

Domain decomposition and adaptive sampling for physics-informed neural networks

Alexander Heinlein¹

Scientific Machine Learning: error control and analysis, Besançon, France, January 15-16, 2025

¹Delft University of Technology

Outline

FBPINNs – Multilevel domain decomposition-based architectures for physics-informed neural networks

Based on joint work with

Victorita Dolean Ben Moseley and Siddhartha Mishra (Eindhoven University of Technology) (ETH Zürich)

2 Stacking multifidelity physics-informed neural networks

Based on joint work with

Damien Beecroft Amanda A. Howard and Panos Stinis (University of Washington) (Pacific Northwest National Laboratory)

3 Multilevel domain decomposition-based physics-informed deep operator networks

Based on joint work with

Amanda A. Howard and Panos Stinis

(Pacific Northwest National Laboratory)

PACMANN – Point adaptive collocation method for artificial neural networks Based on joint work with

Bianca Giovanardi and Coen Visser

(Delft University of Technology)

FBPINNs – Multilevel domain decomposition-based architectures for physics-informed neural networks

Physics-Informed Neural Networks (PINNs)

In the **physics-informed neural network (PINN)** approach introduced by **Raissi et al. (2019)**, a **neural network** is employed to **discretize a partial differential equation**

 $\mathcal{N}[u] = f, \text{ in } \Omega.$

PINNs use a hybrid loss function:

$$\mathcal{L}(\boldsymbol{\theta}) = \omega_{\mathsf{data}} \mathcal{L}_{\mathsf{data}}(\boldsymbol{\theta}) + \omega_{\mathsf{PDE}} \mathcal{L}_{\mathsf{PDE}}(\boldsymbol{\theta}),$$

where ω_{data} and ω_{PDE} are weights and

$$\begin{split} \mathcal{L}_{data}(\theta) &= \frac{1}{N_{data}} \sum_{i=1}^{N_{data}} \left(u(\hat{\mathbf{x}}_i, \theta) - u_i \right)^2, \\ \mathcal{L}_{PDE}(\theta) &= \frac{1}{N_{PDE}} \sum_{i=1}^{N_{PDE}} \left(\mathcal{N}[u](\mathbf{x}_i, \theta) - f(\mathbf{x}_i) \right)^2. \end{split}$$

See also Dissanayake and Phan-Thien (1994); Lagaris et al. (1998).

Advantages

- "Meshfree"
- Small data
- Generalization properties
- High-dimensional problems
- Inverse and parameterized problems

Drawbacks

- Training cost and robustness
- Convergence not well-understood
- Difficulties with scalability and multi-scale problems

Hybrid loss

- Known solution values can be included in $\mathcal{L}_{\text{data}}$
- Initial and boundary conditions are also included in $\mathcal{L}_{\text{data}}$

A. Heinlein (TU Delft)

Theoretical Result for PINNs

Estimate of the generalization error (Mishra and Molinaro (2022))

The generalization error (or total error) satisfies

 $\mathcal{E}_{G} \leq C_{\mathsf{PDE}} \mathcal{E}_{\mathsf{T}} + C_{\mathsf{PDE}} C_{\mathsf{quad}}^{1/p} N^{-\alpha/p}$

- $\mathcal{E}_G = \mathcal{E}_G(\boldsymbol{X}, \boldsymbol{\theta}) \coloneqq \| \mathbf{u} \mathbf{u}^* \|_V$ general. error (V Sobolev space, \boldsymbol{X} training data set)
- δ_T training error (*I^p* loss of the residual of the PDE)
- N number of the training points and α convergence rate of the quadrature
- C_{PDE} and C_{quad} constants depending on the PDE, quadrature, and neural network

Rule of thumb: "As long as the PINN is trained well, it also generalizes well"

Rahaman et al., On the spectral bias of neural networks, ICML (2019)

Motivation – Some Observations on the Performance of PINNs

Solve

 $u' = \cos(\omega x),$ u(0) = 0,

for different values of ω using **PINNs with** varying network capacities.

Scaling issues

- Large computational domains
- Small frequencies

Cf. Moseley, Markham, and Nissen-Meyer (2023)

A. Heinlein (TU Delft)

Motivation – Some Observations on the Performance of PINNs

Solve

 $u' = \cos(\omega x),$ u(0) = 0,

for different values of ω using **PINNs with** varying network capacities.

Scaling issues

- Large computational domains
- Small frequencies

Cf. Moseley, Markham, and Nissen-Meyer (2023)

A. Heinlein (TU Delft)

Domain Decomposition Methods

Images based on Heinlein, Perego, Rajamanickam (2022)

Historical remarks: The alternating Schwarz method is the earliest domain decomposition method (DDM), which has been invented by H. A. Schwarz and published in 1870:

 Schwarz used the algorithm to establish the existence of harmonic functions with prescribed boundary values on regions with non-smooth boundaries.

Idea

Decomposing a large **global problem** into smaller **local problems**:

- Better robustness and scalability of numerical solvers
- Improved computational efficiency
- Introduce parallelism

A non-exhaustive literature overview:

- Machine Learning for adaptive BDDC, FETI–DP, and AGDSW: Heinlein, Klawonn, Lanser, Weber (2019, 2020, 2021, 2021, 2021, 2022); Klawonn, Lanser, Weber (2024)
- cPINNs, XPINNs: Jagtap, Kharazmi, Karniadakis (2020); Jagtap, Karniadakis (2020)
- Classical Schwarz iteration for PINNs or DeepRitz (D3M, DeepDDM, etc):: Li, Tang, Wu, and Liao . (2019); Li, Xiang, Xu (2020); Mercier, Gratton, Boudier (arXiv 2021); Dolean, Heinlein, Mercier, Gratton (subm. 2024 / arXiv:2408.12198); Li, Wang, Cui, Xiang, Xu (2023); Sun, Xu, Yi (arXiv 2023, 2024); Kim, Yang (2023, 2024, 2024)
- FBPINNs, FBKANs: Moseley, Markham, and Nissen-Meyer (2023); Dolean, Heinlein, Mishra, Moseley (2024, 2024); Heinlein, Howard, Beecroft, Stinis (acc. 2024 / arXiv:2401.07888); Howard, Jacob, Murphy, Heinlein, Stinis (arXiv:2406.19662)
- DDMs for CNNs: Gu, Zhang, Liu, Cai (2022); Lee, Park, Lee (2022); Klawonn, Lanser, Weber (2024); . Verburg, Heinlein, Cyr (subm. 2024)

An overview of the state-of-the-art in early 2021:

A. Heinlein, A. Klawonn, M. Lanser, J. Weber

Combining machine learning and domain decomposition methods for the solution of partial differential equations — A review

GAMM-Mitteilungen. 2021.

An overview of the state-of-the-art in mid 2024:

A. Klawonn, M. Lanser, J. Weber

Machine learning and domain decomposition methods - a survey

Computational Science and Engineering. 2024

Finite Basis Physics-Informed Neural Networks (FBPINNs)

FBPINNs (Moseley, Markham, Nissen-Meyer (2023))

FBPINNs employ the network architecture

$$u(\theta_1,\ldots,\theta_J)=\sum_{j=1}^J\omega_j u_j(\theta_j)$$

and the loss function

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} \left(n \left[\sum_{\mathbf{x}_i \in \Omega_j} \omega_j u_j \right] (\mathbf{x}_i, \theta_j) - f(\mathbf{x}_i) \right)^2$$

1D single-frequency problem

A. Heinlein (TU Delft)

Finite Basis Physics-Informed Neural Networks (FBPINNs)

FBPINNs (Moseley, Markham, Nissen-Meyer (2023))

FBPINNs employ the network architecture

$$u(\theta_1,\ldots,\theta_J)=\sum_{j=1}^J\omega_j u_j(\theta_j)$$

and the loss function

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} \left(n \left[\sum_{\mathbf{x}_i \in \Omega_j} \omega_j u_j \right] (\mathbf{x}_i, \theta_j) - f(\mathbf{x}_i) \right)^2$$

1D single-frequency problem

A. Heinlein (TU Delft)

Finite Basis Physics-Informed Neural Networks (FBPINNs)

FBPINNs (Moseley, Markham, Nissen-Meyer (2023))

FBPINNs employ the network architecture

$$u(\theta_1,\ldots,\theta_J)=\sum_{j=1}^J\omega_j u_j(\theta_j)$$

and the loss function

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} \left(n \left[\sum_{\mathbf{x}_i \in \Omega_j} \omega_j u_j \right] (\mathbf{x}_i, \theta_j) - f(\mathbf{x}_i) \right)^2$$

A. Heinlein (TU Delft)

Numerical Results for FBPINNs

Multi-level FBPINNs (ML-FBPINNs)

ML-FBPINNs (Dolean, Heinlein, Mishra, Moseley (2024)) are based on a hierarchy of domain decompositions:

This yields the network architecture

$$u(\theta_1^{(1)},\ldots,\theta_{J^{(L)}}^{(L)}) = \sum_{l=1}^{L} \sum_{i=1}^{N^{(l)}} \omega_j^{(l)} u_j^{(l)}(\theta_j^{(l)})$$

and the loss function

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} \left(\mathcal{N}[\sum_{\mathbf{x}_i \in \Omega_i^{(l)}} \omega_j^{(l)} u_j^{(l)}](\mathbf{x}_i, \boldsymbol{\theta}_j^{(l)}) - f(\mathbf{x}_i) \right)_{-}^2$$

Multi-Frequency Problem

Let us now consider the **two-dimensional** multi-frequency Laplace boundary value problem

$$-\Delta u = 2 \sum_{i=1}^{n} (\omega_i \pi)^2 \sin(\omega_i \pi x) \sin(\omega_i \pi y) \quad \text{in } \Omega,$$
$$u = 0 \qquad \qquad \text{on } \partial\Omega,$$

with $\omega_i = 2^i$.

For increasing values of *n*, we obtain the **analytical solutions**:

A. Heinlein (TU Delft)

Numerical Results for FBPINNs

Multi-level FBPINNs (ML-FBPINNs)

ML-FBPINNs (Dolean, Heinlein, Mishra, Moseley (2024)) are based on a hierarchy of domain decompositions:

This yields the network architecture

$$u(\theta_1^{(1)},\ldots,\theta_{j^{(L)}}^{(L)}) = \sum_{l=1}^{L} \sum_{i=1}^{N^{(l)}} \omega_j^{(l)} u_j^{(l)}(\theta_j^{(l)})$$

and the loss function

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} \left(\mathcal{H}[\sum_{\mathbf{x}_i \in \Omega_j^{(l)}} \omega_j^{(l)} u_j^{(l)}](\mathbf{x}_i, \theta_j^{(l)}) - f(\mathbf{x}_i) \right)_{\perp}^2$$

Multi-Frequency Problem

Let us now consider the two-dimensional multi-frequency Laplace boundary value problem

$$-\Delta u = 2 \sum_{i=1}^{n} (\omega_i \pi)^2 \sin(\omega_i \pi x) \sin(\omega_i \pi y) \quad \text{in } \Omega,$$
$$u = 0 \qquad \qquad \text{on } \partial\Omega,$$

with $\omega_i = 2^i$.

For increasing values of *n*, we obtain the **analytical solutions**:

A. Heinlein (TU Delft)

Multi-Level FBPINNs for a Multi-Frequency Problem – Strong Scaling

A. Heinlein (TU Delft)

Multi-Frequency Problem – What the FBPINN Learns

Cf. Dolean, Heinlein, Mishra, Moseley (2024).

Multi-Level FBPINNs for a Multi-Frequency Problem – Weak Scaling

 $\rightarrow\,$ Details and results for the Helmholtz equation can be found in Dolean, Heinlein, Mishra, Moseley (2024).

A. Heinlein (TU Delft)

Stacking multifidelity physics-informed neural networks

PINNs for Time-Dependent Problems

We investigate the performance of PINNs for time-dependent problems. Therefore, consider the simple pedulum problem:

$$\frac{d\delta_1}{dt} = \delta_2,$$

$$\frac{d\delta_2}{dt} = -\frac{b}{m}\delta_2 - \frac{g}{L}\sin(\delta_1).$$

$$m = L = 1, b = 0.05,$$

$$g = 9.81$$

• Bottom:
$$T = 20$$

A. Heinlein (TU Delft)

Stacking Multifidelity PINNs

In the stacking multifidelity PINNs approach introduced in Howard, Murphy, Ahmed, Stinis (arXiv 2023), multiple PINNs are trained in a recursive way. In each step, a model u^{MF} is trained based on the previous model u^{SF} :

$$u^{MF}(\mathbf{x}, \theta^{MF}) = (1 - |\alpha|) u^{MF}_{\text{linear}}(\mathbf{x}, \theta^{MF}, u^{SF}) + |\alpha| u^{MF}_{\text{nonlinear}}(\mathbf{x}, \theta^{MF}, u^{SF})$$

Related works (non-exhaustive list)

- Cokriging & multifidelity Gaussian process regression: E.g., Wackernagel (1995); Perdikaris et al. (2017); Babaee et al. (2020)
- Multifidelity PINNs & DeepONet: Meng and Karniadakis (2020); Howard, Fu, and Stinis (2024); Howard, Perego, Karniadakis, Stinis (2023); Howard, Murphy, Ahmed, Stinis (arXiv 2023)
- Galerkin, multi-level, and multi-stage neural networks: Ainsworth and Dong (2021); Ainsworth and Dong (2022); Aldirany et al. (2024); Wang and Lai (2024)

Stacking Multifidelity PINNs for the Pendulum Problem

A. Heinlein (TU Delft)

Stacking Multifidelity FBPINNs

In Heinlein, Howard, Beecroft, and Stinis (acc. 2024 / arXiv:2401.07888), we combine stacking multifidelity PINNs with FBPINNs by using an FBPINN model in each stacking step.

Numerical Results – Pendulum Problem

First, we consider a **pedulum problem** and **compare the stacking multifidelity PINN and FBPINN** approaches:

$$\begin{aligned} \frac{d\delta_1}{dt} &= \delta_2, \\ \frac{d\delta_2}{dt} &= -\frac{b}{m}\delta_2 - \frac{g}{L}\sin(\delta_1) \end{aligned}$$

with m = L = 1, b = 0.05, g = 9.81, and T = 20.

Exemplary partition of unity in time

A. Heinlein (TU Delft)

Numerical Results – Pendulum Problem

First, we consider a **pedulum problem** and **compare the stacking multifidelity PINN and FBPINN** approaches:

$$\frac{d\delta_1}{dt} = \delta_2,$$
$$\frac{d\delta_2}{dt} = -\frac{b}{m}\delta_2 - \frac{g}{L}\sin(\delta_1)$$

with m = L = 1, b = 0.05, g = 9.81, and T = 20.

Model details:

method	arch.	# levels	# params	error
S-PINN	5×50, 1×20	4	63 018	0.0125
S-FBPINN	3×32, 1× 4	2	34 570	0.0074

A. Heinlein (TU Delft)

Numerical Results – Two-Frequency Problem

$$\frac{dx}{dx} = \omega_1 \cos(\omega_1 x) + \omega_2 \cos(\omega_2 x)$$
$$0) = 0,$$

on domain $\Omega = [0, 20]$ with $\omega_1 = 1$ and $\omega_2 = 15$.

5(

method	arch.	$\# {\rm levels}$	# params	error
PINN	4×64	0	12673	0.6543
PINN	5×64	0	16833	0.0265
S-PINN	4×16, 1×5	3	4900	0.0249
S-PINN	4×16, 1×5	10	11 179	0.0061
S-FBPINN	4×16, 1×5	2	7822	0.00415
S-FBPINN	4×16, 1×5	5	59 902	0.00083

 \rightarrow Due to the multiscale structure of the problem, the improvements due to the multifidelity FBPINN approach are even stronger.

Numerical Results – Allen–Cahn Equation

Finally, we consider the Allen-Cahn equation:

$$\begin{split} s_t &- 0.0001 s_{xx} + 5s^3 - 5s = 0, & t \in (0, 1], x \in [-1, 1], \\ s(x, 0) &= x^2 \cos(\pi x), & x \in [-1, 1], \\ s(x, t) &= s(-x, t), & t \in [0, 1], x = -1, x = 1, \\ s_x(x, t) &= s_x(-x, t), & t \in [0, 1], x = -1, x = 1. \end{split}$$

PINN gets stuck at fixed point of the of dynamical system; cf. Rohrhofer et al. (arXiv 2023).

Multilevel domain decomposition-based physics-informed deep operator networks

Deep Operator Networks (DeepONets / DONs)

DeepONets (Lu et al. (2021))

- While PINNs learn individual solutions, neural operators learn operators between function spaces, such as solution operators
- Deep operator networks (DeepONets) are compatible with the PINN approach but physics-informed DeepONets (PI-DONs) are challenging to train

Approach based on the single-layer case analyzed in Chen and Chen (1995)

A. Heinlein (TU Delft)

Deep Operator Networks (DeepONets / DONs)

DeepONets (Lu et al. (2021))

- While PINNs learn individual solutions, neural operators learn operators between function spaces, such as solution operators
- Deep operator networks (DeepONets) are compatible with the PINN approach but physics-informed DeepONets (PI-DONs) are challenging to train

Modified DeepONet architecture; cf. Wang, Wang, and Perdikaris (2022)

A. Heinlein (TU Delft)

Finite Basis DeepONets (FBDONs)

Howard, Heinlein, Stinis (in prep.)

Variants:

Shared-trunk FBDONs (ST-FBDONs)

The trunk net learns spatio-temporal basis functions. In ST-FBDONs, we use the same trunk network for all subdomains.

Stacking FBDONs

Combination of the stacking multifidelity approach with FBDONs.

Heinlein, Howard, Beecroft, Stinis (acc. 2024/arXiv:2401.07888)

A. Heinlein (TU Delft)

DD-DONs Pendulum

Pendulum problem

$$\begin{aligned} \frac{ds_1}{dt} &= s_2, & t \in [0, T], \\ \frac{ds_2}{dt} &= -\frac{b}{m} s_2 - \frac{g}{L} \sin(s_1), & t \in [0, T], \end{aligned}$$

where m = L = 1, b = 0.05, g = 9.81, and T = 20.

Parametrization

Initial conditions:

 $s_1(0) \in [-2,2]$ $s_2(0) \in [-1.2,1.2]$

 $s_1(0)$ and $s_2(0)$ are the also inputs of the branch network.

Training on 50 k different configurations

Mean rel. <i>l</i> ₂ error on 1	.00 config.
DeepONet	0.94
FBDON (32 subd.)	0.84
MLFBDON ([1, 4, 8, 16, 32] subd.)	0.27

Cf. Howard, Heinlein, Stinis (in prep.)

A. Heinlein (TU Delft)

DD-DONs Wave Equation

Wave equation

$$egin{aligned} &rac{d^2s}{dt^2} = 2rac{d^2s}{dx^2}, & (x,t)\in [0,1]^2 \ & ext{st}(x,0) = 0, x\in [0,1], & s(0,t) = s(1,t) = 0 \end{aligned}$$

Parametrization

Initial conditions for s parametrized by $b = (b_1, \ldots, b_5)$ (normally distributed):

$$s(x,0) = \sum_{n=1}^{5} b_n \sin(n\pi x) \quad x \in [0,1]$$

Solution: $s(x, t) = \sum_{n=1}^{5} b_n \sin(n\pi x) \cos(n\pi \sqrt{2}t)$

Training on 1000 random configurations.

Mean rel. <i>l</i> ₂ error on 100 config.			
DeepONet	0.30 ± 0.11		
ML-ST-FBDON	0.05 ± 0.03		
([1, 4, 8, 16] subd.)	0.00 ± 0.00		
ML-FBDON	0.08 ± 0.04		
([1, 4, 8, 16] subd.)	0.00 ± 0.04		

 \rightarrow Sharing the trunk network does not only save in the number of parameters but even yields better performance

Cf. Howard, Heinlein, Stinis (in prep.)

A. Heinlein (TU Delft)

PACMANN – Point adaptive collocation method for artificial neural networks

Motivation

The number and distribution of the collocation points in the PDE loss \mathcal{L}_{PDE} have a significant influence on the accuracy of the PINN solution. Since the computational work grows with the number of collocation points, the effective placement of the collocation points is important.

Burger's equation in 1D

Consider the Burger's with one spatial dimension:

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}, \qquad x \in [-1, 1], \quad t \in [0, 1]$$
$$u(x, 0) = -\sin(\pi x) \quad u(-1, t) = u(1, t) = 0.$$

compling method	L_2 relat	ive error	mean	
sampling method	mean	1 SD	runtime [s]	
uniform grid	25.9%	14.2%	425	
Hammersley grid	0.61%	0.53%	443	
random resampling	0.40%	0.35%	423	
Residual-based	0.11%	0.05%	450	

Implementation based on DeepXDE with PyTorch (v1.12.1) backend; cf. Visser, Heinlein, and Giovanardi (arXiv:2411.19632)

Similar results in earlier study: Wu et al. (2023)

Overview of Various Sampling Schemes (Not Exhaustive)

Non-adaptive sampling

- Equispaced uniform grid
- Uniformly random sampling, using a pseudo-random number generator (e.g., PCG-64 O'Neill (2014))
- Latin hypercube sampling (McKay, Beckman, and Conover (2000); Stein (1987))

Adaptive sampling

- Quasi-random low-discrepancy sequences: • Halton sequence (Halton (1960))
 - · Halton sequence (Halton (1900)
 - Hammersley sequence (Hammersley (1964))
 - Sobol sequence (Sobol' (1967))
- Residual-based Adaptive Refinement (RAR) (Lu et al (2021)): placement of additional points in regions with the largest PDE residuals
- Probability Density Function (PDF) (Nabian, Gladstone, and Meidani (2021)): randomly resample all points based on a PDF proportional to the residual
- Residual-based Adaptive Distribution (RAD) (Wu et al. (2023)): all collocation points are resampled using a PDF based on the residual (nonlinear).
- Residual-based Adaptive Refinement with Distribution (RAR-D) (Wu et al. (2023)): sampling of additional collocation points using the PDF used in RAD

(RAD and RAR-D are based on / extensions of PDF approach)

PACMANN – Point Adaptive Collocation Method for Artificial Neural Networks

In Visser, Heinlein, and Giovanardi (arXiv:2411.19632), the collocation points are updated by solving the min-max problem

$$\min_{\boldsymbol{\theta}} \left[\omega_{\mathsf{data}} \mathcal{L}_{\mathsf{data}}(\boldsymbol{\theta}) + \max_{\boldsymbol{X} \subset \Omega} \omega_{\mathsf{PDE}} \mathcal{L}_{\mathsf{PDE}}(\boldsymbol{X}, \boldsymbol{\theta}) \right].$$

Different from the other residual-based adaptive sampling methods, the **existing collocation points are moved** using a gradient-based optimizers, such as **gradient ascent**, **RMSprop** (Hinton (2018)), Adam (Kingma, Ba (2017)), or others.

Algorithm 1: PACMANN with iteration counts P and T and stepsize s

Sample a set **X** of N_{PDE} collocation points using a uniform sampling method; while stopping criterion not reached do Train the PINN for *P* iterations; for k = 1, ..., T do Compute squared residual $\Re(x_i) = (\Re[u](x_i, \theta) - f(x_i))^2$ for all $x_i \in X$; Compute gradient $\nabla_x \Re(x_i)$ for all $x_i \in X$; Move the points in **X** according to the chosen optimization algorithm and stepsize *s*; end

Resample points in \boldsymbol{X} that moved outside Ω based on a uniform probability distribution;

end

Numerical Results – Burger's Equation in 1D

Varying the optimizer in PACMANN

compling method	L_2 relative error		mean	hyper parameters	
sampling method	mean	1 SD	runtime [s]	stepsize s	# steps T
PACMANN–gradient ascent	0.30%	0.17%	436	10^{-6}	1
PACMANN–RMSprop	0.10%	0.03%	442	10^{-6}	10
PACMANN–Adam	0.07%	0.05%	461	10^{-5}	15

Comparison against different methods

committee mothed	L_2 relat	mean	
sampling method	mean	1 SD	runtime [s]
uniform grid	25.9%	14.2%	425
Hammersley grid	0.61%	0.53%	443
random resampling	0.40%	0.35%	423
RAR	0.11%	0.05%	450
RAD	0.16%	0.10%	463
RAR-D	0.24%	0.21%	503
PACMANN–Adam	0.07%	0.05%	461

Cf. Visser, Heinlein, and Giovanardi (arXiv:2411.19632).

Furthermore, we show that our method scales well to higher dimensions, such as a Poisson equation in five dimensions:

 $\begin{aligned} -\Delta u &= f, \quad \text{in } \Omega = [-1,1]^5, \\ u &= 0, \quad \text{on } \partial \Omega. \end{aligned}$

Here, f is chosen such that $u = \prod_{i=1}^{5} \sin(\pi x_i)$.

Comparison against different methods

compling method	L_2 relati	mean		
sampling method	mean	1 SD	runtime [s]	
uniform grid	17.89%	0.94%	742	
Hammersley grid	82.08%	3.23%	734	
random resampling	11.03%	0.69%	772	
RAR	56.84%	4.46%	753	
RAD	10.07%	0.75%	851	
RAR-D	88.30%	1.53%	774	
PACMANN–Adam	5.93%	0.46%	778	

Cf. Visser, Heinlein, and Giovanardi (arXiv:2411.19632).

Numerical Results – Parameter Identification for the Navier–Stokes Equations

Finally, we consider an **inverse problem** involving the **Navier-Stokes equations in two dimensions** of an **incompressible flow past a cylinder** discussed by **Raissi et al.** (2019):

$$u_t + \lambda_1(uu_x + vu_y) = -p_x + \lambda_2(u_{xx} + u_{yy}), \quad x \in [1, 8] \times [-2, 2], t \in [0, 7],$$

$$v_t + \lambda_1(uv_x + vv_y) = -p_y + \lambda_2(v_{xx} + v_{yy}), \quad x \in [1, 8] \times [-2, 2], t \in [0, 7].$$

Here, (u, v) and p are the velocity and pressure fields. The scalar parameter λ_1 scales the convective term, and λ_2 represents the dynamic (shear) viscosity. The true values of λ_1 and λ_2 are 1 and 0.01.

		moon			
sampling method	λ_1		λ_2		
	mean	1 SD	mean	1 SD	· runtine [s]
uniform grid	0.05 %	0.01 %	0.72 %	0.43 %	1506
Hammersley grid	0.08 %	0.04 %	0.89 %	0.52%	1492
random resampling	0.12 %	0.05 %	0.65 %	0.46 %	1514
RAR	0.30 %	0.06 %	1.44%	0.90 %	1520
RAD	0.23 %	0.06 %	1.38%	0.79%	1583
RAR-D	0.08 %	0.05 %	0.84 %	0.57 %	1525
PACMANN-Adam	0.03 %	0.03 %	0.53 %	0.19 %	1559

Cf. Visser, Heinlein, and Giovanardi (arXiv:2411.19632).

Annual Meeting of EMS activity group on Scientific Machine Learning

Organizing committee: P.F. Antonietti, S. Pagani, F. Regazzoni, M. Verani (chair), P. Zunino **Scientific committee**: Members of the EMS activity group on Scientific Machine Learning

- Dates: March 24 28, 2025
- Event: First Annual Meeting of the EMS-AI Scientific Machine Learning (SciML) activity group
- Focus: Bridging mathematics, computer science, and applications in SciML
- Program Highlights:
 - 18 Invited Talks
 - 2 Industrial Sessions
 - Poster Session
 - Roundtable Discussion on Interplay between machine learning, applied mathematics, and scientific computing; chair: Wil Schilders (ICIAM President)

Deadline for registration: January 31, 2025!

Co-organizers: Victorita Dolean (TU/e), Alexander Heinlein (TU Delft), Benjamin Sanderse (CWI), Jemima Tabbeart (TU/e), Tristan van Leeuwen (CWI)

- Autumn School (October 27–31, 2025):
 - Chris Budd (University of Bath)
 - Ben Moseley (Imperial College London)
 - Gabriele Steidl (Technische Universität Berlin)
 - Andrew Stuart (California Institute of Technology)
 - Andrea Walther (Humboldt-Universität zu Berlin)
- Workshop (December 1–3, 2025):
 - 3 days with plenary talks (academia & industry) and an industry panel
 - Confirmed plenary speakers:
 - Marta d'Elia (Meta)
 - Benjamin Peherstorfer (New York University)
 - Andreas Roskopf (Fraunhofer Institute)

CWI Centrum Wiskunde & Informatica

Join us for inspiring talks, hands-on sessions, and industry collaboration!

Multilevel FBPINNs

- Schwarz domain decomposition architectures improve the scalability of PINNs to large domains / high frequencies, keeping the complexity of the local networks low.
- As classical domain decomposition methods, one-level FBPINNs are not scalable to large numbers of subdomains; multilevel FBPINNs enable scalability.

Stacking Multifidelity FBPINNs

• The combination of multifidelity stacking PINNs with FBPINNs yields significant improvements in the accuracy and efficiency for time-dependent problems.

PACMANN Sampling Method

- Adaptive movement of the collocation points along the gradient yields comparable or better performance compared to state-of-the-art sampling approaches; standard optimizers can be employed.
- In particular, for high-dimensional problems, the performance is clearly better.

Thank you for your attention!

Topical Activity Group

Scientific Machine Learning

