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Numerical Analysis and Machine Learning

Numerical methods

Machine learning models

Based on physical models Driven by data
+ Robust and generalizable + Do not require mathematical models
— Require availability of mathematical — Sensitive to data, limited extrapolation
models capabilities

Scientific machine learning (SciML)

Combining the strengths and compensating the weaknesses of the individual approaches:
numerical methods improve machine learning techniques

machine learning techniques  assist numerical methods

A. Heinlein (TU Delft) IMG 2025 1/27




The FROScH Package % — Algebraic and Parallel Schwarz Preconditioners

in TRILINOS

Based on joint work with

Axel Klawonn, Jascha Knepper, Martin Lanser, and
Lea SaBmannshausen

Mauro Perego and Siva Rajamanickam

Oliver Rheinbach and Friederik Rover

Olof Widlund

University of Cologne)

(
(Sandia National Laboratories)
(TU Bergakademie Freiberg)
(New York University)

Multilevel domain decomposition-based architectures for physics-informed

neural networks

Based on joint work with

Damien Beecroft

Victorita Dolean

Amanda A. Howard and Panos Stinis
Ben Moseley

Siddhartha Mishra

(University of Washington)

(Eindhoven University of Technology)
(Pacific Northwest National Laboratory)
(Imperial College London)

(ETH Ziirich)



The FROSch Package — Algebraic and
Parallel Schwarz Preconditioners in

Trilinos



Solvers for Partial Different Equations

Consider a diffusion model problem:
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—Au(x)=f inQ=[0,1]?
=0 onoQ.

Discretization using finite elements yields a sparse system of linear

equations
Ku=f.

2

o2
zZ
=

25
o

DR X
s
oy
R
O
e
it

S

A

AN

MR
N

>
%
5
X

=
=

2

S
==

S

2L

Z5

The accuracy of the finite element solution depends on the refinement
level of the mesh h: higher refinement = better accuracy.
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Direct solvers Iterative solvers

For fine meshes, solving the Iterative solvers are efficient
system using a direct solver is not for solving sparse systems,
feasible due to superlinear however, the convergence rate
complexity and memory cost. depends on the spectral

properties of K.
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Solvers for Partial Different Equations

Consider a diffusion model problem:
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We solve Ku = f using the conjugate gradient (CG) method:
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Solvers for Partial Different Equations

Consider a diffusion model problem:

A N
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w=20 on 0.
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We solve Ku = f using the conjugate gradient (CG) method:
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iterations

= Introduce a preconditioner M~ ~ K~ to improve convergence:

M 'Ku=M"'f
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Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner

Overlap 6 = 1h Solution of local problem

Based on an overlapping domain decomposition, we
define a one-level Schwarz operator

N
=1 _ T e—1
Mod K= _ RIKT'RK,

where R; and RI.T are restriction and prolongation
operators corresponding to Q/, and K := R,-KR,.T.
Condition number estimate:
1
k(M3 K)<C(1+ —)
( 0S-1 ) — ( HS

with subdomain size H and overlap width 9.
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Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner

Overlap 6 = 1h Solution of local problem
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Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner

Overlap 6 = 1h Solution of local problem

////;Z%\“\
’;/”/;;é‘ W

Based on an overlapping domain decomposition, we
define a one-level Schwarz operator

N
Myl K=Y RTK'RK

where R; and RI.T are restriction and prolongation
operators corresponding to Q;, and K; := R,-KR,.T.

Condition number estimate:
1
ML K)<C (1 —)
& ( 051 ) S T s
with subdomain size H and overlap width 9.

U Delft)

Lagrangian coarse space

Coarse triangulation Coarse solution

The two-level overlapping Schwarz operator reads

N
—il _ =il T T po=il =
Mol K= OKIOTK +) _ RIK'RK,

coarse level — global .
first level — local

where ® contains the coarse basis functions and

Ko := ¢ T K®; cf,, e.g., Toselli, Widlund (2005).

The construction of a Lagrangian coarse basis requires
a coarse triangulation.

Condition number estimate:
H
=il
K (Mog,K) < C (1 + E)

IMG 2025 3/27




Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner Lagrangian coarse space

Overlap 6 = 1h Solution of local problem Coarse triangulation Coarse solution

I
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Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner Lagrangian coarse space

Coarse triangulation Coarse solution

Overlap 6 = 1h Solution of local problem

200

Diffusion model problem in two dimensions, 1
H/h =100 (il —B— M55 ,,6=1h |
2 -B- Mg ,,5=2h n
<} —B— M52 ,, 6 =1h
;é oS __--I
© -E- Mgd,, 6=2h 4T
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FROSch (Fast and Robust Overlapping Schwarz) Framework in Trilinos

Software

== = A 7 . . . . .

= FT Nu; = Object-oriented C++ domain decomposition solver framework with

S g MPI-based distributed memory parallelization

= Part of TRILINOS with support for both parallel linear algebra packages

EPETRA and TPETRA
= Node-level parallelization and performance portability on CPU and GPU

architectures through KOKKOS and KOKKOSKERNELS
= Accessible through unified TRILINOS solver interface STRATIMIKOS

Methodology
= Parallel scalable multi-level Schwarz domain decomposition

preconditioners
= Algebraic construction based on the parallel distributed system matrix

= Extension-based coarse spaces

Team (active)

-i-‘u Delft @ ﬁ:lt}gi:al ] FiIi;?e Cumaru (TU Delft) = Alexander Heinlein (TU Delft)
Laboratories = Kyrill Ho (UCologne) = Axel Klawonn (UCologne)
A, = Jascha Knepper (UCologne) = Siva Rajamanickam (SNL)
; TUBQ‘F = Friederike Réver (TUBAF) = Oliver Rheinbach (TUBAF)
Ll = Lea SaBmannshausen (UCologne) = Ichitaro Yamazaki (SNL)

IMG 2025
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Partition of Unity

The energy-minimizing extension v; = Haq,,q,(vi,00,) solves
—No; = 0 in Q,‘,
i = viag, on 0%;.

Hence, vi = Esq, 0, (1oa;) = 1.

Due to linearity of the extension operator, we have

ZI_ pi = Lo, = Z,- Eso,—q; (pi) = 1g;

Null space property
Any extension-based coarse space built from a partition of unity on the domain decomposition interface
satisfies the null space property necessary for numerical scalability:

edges & vertlces ‘
COoRQ;

Algebraicity of the energy-minimizing extension

The computation of energy-minimizing extensions only requires Kj 7K”—1K,r
and Kjr, submatrices of the fully assembled matrix K;. V= v
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Algorithmic Framework for FROSch Preconditio

Overlapping domain decomposition

The overlapping subdomains Nonoverlapping DD
are constructed by recursively
adding layers of elements via
the sparsity pattern of K.

The corresponding matrices
K: = RIKR] 5

can easily be extracted from K.
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Algorithmic Framework for FROSch Preconditio

Overlapping domain decomposition
The overlapping subdomains Nonoverlapping DD Overlap 6 = 1h Overlap 0 = 2h

are constructed by recursively
adding layers of elements via
the sparsity pattern of K.

The corresponding matrices
K: = RIKR] 5

can easily be extracted from K.
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Algorithmic Framework for FROSch Precondi

Overlapping domain decomposition
The overlapping subdomains Nonoverlapping DD Overlap 6 = 1h Overlap 0 = 2h

are constructed by recursively
adding layers of elements via
the sparsity pattern of K.

The corresponding matrices
K: = RIKR]

can easily be extracted from K.

Coarse space

1. Interface components
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Algorithmic Framework for FROSch Preconditio

Overlapping domain decomposition

The overlapping subdomains
are constructed by recursively
adding layers of elements via
the sparsity pattern of K.

The corresponding matrices
K: = RIKR]

can easily be extracted from K.

Coarse space

Nonoverlapping DD

Overlap 6 = 1h Overlap 6 = 2h

1. Interface components 2. Interface basis (partition of unity x null space)

ey

A. Heinlein (TU Delft)
- T

For scalar elliptic
problems, the null space
consists only of
constant functions.
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Algorithmic Framework for FROSch Preconditio

Overlapping domain decomposition
The overlapping subdomains Nonoverlapping DD Overlap 6 = 1h Overlap 0 = 2h

are constructed by recursively
adding layers of elements via
the sparsity pattern of K.

The corresponding matrices
K: = RIKR]

can easily be extracted from K.

Coarse space

1. Interface components 2. Interface basis (partition of unity x null space) 3. Extension

ey

For scalar elliptic
problems, the null space
consists only of
constant functions.
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Examples of FROSch Coarse Spaces

GDSW (Generalized Dryja—Smith—Widlund)

N

//X

7

Dohrmann, Klawonn, Widlund (2008)
Dohrmann, Widlund (2009, 2010, 2012)

MsFEM (Multiscale Finite Element Method)

A. Heinlein

Hou (1997), Efendiev and Hou (2009)
Buck, lliev, and Andra (2013)
H., Klawonn, Knepper, Rheinbach (2018)

U Delft)

RGDSW (Reduced dimension GDSW)

A

= Dohrmann, Widlund (2017)
= H., Klawonn, Knepper, Rheinbach, Widlund (2022)

Q1 Lagrangian / piecewise bilinear

Piecewise linear interface partition of unity functions
and a structured domain decomposition.

IMG 2025




Examples of FROSch Coarse Spaces

GDSW (Generalized Dryja—Smith—Widlund) RGDSW (Reduced dimension GDSW)

N

//X
!

= Dohrmann, Klawonn, Widlund (2008) = Dohrmann, Widlund (2017)
= Dohrmann, Widlund (2009, 2010, 2012) = H., Klawonn, Knepper, Rheinbach, Widlund (2022)

For elliptic model problems, the condition number of the (R)GDSW two-level Schwarz operator is bounded by

-1 H H\\*
 (Maseoswic) <€ (1+5) (1108 (3))

where
C constant (does not depend on h, H, or §),
H subdomain diameter,
h element size,
) width of the overlap,

a €{0,1,2}  power (depends on problem dimension, regularity of the subdomains, and variant of the algorithm).

A. Heinlein (TU Delft) IMG 2025 7/27




Weak Scalability up to 64k MPI Ranks / 1.7b Unknowns (3D Poisson; Juqueen)

GDSW vs RGDSW (reduced dimension)
Heinlein, Klawonn, Rheinbach, Widlund (2019).

© GDSW lterations
© RGDSW Option 1 Iterations
© RGDSW Option 2.2 lterations
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© GDSW Solver © RGDSW Option 1 Solver & RGDSW Option 2.2 Solver
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Weak Scalability up to 64k MPI Ranks / 1.7b Unknowns (3D Poisson; Juqueen)

GDSW vs RGDSW (reduced dimension)

Heinlein, Klawonn, Rheinbach, Widlund (2019).

A. Heinlein

GMRES Its.
5
3
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3

© GDSW lterations
© RGDSW Option 1 Iterations
© RGDSW Option 2.2 lterations

1000 10000 100000
# Cores

© GDSWTotal © RGDSW Option 1 Total  © RGDSW Option 2.2 Total
# GDSW Setup + RGDSW Option 1 Setup 4 RGDSW Option 2.2 Setup
© GDSW Solver © RGDSW Option 1 Solver & RGDSW Option 2.2 Solver

140

105

100 1000 10000 100000
# Cores

Two-level vs three-level GDSW

Heinlein, Klawonn, Rheinbach, Rover (2019, 2020).
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Monolithic (R)GDSW Preconditioners for CFD Simulations

Consider the discrete saddle point problem

K BT||u|l |f s
B 0| |p| |of
Monolithic GDSW preconditioner

We construct a monolithic GDSW preconditioner

Ax =

N _
Mepsw = 845 67+ KT PA s

with block matrices Ao = ¢T A, A; = miﬂm,—r, Stokes flow Navier—Stokes flow

local pressure projections #;, and

Ry i 0
0 Rp,i

¢UYU0 <l>L17P0

® @ = Original work on monolithic Schwarz
p, Uy P:Po

} Related work:

and ¢ = [
preconditioners: Klawonn and Pavarino (1998,

Using A to compute extensions: ¢; = —Jl,?lﬂ,rqﬁr; 2000)

cf. Heinlein, Hochmuth, Klawonn (2019, 2020).

oo 02 05 om
—

= Other publications on monolithic Schwarz
100 000 025 05 075 100 000 025 05 075 100
T o D SR . Gl
- -

preconditioners: e.g., Hwang and Cai (2006),
Barker and Cai (2010), Wu and Cai (2014),
and the presentation Dohrmann (2010) at the
Workshop on Adaptive Finite Elements and
Domain Decomposition Methods in Milan.

q:’u,ug
A. Heinlein (TU Delft) IMG 2025




Balancing the Velocity and Pressure Coarse Spaces

\l243l1125 4608 MPIranks \

P1-Plstab P2-P1 Q2-Pldisc
200 T T T T T
150 -+ 4 N
P
z
S
E
£ 10t + 1 i
H*
50 - -+ 1 N
- -
T T
300 | -+ 1 i
"
£ 200 T T 8
S
g
E
| |
& & ) &©
& <) % 7
& & & &
TS
&

Cf. H., Klawonn, Knepper, SaBmannshausen (in prep.)

IMG 202

velocity mognitude

Varying the POU

GDSW:

GDSW*:

RGDSW:




Results for Blood Flow Simulations

= 3D unsteady flow simulation within the geometry of a realistic artery
(from Balzani et al. (2012)) and kinematic viscosity v = 0.03cm?/s

= Parabolic inflow profile is prescribed at inlet of geometry

= Time discretization: BDF-2; space discretization: P2-P1 elements

Reyax=450 Reya= 1600
10 -
2z 30 2
g g
E 2 E
£ 0 / Repn— 150 - Rep— 400
0.0 02 04 (]tﬁ (_].8 1.0 12 14 0.0 02 04 0‘6 Q.S 1.0 12 14
me 1 s ime 1n s
MPI MPI
prec. 7 16 64 256 prec. 7 16 64 256
ranks ranks
Monolithic avg. #its. 33 31 30 Monolithic avg. #its. 36 36 36
RGDSW setup 4825s 1422s 701s RGDSW setup 4808s 1448s 688s
(FROSCH) solve 3198s 1004s 463s (FROScH) solve 3490s 1186s 538s
total 8023s 2426s 1164s total 8298s 2634s 1226s
. Fits. 2 2 . Fits. 1 164 1
SIMPLE avg. #its 8 8 87 SIMPLE avg. #its 57 6 69
setup 3046s 824s  428s setup 3071s 842s  432s
RGDSW (TEkKO RGDSW (TEKO
& FROSCH) solve 4679s 1533s 801s & FROScH) solve 9541s 3210s 1585s
total 7725s 2357s 1229s total 12612s 4052s 2017s
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FROSch Preconditioners for Land Ice Simulations

| https://github.com/SNLComputation/Albany | lul <
1.0e+04

IE 1000

The velocity of the ice sheet in Antarctica and Greenland is
modeled by a first-order-accurate Stokes approximation model,

. Os . Os
=V (&) +pgm- =0, =V (2ué&) + P8y, = 0,

with a nonlinear viscosity model (Glen’s law); cf., e.g., Blatter (1995) and Pattyn (2003).

Antarctica (velocity) Greenland (multiphysics vel. & temperature)
4 km resolution, 20 layers, 35 m dofs 1-10 km resolution, 20 layers, 69 m dofs

MPI ranks avg. its avg. setup avg. solve avg. its  avg. setup avg. solve
512 41.9 (11) 25.10s 12.29s | 41.3 (36) 18.78s 4.99s
1024 43.3 (11) 9.18s 5.85s | 53.0 (29) 8.68s 4.22s
2048 41.4 (11) 4.15s 2.63s | 62.2 (86) 4.47s 4.23s
4096 41.2 (11) 1.66s 1.49s | 68.9 (40) 2.52s 2.86s
8192 40.2 (11) 1.26s 1.06s - - -
Computations performed on Cori (NERSC). Heinlein, Perego, Rajamanickam (2022)

A. Heinlein (TU Delft) IMG 2025



https://github.com/SNLComputation/Albany

Linear & Nonlinear Preconditioning

Let us consider the nonlinear problem arising from the discretization of a partial differential equation
F(u) =0.

We solve the problem using a Newton-Krylov approach, i.e., we solve a sequence of linearized

problems using a Krylov subspace method:

~DF (u") Au*™ = F (u¥).

Linear preconditioning Nonlinear preconditioning
In linear preconditioning, we improve the In nonlinear preconditioning, we improve the
convergence speed of the linear solver by convergence speed of the nonlinear solver by
constructing a linear operator M~ and solve constructing a nonlinear operator G and solve
linear systems the nonlinear system

—M7'DF (u®) A = M7 (). (GoF)(u)=0.
Goal: . s (M_lDF( )) ~1 Goals: = G o F almost linear.

-~ M-DF (u( ) ~ I = Additionally: k(D (Go F)(u)) =1

A. Heinlein (TU Delft) IMG 2025




Linear & Nonlinear Preconditioning

Let us consider the nonlinear problem arising from the discretization of a partial differential equation
F(u) =0.

We solve the problem using a Newton-Krylov approach, i.e., we solve a sequence of linearized
problems using a Krylov subspace method:

~DF (u") Au*™ = F (u¥).

Linear preconditioning Nonlinear preconditioning

In linear preconditioning, we improve the In nonlinear preconditioning, we improve the
convergence speed of the linear solver by convergence speed of the nonlinear solver by
constructing a linear operator M~ and solve constructing a nonlinear operator G and solve
linear systems the nonlinear system
—M7'DF (u®) A = M7 (). (GoF)(u)=0.
Goal: . ( 1DF( )) ~1 Goals: = G o F almost linear.
-~ M-DF (u(k)) ~ I = Additionally: x (D (Go F)(u))~1

A. Heinlein (TU Delft) IMG 2025




Nonlinear Schwarz Met

ASPEN & ASPIN methods Results for p-Laplacian model problem
p-Laplacian model problem
—alpu = 1 in Q,
S u = 0 on 0X.

with alpu := div(a|Va|P~2Va).

p=4; H/h=16; overlap 6 =1
In additive Schwarz preconditioned (in)exact Grerlhin, lin.
Newton (ASPEN/ASPIN) (Cai and Keyes T e inner e
(2002)), the nonlinear problem N crlbrn it it it
F(u)=0 (avg.) | (sum)
NK-RAS 18 - 272
is ref | h ival I
is reformulated as the equivalent problem 9 RASPEN 5 25.2 89
N
Z P,Ti(u)=0 25 NK-RAS 19 - 488
i=1 RASPEN 6 28.3 172
with corrections T;(u) given by nonlinear 49 NK-RAS 20 - 691
problems on the overlapping subdomains RASPEN 6 273 232
RF(u— P;Ti(u)) = 0. = Improved nonlinear convergence, but no scalability in
the linear iterations.
R; restriction; P; prolongation. Cf. Heinlein, Lanser (2020).

A. Heinlein (TU Delft) IMG 2025




Nonlinear Schwarz Methods

Two-level ASPEN & ASPIN methods Results for p-Laplacian model problem

1-Ivi One-level RASPEN
2-Ilvl A Additive two-level RASPEN

S 2-lvi M Multiplicative two-level RASPEN
[
RGDSW coarse space: extensions computed using the
tangent from the first linearization.
In two-level additive Schwarz preconditioned p=4; H/h = 16; overlap 6 = 1
(in)exact Newton (ASPEN/ASPIN) in Heinlein, —i] i
Lanser (2020), we consider N | RasPEN outer inner | coarse | GMREs
N solver it. it. it. it.
T _
Ry To(u) + ZI_:I PiTi(u) =0 (avg.) (sum)
- 1l 5| 252 - 89
Wi 9 | 2-Ivl A 6| 334 27 93
= corrections T;(u) as in the one-level case and 2 vl M 4 17.1 29 52
= the correction Ty(u) given by a nonlinear 1-Ivl 6 27.3 - 232
problem in the coarse space 49 | 2-Ivl A 6 29.2 28 137
= 2-lvl M 4 12.6 29 80
R()F(u — RO To(u)) =0;
= Improved nonlinear convergence and scalability.
via a Galerkin projection. Cf. Heinlein, Lanser (2020).

A. Heinlein (TU Delft) IMG 2025




Nonlinear Schwarz Met

Three-level ASPEN & ASPIN methods Results for p-Laplacian model problem

/‘ additive multiplicative
;@gg‘\@ \ 2-level  3-level 2-level  3-level
LK \ - =1 =i =il =il
\“r linear M, My, M, M,
nonlinear gA gAA gM gMM
p = 4; 162 subd.; 42 subr.; H/h = 8; overlap § =1
In three-level additive Schwarz preconditioned e~ T
(in)exact Newton (ASPEN/ASPIN), we build the a—rre STl o P ey | R
preconditioner recursively and consider lbrr it it it it it
M N (avg./min/max) (sum)
T T T ()
Poo TOO("HZJ-:l Pio TJO(“HZH ) =0 Fa 6 | 23/16/46 - 36 90
) Fn 5|11/10/25 = 34 60
with =i
M, 24 - - - 381
level | correction nonlinear problem M,;,l 24 - - - 335
1 To(u) RiF(u— P To(u)) =0 Fan 6| 25/17/47 25/20/39 35 108
2 Tjo(u) RjoF(u — PjoTjo(u)) =0 Fvm 7|17/15/40 19/16/33 34 92
B Too(u) RjoF(u — Poo Too(u)) =0 M;Al 24 N N _ 306
M, || 24 - - -| 338

Cf. Heinlein, Lanser, Klawonn (in prep.).

A. Heinlein (TU Delft) IMG 2025




Multilevel domain decomposition-based
architectures for physics-informed neural
networks




Physics-Informed Neural Networks (PINNs)
In the physics-informed neural network (PINN) approach ==
introduced by Raissi et al. (2019), a neural network is _
employed to discretize a partial differential equation
PRI R

Nul =/, inQ.
PINNs use a hybrid loss function:

L(0) = wdata-Ldata(0) + wppeLrpe(O),

where wdata and wppe are weights and

Lana(0) = 1 — 3" (u(5,6) — w)?
= u\ X — Uuj -
data Naata 4—i=1 " . Hybrid loss
1 Nepe D Small data Some data Big data
Lrpe(8) = > (M[u](xi, 0) — f(xi))"-
Nppe £—i=1
See also Dissanayake and Phan-Thien (1994); Lagaris et al. (1998).
Advantages Drawbacks
. Lots of physics Some physics No physics
= “Meshfree” = Training cost and
= Small data robustness = Known solution values can be
= Generalization properties = Convergence not included in Lyata
= High-dimensional problems well-understood . .
= Inverse and parameterized = Difficulties with scalability = Initial and boundary conditions
problems and multi-scale problems are also included in Lyata

A. Heinlein (TU Delft) IMG 2025




Error Estimate & Spectral Bias

Estimate of the generalization error (Mishra and Molinaro (2022))
The generalization error (or total error) satisfies

&6 < Cppeét + CrpE cHe NTe/P

quad
= 8¢ =66 (X,0) = |lu—u"|, general. error (V Sobolev space, X training data set)
= &7 training error (/” loss of the residual of the PDE)
= N number of the training points and o convergence rate of the quadrature
= Cppe and Cyuag constants depending on the PDE, quadrature, and neural network

Rule of thumb: “As long as the PINN is trained well, it also generalizes well”

4 4 4 4

2 2 2 2

0 0 0 0
-2 -2 -2 -2
-4 -4 -4 -4
-6 -6 -6 -6

0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
100 iterations 1000 iterations 10000 iterations 80000 iterations

Rahaman et al., On the spectral bias of neural networks, ICML (2019)

Related works: Cao et al. (2021), Wang, et al. (2022), Hong et al. (arXiv 2022), Xu et al (2024), ...
A. Heinlein (TU Delft) IMG 2025




Domain Decomposition Methods and Machine Learning — Literature

A non-exhaustive literature overview:

= Machine Learning for adaptive BDDC, FETI-DP, and AGDSW: Heinlein, Klawonn, Lanser, Weber
(2019, 2020, 2021, 2021, 2021, 2022); Klawonn, Lanser, Weber (2024)

= cPINNs, XPINNs: Jagtap, Kharazmi, Karniadakis (2020); Jagtap, Karniadakis (2020)

= Classical Schwarz iteration for PINNs or DeepRitz (D3M, DeepDDM, etc):: Li, Tang, Wu, and Liao
(2019); Li, Xiang, Xu (2020); Mercier, Gratton, Boudier (arXiv 2021); Dolean, Heinlein, Mercier,
Gratton (subm. 2024 / arXiv:2408.12198); Li, Wang, Cui, Xiang, Xu (2023); Sun, Xu, Yi (arXiv 2023,
2024); Kim, Yang (2023, 2024, 2024)

= FBPINNs, FBKANs: Moseley, Markham, and Nissen-Meyer (2023); Dolean, Heinlein, Mishra, Moseley
(2024, 2024); Heinlein, Howard, Beecroft, Stinis (acc. 2024 / arXiv:2401.07888); Howard, Jacob,
Murphy, Heinlein, Stinis (arXiv:2406.19662)

= DDMs for CNNs: Gu, Zhang, Liu, Cai (2022); Lee, Park, Lee (2022); Klawonn, Lanser, Weber (2024);
Verburg, Heinlein, Cyr (subm. 2024)

An overview of the state-of-the-art in early 2021: An overview of the state-of-the-art in mid 2024:

\ A. Heinlein, A. Klawonn, M. Lanser, J. Weber \ A. Klawonn, M. Lanser, J. Weber
Combining machine learning and domain Machine learning and domain decomposition
decomposition methods for the solution of methods — a survey
partial differential equations — A review Computational Science and Engineering. 2024

GAMM-Mitteilungen. 2021.

A. Heinlein (TU Delft) IMG 2025



https://arxiv.org/abs/2408.12198
https://arxiv.org/abs/2401.07888
https://arxiv.org/abs/2406.19662

In the finite basis physics informed neural
network (FBPINNs) method introduced in
Moseley, Markham, and Nissen-Meyer (2023),
we employ the PINN approach and hard
enforcement of the boundary conditions;

cf. Lagaris et al. (1998).

FBPINNSs use the network architecture
J

0,,...,0,)=2¢C iui (0;

u(01, ,0)) Zj:leuj( ;)

and the loss function

)=+ Z nie Z wjuj](xi, 6;

X €Q;

£(61,...

Here:

= Overlapping DD: Q = U/J:1 Q
= Partition of unity w; with supp(w;) C Q;

and ZJ.JZI

wj=1lonQ

A. Heinlein (TU Delft)

Finite Basis Physics-Informed Neural Networks (FBPINNSs)

! ! !
0.4 0.6 0.8

!
0 0.2

)—1(x)”-

Hard enf. of boundary conditions

Loss function

1

£6)= 5 3 (nlCul(x;6) — (),

with constraining operator C, which explicitly
enforces the boundary conditions.

IMG 2025




Numerical Results for FBPINNSs

PINN vs FBPINN (Moseley et al. (2023)) Scalability of FBPINNs

FBPINN local soluti Consider the simple 02 T T
e traree e AT | P
“ H ( ‘ ‘ ‘ / boundary value problem o
0.025 ‘ ‘ ‘ "o ) .15 B
0.000 L;,‘ 1t hj u” =1in [07 1]7
0.1 4
-0.025 H “‘ H u(O) = u(l) = 07
-o0s0 U ‘U | which has the solution 0051 1
-6 -4 -2 0 2 4 6 u(x) = 1 2x 1 — x). i ! ! !
FBPINN global solution T (6 = s ) % 07 o1 05 o5 1
0.050 —— FBPINN T T T
0.025 107! £ 4
0.000 § ]
-0.025 r —— 2 subdomains | |8
0,050 1072 F — 4 subdoma}ns ElE
5 r 8 subdomains |1 |o
-6 0 E L —— 16 subdomains | | f;
107! 107 =
FBPINN & 3 1=
o =108 Ik
10 107 Ww i e
=10 ;10—3 10-4 e
107 104 L | | 1 g
" 0 0.5 1 1.5 2
° zrua.?r(\]g\g ste:moo oo FLOPS v 1e2103 # iterations -10*
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Numerical Results for FBPINNSs

Muilti-level FBPINNs (ML-FBPINNs)

ML-FBPINNs (Dolean, Heinlein, Mishra,
Moseley (2024)) are based on a hierarchy
of domain decompositions:

k Q |
-------------------------------------------------
1
level 1| a®
s i
o o) o) o®

This yields the network architecture

u(6,...,00) ZI 12, : J(’ D)

and the loss function

:%Zil (”IZX,,EQR D)5, 60~ F(x))

A. Heinlein (TU Delft) IMG 2025




Numerical Results for FBPINNSs

Multi-level FBPINNs (ML-FBPINNs) Multi-Frequency Problem

ML-FBPINNSs (D0|ean’ Heinlein, Mishra, Let us now consider the two-dimensional
R Iti-fi Lapl b d | bl
Moseley (2024)) are based on a hierarchy e

n
of domain decompositions: —Au= 22 (wi)? sin (wimx) sin (wiTy) in Q,
f L I i—1
level 1§ u=20 on 99,
with w; = 27,

level 2 ¢

For increasing values of n, we obtain the analytical
----- solutions:

- E"Q'dfl };&)'l };&f' f;(lfl Q}Z)’l };&f' ey l NOR
This yields the network architecture

L N
u(0§1)7 IO 79_(11(_2)) = ZI:I Zi:l oJJ(I) uJ(I) (al(l))

and the loss function

. 1 N
TEN ("[Zx eal) W (x;, 60)~F(x1))?
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Multi-Level FBPINNSs for a Multi-Frequency Problem — Strong Scaling

FBPINN FBPINN ©  FBPINN ®  FBPINN ®  FBPINN ®  FBPINN
[1,2] [1,2,4] [1,2,4,8] 1,2, 4,8, 16] [1,2,4,8,16,32] I[1,2, 4,8, 16, 32, 64]
(320, 320) (320, 320) (320, 320) (320, 320

(320, 320) (320, 320)

A FBPINN
[1, 8, 64]
(320, 320)

¥V FBPINN

L PINN SA-PINN

@ FourierPINN
5-256

Exact solution

5-256 5-256 [64]
(320, 320) (320, 320) (320, 320) (320, 320)

100 4 10t 4
o 10°4 " 104 + *
K 8
H £ v
£ £
2 2

1072 4 10724

1073 4 10-3 4

o 5000 10000 15000 20000 25000 30000 102 0?
Training step Total time elapsed (s)
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Multi-Frequency Problem — What the FBPINN Learns

FBPINN
[1,2 4,8, 16]

(80, 80)
1.00
0.75
0.50
0.25

0.00

1.00
0.75
0.50
0.25

0.00

0.0 0.5 1.0

Cf. Dolean, Heinlein, Mishra, Moseley (2024).
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Multi-Level FBPINNSs for a Multi-Frequency Problem — Weak Scaling

FBPINN FBPINN ©  FBPINN ® FBPINN ®  FBPINN ® FBPINN
11,2, 41 [1,2,4,8] [1,2,4,8,16] [1,2,4,8,16,32] [1,2,4,8,16, 32, 64]
(20, 20 (40, 40) 80, 80) ( (320, 320)

160, 160)

10° 4 10° 4
1071 4 e 1071 4
a N a
° °
@ e B +
s <4 £
: | - +
] |
-2 | -2 |
E 10 E 10 +
® ©
5 £
] S
= =
1073 4 1073 4
0 5000 10000 15000 20000 25000 30000 102
Training step Total time elapsed (s)

— Details and results for the Helmholtz equation can be found in Dolean, Heinlein,
Mishra, Moseley (2024).
TU Delft) IMG 2025




Deep Operator Networks (DeepONets / DONs)

Neural operators learn operators between function spaces using neural networks. Here, we learn the

solution operator of a initial-boundary value problem parametrized with p1, ..., pm using DeepONets
as introduced in Lu et al. (2021).

p1 b1 Q

: : Single-layer case

Pm by The DeepONet architecture is based on the

@ single-layer case analyzed in Chen and

- Chen (1995). In particular, the authors

@ _, : show universal approximation properties

fh for continuous operators.

~

The architecture is based on the following ansatz for presenting the parametrized solution

P
”(pl,~»~,pm)(x7 t) = Ziil bi(p1,. .., Pm)- ti(x, t)
= M—/ N’

branch trunk
Physics-informed DeepONets Other operator learning approaches
DeepONets are compatible with the PINN = FNOs: Li et al. (2021)
approach but physics-informed DeepONets = PCA-Net: Bhattacharya et al. (2021)

= Random features: Nelsen and Stuart (2021)

(Pl-DeepONets) are challenging to train.
= CNOs: Raonic et al. (arXiv 2023)

A. Heinlein (TU Delft) IMG 2025




Deep Operator Networks (DeepONets / DONs)

Neural operators learn operators between function spaces using neural networks. Here, we learn the
solution operator of a initial-boundary value problem parametrized with p1, ..., pm using DeepONets
as introduced in Lu et al. (2021).

p1 L Branch Net by
: : Modified architecture
Pm Encoder by

In our numerical experiments, we employ the

@ modified DeepONet architecture

Encoder t introduced in Wang, Wang, and Perdikaris
t \I—I/' 5 (2022).
Trunk Net ty

The architecture is based on the following ansatz for presenting the parametrized solution

P
”(pl,~»~,pm)(x7 t) = Ziil bi(p1,. .., Pm)- ti(x, t)
= M—/ N’

branch trunk
Physics-informed DeepONets Other operator learning approaches
DeepONets are compatible with the PINN = FNOs: Li et al. (2021)
approach but physics-informed DeepONets = PCA-Net: Bhattacharya et al. (2021)

= Random features: Nelsen and Stuart (2021)
= CNOs: Raonic et al. (arXiv 2023)

A. Heinlein (TU Delft) IMG 2025

(Pl-DeepONets) are challenging to train.




Finite Basis DeepONets (FBDONSs)

Howard, Heinlein, Stinis (in prep.)

Variants:

Shared-trunk FBDONSs (ST-FBDONSs) Rl -agzinl0])\H

The trunk net learns spatio-temporal basis Combination of the stacking multifidelity approach
functions. In ST-FBDONSs, we use the same with FBDONS.

trunk network for all subdomains. Heinlein, Howard, Beecroft, Stinis (acc. 2024 /arXiv:2401.07888)

A. Heinlein (TU Delft) IMG 2025



https://arxiv.org/abs/2401.07888

FBDONs — Pendulum

Pendulum problem Parametrization
Initial conditions:

E = S, te [0, T],
dt s1(0) €[-2,2]  5(0) € [-1.2,1.2]
ds» b g .
4 w21 sin(s1), telo, 7], 51(0) and s(0) are the also inputs of the branch
network.
where m=L =1, b =0.05, g =9.81, and
T = 20. Training on 50k different configurations
1 '\ £ o
| H / K} 4 A ~
k| Woont A A i 3 1
0 / \ ,{ \\ ,'/L‘\X/;\\}\,/ P\}Y«;[\f‘(’/\l/;’g‘,7\3&/1 Mean rel. / error on 100 config.
X / v (AR \J/ VooV v DeepONet 0.94
00 25 50 75 100 125 150 175 200 FBDON (32 subd.) 0.84
SO MLFBDON
\ 0.27
1 == Bact ([1,4,8,16,32] subd.)

~-- MLFBDON
----- FBDON
~=- DON

A. Heinlein (TU Delft)

IMG 2025

Cf. Howard, Heinlein, Stinis (in prep.)




FBDONSs — Wave Equation

Wave equation
s s 5
— =2— 1
et (x,t) €[0,1]

st(x,0) =0,x € [0,1], s(0,t) =s(1,t) =0,

Parametrization

Initial conditions for s parametrized by
b = (bi,...,bs) (normally distributed):

s(x,0) = Zi:1 bysin(nmx) x € [0, 1]

Solution: s(x, t) = Zi:1 by sin(nmx) cos(nm/2t)  Training on 1000 random configurations.

Exact Mean rel. |, error on 100 config.
N = -) DeepONet 0.30 +0.11
0= ML-ST-FBDON | 05+ 0.03
% ([1,4,8,16] subd.)
ML-FBDON 0.08 +0.04
([1,4,8,16] subd.)

— Sharing the trunk network does not
only save in the number of parameters

. — Exact .
2 o] 2 -~ MLSTFBDON but even yields better performance
o 0 D | TP
Sl

Cf. Howard, Heinlein, Stinis (in prep.)

A. Heinlein (TU Delft) IMG 2025
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CWI Research Semester: Synergies in Numerical Linear Algebra and Machine Learning

Co-organizers: Victorita Dolean (TU/e), Alexander Heinlein (TU Delft), Benjamin Sanderse
(CWI), Jemima Tabbeart (TU/e), Tristan van Leeuwen (CWI)

= Autumn School (October 27-31, 2025):

= Chris Budd (University of Bath)

= Ben Moseley (Imperial College London)

= Gabriele Steidl (Technische Universitat Berlin)

= Andrew Stuart (California Institute of Technology)

= Andrea Walther (Humboldt-Universitit zu Berlin)
= Workshop (December 1-3, 2025):

= 3 days with plenary talks (academia & industry)

Centrum Wiskunde & Informatica

and an industry panel
= Confirmed plenary speakers:
= Marta d’Elia (Meta)
= Benjamin Peherstorfer (New York University)
= Andreas Roskopf (Fraunhofer Institute)

Join us for inspiring talks, hands-on sessions, and industry collaboration!


https://www.cwi.nl/en/education/semester-programmes/cwi-research-semester-programs/synergies-in-numerical-linear-algebra-and-machine-learning/

FROSch
= FROSCH is based on the Schwarz framework and energy-minimizing coarse spaces,
which provide numerical scalability using only algebraic information for a variety of

applications

Multilevel neural network archictures
= Domain decomposition-based architectures improve the scalability of PINNs to
large domains / high frequencies, keeping the complexity of the local networks low.
= As classical domain decomposition methods, one-level FBPINNSs are not scalable to
large numbers of subdomains; multilevel FBPINNs enable scalability.
= The multilevel FBPINN approach can also be extended to operator learning.

Topical Activity E [ﬁm
- )

Group

Scientific Machine

Learning E.

Thank you for your attention!



https://ems-tag-sciml.github.io/

	The FROSch Package [height=2ex]logos/frosch-transparent – Algebraic and Parallel Schwarz Preconditioners in Trilinos [2mm] Based on joint work with  [1.5mm] math text inlined[fg]math text inlinedfgmath text inlined[fg]math text inlinedfgtbl/hmode/beginp65mml Axel Klawonn, Jascha Knepper, Martin Lanser, and  2*(University of Cologne)   Lea Saßmannshausen    Mauro Perego and Siva Rajamanickam  (Sandia National Laboratories)   Oliver Rheinbach and Friederik Röver  (TU Bergakademie Freiberg)   Olof Widlund  (New York University)   tbl/finalizetbl/hmode/end 
	Multilevel domain decomposition-based architectures for physics-informed neural networks [2mm] Based on joint work with  [1.5mm] math text inlined[fg]math text inlinedfgmath text inlined[fg]math text inlinedfgtbl/hmode/beginp65mml Damien Beecroft  (University of Washington)   Victorita Dolean  (Eindhoven University of Technology)   Amanda A. Howard and Panos Stinis  (Pacific Northwest National Laboratory)   Ben Moseley  (Imperial College London)   Siddhartha Mishra  (ETH Zürich) tbl/finalizetbl/hmode/end 
	Appendix

