbach (2018, 2019).

Spectral Extension-Based Coarse Spaces for Schwarz Preconditioners

Highly heterogeneous problems ...

... appear in most areas of modern science and engineering:

Micro section of a dual-phase steel. Courtesy of J. Schröder.

Groundwater flow (SPE10); cf. Christie and Blunt (2001).

Composition of arterial walls; taken from **O'Connell et al. (2008)**.

Spectral coarse spaces

The coarse space is **enhanced** by eigenfunctions of **local edge and face eigenvalue problems** with eigenvalues below tolerances $tol_{\mathcal{E}}$ and $tol_{\mathcal{F}}$:

$$\kappa\left(\mathbf{M}_{*}^{-1}\mathbf{K}\right) \leq C\left(1 + \frac{1}{\operatorname{tol}_{\mathcal{B}}} + \frac{1}{\operatorname{tol}_{\mathcal{F}}} + \frac{1}{\operatorname{tol}_{\mathcal{F}} \cdot \operatorname{tol}_{\mathcal{F}}}\right);$$

C does not depend on *h*, *H*, or the coefficients. OS-ACMS & adaptive GDSW (AGDSW) (Heinlein, Klawonn, Knepper, Rheinbach (2018, 2018, 2019)).

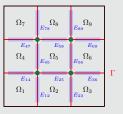
Local eigenvalue problems

Local generalized eigenvalue problems corresponding to the edges & and faces $\mathcal F$ of the domain decomposition:

$$\begin{aligned} \forall E \in \mathcal{E} : \qquad & \boldsymbol{S}_{EE} \boldsymbol{\tau}_{*,E} = \lambda_{*,E} \boldsymbol{K}_{EE} \boldsymbol{\tau}_{*,E}, \quad \forall \boldsymbol{\tau}_{*,E} \in \boldsymbol{V}_{E}, \\ \forall F \in \mathcal{F} : \qquad & \boldsymbol{S}_{FE} \boldsymbol{\tau}_{*,E} = \lambda_{*,E} \boldsymbol{K}_{FE} \boldsymbol{\tau}_{*,E}, \quad \forall \boldsymbol{\tau}_{*,E} \in \boldsymbol{V}_{E}, \end{aligned}$$

with Schur complements S_{EE} , S_{FF} with Neumann boundary conditions and submatrices K_{EE} , K_{FF} of K. We select eigenfunctions corresponding to eigenvalues below tolerances $tol_{\&}$ and $tol_{\mathcal{J}}$.

 \rightarrow The corresponding coarse basis functions are **energy-minimizing extensions** into the interior of the subdomains.



A. Heinlein (TU Delft)

Spectral Extension-Based Coarse Spaces for Schwarz Preconditioners

Highly heterogeneous problems ...

... appear in most areas of modern science and engineering:

Micro section of a dual-phase steel. Courtesy of J. Schröder. Groundwater flow (SPE10); cf. Christie and Blunt (2001). Composition of arterial walls; taken from **O'Connell et al. (2008)**.

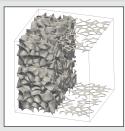
Spectral coarse spaces

The coarse space is **enhanced** by eigenfunctions of **local edge and face eigenvalue problems** with eigenvalues below tolerances $tol_{\&}$ and $tol_{\mathcal{F}}$:

$$\kappa\left(\mathbf{M}_{*}^{-1}\mathbf{K}\right) \leq C\left(1 + \frac{1}{\operatorname{tol}_{\mathcal{B}}} + \frac{1}{\operatorname{tol}_{\mathcal{F}}} + \frac{1}{\operatorname{tol}_{\mathcal{B}} \cdot \operatorname{tol}_{\mathcal{F}}}\right);$$

C does not depend on *h*, *H*, or the coefficients. OS-ACMS & adaptive GDSW (AGDSW) (Heinlein, Klawonn, Knepper, Rheinbach (2018, 2018, 2019)).

Foam coefficient function example



Solid phase: $\alpha = 10^6$; transparent phase: $\alpha = 1$; 100 subdomains

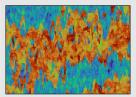
V ₀	tol ₈	$tol_\mathcal{F}$	it.	к	dim V_0	dim V_0 / dof
$V_{ m GDSW}$		—	565	$1.3 \cdot 10^{6}$	1 601	0.27 %
$V_{ m AGDSW}$	0.05	0.05	60	30.2	1 968	0.33 %
$V_{\rm OS-ACMS}$	0.001	0.001	57	30.3	690	0.12 %

Cf. Heinlein, Klawonn, Knepper, Rheinbach (2018, 2019).

Domain Decomposition for Reservoir Simulations

Algebraic multiscale coarse space

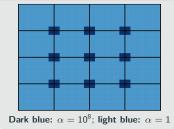
- We investigate scalable and robust simulation methods for underground hydrogen storage.
- We consider two-level domain decomposition solver with algebraic multiscale solver (AMS) coarse space; cf. Wang, Hajibeygi and Tchelepi (2014).

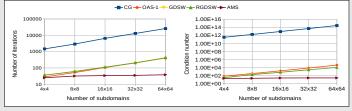


Layer 72 from model 2; cf. Christie and Blunt (2001).

preconditioner	its.	κ	
-	$> 10^4$	$8.61 \cdot 10^8$	
one-level	174	$1.01 \cdot 10^5$	
two-level w\ AMS	78	144.33	

Numerical results - Weak scalability for high coefficient inclusions





Numerical results - SPE10 benchmark

Cf. Alves, Heinlein and Hajibeygi (2024; preprint arXiv)

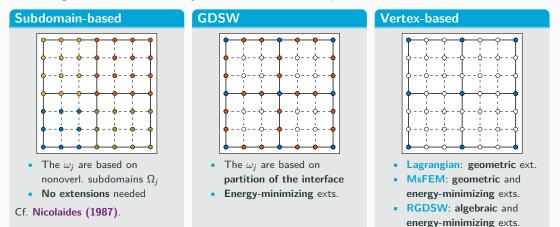
Learning Extension Operators Using Graph Neural Networks

Learning Extension Operators

Most coarse spaces for Schwarz preconditioners are constructed based on a characteristic functions

$$\varphi_i(\omega_j)=\delta_{ij},$$

on specifically chosen sets of nodes $\{\omega_j\}_j$. The values in the remaining nodes are then obtained by extending the values into the adjacent subdomains. Examples:



A. Heinlein (TU Delft)

Learning Extension Operators

Most coarse spaces for Schwarz preconditioners are constructed based on a characteristic functions

$$\varphi_i(\omega_j)=\delta_{ij},$$

on specifically chosen sets of nodes $\{\omega_j\}_j$. The values in the remaining nodes are then obtained by extending the values into the adjacent subdomains. Examples:

Observation 1

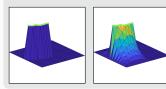
Energy-minimizing extensions

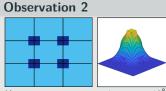
are algebraic:

 $\mathbf{v}_{l} = -\mathbf{K}_{ll}^{-1}\mathbf{K}_{l\Gamma}\mathbf{v}_{\Gamma}$

(with Dirichlet b. c.)

 can be costly: solving a problem in the interior



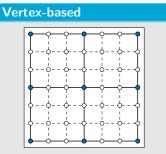


Heterogeneous: $\alpha_{\text{light}} = 1$; $\alpha_{\text{dark}} = 10^8$

The performance may **strongly depend on extension operator**:

coarse space	its.	κ
—	163	$4.06\cdot 10^7$
Q1	138	$1.07\cdot 10^6$
MsFEM	24	8.05

 \rightarrow Improving efficiency & robustness via machine learning.



- Lagrangian: geometric ext.
- MsFEM: geometric and energy-minimizing exts.
- RGDSW: algebraic and energy-minimizing exts.

Related Works

This overview is not exhaustive:

Coarse spaces for domain decomposition methods

- Prediction of the geometric location of adaptive constraints (adaptive BDDC & FETI–DP as well as AGDSW): Heinlein, Klawonn, Lanser, Weber (2019, 2020, 2021, 2021, 2021, 2022)
- Prediction of coarse basis functions: Chung, Kim, Lam, Zhao (2021); Klawonn, Lanser, Weber (2024, 2024); Kopaničáková, Karniadakis (2025)
- Learning interface conditions and coarse interpolation operators: Taghibakhshi et al. (2022, 2023)

Algebraic multigrid (AMG)

- Prediction of coarse grid operators: Luz et al. (2020); Tomasi, Krause (2023); Zhang et al. (2024)
- Coarsening: Taghibakhshi, MacLachlan, Olson, West (2021); Antonietti, Caldana, Dede (2023)

An overviews of the state-of-the-art on domain decomposition and machine learning in early 2021 and 2023:

A. Heinlein, A. Klawonn, M. Lanser, J. Weber

Combining machine learning and domain decomposition methods for the solution of partial differential equations — A review

GAMM-Mitteilungen. 2021.

A. Klawonn, M. Lanser, J. Weber

 $\label{eq:machine-learning-machine-lea$

Computational Science and Engineering. 2024

Prediction via Graph Convolutional Networks

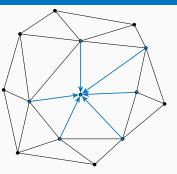
Graph neural networks (GNNs) Gori, Monfardini, and Scarselli (2005) are a natural choice for learning on data defined over simulation meshes:

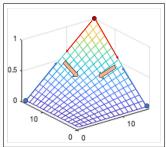
- Generalize CNNs LeCun (1998) to irregular, graph-structured data.
- Learn via iterative aggregation from neighboring nodes.
- Naturally permutation invariant and geometrically robust.

Further references: Scarselli et al. (2005), Bruna et al. (2014), Henaff et al. (2015), Defferrard et al. (2016), Kipf, Welling (2017), ...

Local approach

- Input: subdomain matrix K_i
- Output: basis functions {φ_j^{Ω_i}}
 on the same subdomain
- Training on subdomains with varying geometry
- Inference on unseen subdomains





A. Heinlein (TU Delft)

Theory-Inspired Design of the GNN-Based Coarse Space

Null space property

Any extension-based coarse space built from a partition of unity on the domain decomposition interface satisfies the **null space property necessary for numerical scalability**:

Explicit partition of unity

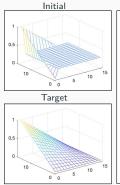
To **explicitly enforce** that the basis functions $(\varphi_j)_i$ form a partition of unity

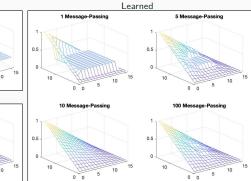
$$\varphi_j = \frac{\hat{\varphi}_j}{\sum_k \hat{\varphi}_k},$$

where the $\hat{\varphi}_k$ are the outputs of the GNN.

Initial and target

- Initial function: partition of unity that is constant in the interior
- Target function:
 - linear on the edges
 - energy-minimizing in the interior
- $\rightarrow \mbox{ Information transport via} \\ \mbox{ message passing }$





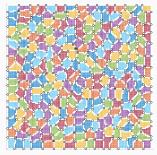
Numerical Results for Homogeneous Laplacian – Weak Scaling Study

Model problem: 2D Laplacian model problem discretized using finite differences on a structured grid

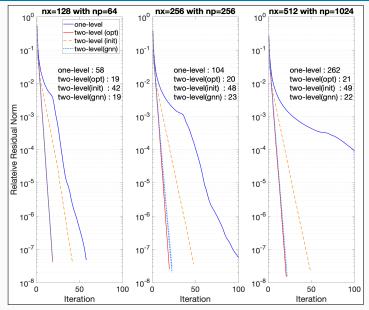
$$-\Delta u = 1$$
 in Ω ,

$$u = 0$$
 on $\partial \Omega$,

decomposed using METIS:



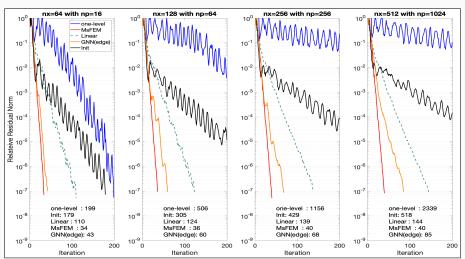
 The GNN has been trained on 64 subdomains.



Yamazaki, Heinlein, Rajamanickam (subm. 2024)

Numerical Results for Heterogeneous Laplacian – Weak Scaling Study

Heterogeneous Laplacian with $\alpha_{max}/\alpha_{min} = 10^3$:



 $-\nabla \cdot (\alpha(x)\nabla u(x)) = f \text{ in } \Omega = [0,1]^2, \qquad u = 0 \text{ on } \partial\Omega.$

Yamazaki, Heinlein, Rajamanickam (subm. 2024)

- Dates: June 17, 2025, 12.30–17.30
- Location: Crowne Plaza Hotel, Utrecht
- Lunch & networking: 12.30-13.30; closing discussion & drinks to follow.
- An afternoon with talks, case studies, and lively discussions on advancing scientific machine learning from theory to real-world deployment — tackling core challenges like uncertainty quantification, data assimilation, graph-based modelling, and operator learning.
- Confirmed plenary speakers:
 - Max Welling (UvA, CUSP AI)
 - Stefan Kurz (ETH Zürich & Bosch)
 - Koen Strien (Ignition Computing)
 - Maxim Pisarenco (ASML)
 - Jan Willem van de Meent (UvA)

CWI Research Semester Programme:

Bridging Numerical Analysis and Scientific Machine Learning: Advances and Applications

Co-organizers: Victorita Dolean (TU/e), Alexander Heinlein (TU Delft), Benjamin Sanderse (CWI), Jemima Tabbeart (TU/e), Tristan van Leeuwen (CWI)

- Autumn School (October 27–31, 2025):
 - Chris Budd (University of Bath)
 - Ben Moseley (Imperial College London)
 - Gabriele Steidl (Technische Universität Berlin)
 - Andrew Stuart (California Institute of Technology)
 - Andrea Walther (Humboldt-Universität zu Berlin)
 - Ricardo Baptista (University of Toronto)
- Workshop (December 1–3, 2025):
 - 3 days with plenary talks (academia & industry) and an industry panel
 - Confirmed plenary speakers:
 - Marta d'Elia (Atomic Machines)
 - Benjamin Peherstorfer (New York University)
 - Andreas Roskopf (Fraunhofer Institute)

Join us for inspiring talks, hands-on sessions, and industry collaboration!

FROSch (Fast and Robust Overlapping Schwarz)

- FROSCH is based on the Schwarz framework and energy-minimizing coarse spaces, which provide numerical scalability using only algebraic information for a variety of applications
- $\rm FROSch$ is well-integrated into the $\rm TRILINOS$ software framework, enabling
 - large-scale distributed memory parallelization and
 - node-level performance on CPU and/or GPU architectures

Learning extension operators

- Extensions are a major component in the construction of coarse spaces for domain decomposition methods.
- Using GNNs and known properties from the theory, we can learn extension operators that lead to a scalable coarse spaces.

Thank you for your attention!

Topical Activity Group

Scientific Machine Learning

