

Towards Physics-Informed Machine Learning-Based Surrogate Models for Challenging Problems

Alexander Heinlein¹

Siemens Simulation and Digital Twin Talks (Virtual), April 28, 2025

¹Delft University of Technology

Scientific Computing and Machine Learning

Numerical methods

Based on physical models

- + Robust and generalizable
- Require availability of mathematical models

Machine learning models

Driven by data

- + Do not require mathematical models
- Sensitive to data, limited extrapolation capabilities

Scientific machine learning

Combining the strengths and compensating the weaknesses of the individual approaches:

numerical methods **improve** machine learning techniques machine learning techniques **assist** numerical methods

A. Heinlein (TU Delft)

1 Surrogate models for varying computational domains

Based on joint work with

Eric Cyr Matthias Eichinger, Viktor Grimm, Axel Klawonn Corné Verburg (Sandia National Laboratories) (University of Cologne) (Delft University of Technology)

2 Domain decomposition-based neural networks and operators

Based on joint work with

Damien Beecroft Victorita Dolean Bianca Giovanardi, Coen Visser Amanda A. Howard and Panos Stinis Siddhartha Mishra Ben Moseley (University of Washington) (Eindhoven University of Technology) (Delft University of Technology) (Pacific Northwest National Laboratory) (ETH Zürich) (Imperial College London) Surrogate models for varying computational domains

Designing of Perforated Monopiles for Offshore Wind Energy

Perforated monopiles

Monopiles are the **most used and cheapest** solution of support structures in **offshore wind energy**.

 \rightarrow Perforated monopiles reduce the wave load.

What is the optimal perforation shape?

Fully resolved CFD simulations are costly, but rough predictions may be sufficient.

CNN-based approach

We employ a **convolutional neural network (CNN) (LeCun (1998))** to predict the stationary flow field, given an **image of the geometry as input**.

Related works (non-exhaustive)

- Guo, Li, Iorio (2016)
- Niekamp, Niemann, Schröder (2022)
- Stender, Ohlsen, Geisler, Chabchoub, Hoffmann, Schlaefer (2022)

Operator learning (non-exhaustive)

- FNOs: Li et al. (2021)
- PCA-Net: Bhattacharya et al. (2021)
- Random features: Nelsen and Stuart (2021)
- CNOs: Raonić et al. (2023)

A. Heinlein (TU Delft)

Comparison OpenFOAM® Versus CNN (Relative Error 2%)

We automatically generate geometries and compute the corresponding flow fields using OPENFOAM®.

Cf. Eichinger, Heinlein, Klawonn (2021,

Comparison OpenFOAM® Versus CNN (Relative Error 14%)

We automatically generate geometries and compute the corresponding flow fields using OPENFOAM®.

Cf. Eichinger, Heinlein, Klawonn (2021, 2022).

Comparison OpenFOAM® Versus CNN (Relative Error 31%)

We automatically generate geometries and compute the corresponding flow fields using OPENFOAM®.

Cf. Eichinger, Heinlein, Klawonn (2021, 2022).

			avg	. runtime	per case (se	erial)
Data:	create STL		0.1).15 s	
	snappyHexMesh			37 s		
	simpleFoam			13 s		
		total time		≈ 50		50 s
				U-	Net	
Training		# decode	rs	1	2	
Training.		# parame	ters	pprox 34 m	pprox 53.5 m	
		time/epoc	ch	195 s	270 s	
			CFD)	U-Net	_
Comparison CFD Vs NN:			CPU	U CPL	J GPU	
	_	avg. time	50 s	0.092	s 0.0054 s	_

 \Rightarrow Flow predictions using neural networks may be less accurate and the training phase expensive, but the flow prediction is $\approx 5 \cdot 10^2 - 10^4$ times faster.

Unsupervised Learning Approach – PDE Loss Using Finite Differences

Physics-informed loss function

We train the CNN by incorporating the squared PDE residuals into the loss function:

$$\mathcal{L}_{\mathsf{PDE}} = \frac{1}{N_{\mathsf{PDE}}} \sum\nolimits_{i=1}^{N_{\mathsf{PDE}}} \| \mathcal{R}(u_{\mathsf{CNN}}, p_{\mathsf{CNN}}) \|^2$$

Here, N_{PDE} is the number of training configs.

Cf. Raissi et al. (2019), Dissanayake and Phan-Thien (1994), Lagaris et al. (1998).

We discretize the differential operators using finite differences on the output pixel image.

Boundary conditions

We explcitly enforce boundary conditions on the output image \rightarrow hard constraints

Here, we consider ther Navier-Stokes equations:

$$\mathscr{R}(u_{\mathsf{CNN}}, p_{\mathsf{CNN}}) = \begin{bmatrix} -\nu \Delta \vec{u} + (u \cdot \nabla) \vec{u} + \nabla p \\ \nabla \cdot u \end{bmatrix}$$

Cf. Grimm, Heinlein, Klawonn (2025).

A. Heinlein (TU Delft)

Results on \approx 5000 Type II Geometries

	training	05505	$ u_{NN} - u _2$	$\ p_{NN} - p\ _{2}$	mean residual		# epochs
	data	enor	<i>u</i> ₂	$ p _2$	momentum	mass	trained
	100/	train.	2.07%	10.98%	$1.1 \cdot 10^{-1}$	$1.4\cdot 10^0$	FOO
	10%	val.	4.48 %	15.20%	$1.6 \cdot 10^{-1}$	$1.7\cdot 10^0$	500
ed	25%	train.	1.93%	8.45%	$9.1 \cdot 10^{-2}$	$1.2\cdot 10^0$	500
bas	2370	val.	3.49 %	10.70%	$1.2 \cdot 10^{-1}$	$1.4\cdot 10^0$	500
ta-l	50%	train.	1.48%	8.75%	$9.0 \cdot 10^{-2}$	$1.1\cdot 10^0$	500
da	5070	val.	2.70 %	10.09%	$1.1 \cdot 10^{-1}$	$1.2\cdot 10^0$	500
	750/	train.	1.43%	7.30%	$1.0 \cdot 10^{-1}$	$1.5\cdot 10^0$	500
	1370	val.	2.52 %	8.67 %	$1.2 \cdot 10^{-1}$	$1.5\cdot 10^0$	500
	100/	train.	5.35%	12.95%	$3.5 \cdot 10^{-2}$	$7.8 \cdot 10^{-2}$	E 000
ed	10%	val.	6.72%	15.39%	$6.7 \cdot 10^{-2}$	$2.0\cdot10^{-1}$	5 000
Ē	250/	train.	5.03%	12.26%	$3.2 \cdot 10^{-2}$	$7.3 \cdot 10^{-2}$	E 000
lfo	2370	val.	5.78 %	13.38%	$5.3 \cdot 10^{-2}$	$1.4\cdot10^{-1}$	5 000
S-i	E0%	train.	5.81%	12.92%	$3.9 \cdot 10^{-2}$	$9.3 \cdot 10^{-2}$	5 000
ysid	5070	val.	5.84 %	12.73%	$4.8 \cdot 10^{-2}$	$1.2 \cdot 10^{-1}$	5 000
hd	750/	train.	5.03%	11.63%	$3.2 \cdot 10^{-2}$	$7.7 \cdot 10^{-2}$	5 000
	1570	val.	5.18 %	11.60 %	$4.2 \cdot 10^{-2}$	$1.1 \cdot 10^{-1}$	5 000

 \rightarrow The results for the **physics-informed approach** are **comparable to the data-based approach**; the **errors are slightly higher**. However, no reference data at all is needed for the training.

Generalization With Respect to the Inflow Velocity

Domain Decomposition-Based U-Net Architecture

	mem. featu	re maps	mem. weights		
name	# of values	MB	# of values	MB	
input block	268 M	1 024.0	38 848	0.148	
encoder blocks	314 M	1 320	18 M	72	
decoder blocks	754 M	3880	12 M	47	
output block	3.1 M	12.0	195	0.001	

Most memory in the U-Net is used by feature maps, not weights \rightarrow Decompose feature maps to distribute memory consumption.

Cf. Verburg, Heinlein, Cyr (2025).

communication network

A. Heinlein (TU Delft)

Domain decomposition-based neural neutworks and operators

A non-exhaustive literature overview:

- Machine Learning for adaptive BDDC, FETI–DP, and AGDSW: Heinlein, Klawonn, Lanser, Weber (2019, 2020, 2021, 2021, 2021, 2022); Klawonn, Lanser, Weber (2024)
- cPINNs, XPINNs: Jagtap, Kharazmi, Karniadakis (2020); Jagtap, Karniadakis (2020)
- Classical Schwarz iteration for PINNs or DeepRitz (D3M, DeepDDM, etc):: Li, Tang, Wu, and Liao (2019); Li, Xiang, Xu (2020); Mercier, Gratton, Boudier (arXiv 2021); Dolean, Heinlein, Mercier, Gratton (subm. 2024 / arXiv:2408.12198); Li, Wang, Cui, Xiang, Xu (2023); Sun, Xu, Yi (arXiv 2023, 2024); Kim, Yang (2023, 2024, 2024)
- FBPINNs, FBKANs: Moseley, Markham, Nissen-Meyer (2023); Dolean, H., Mishra, Moseley (2024, 2024); H., Howard, Beecroft, Stinis (2025); Howard, Jacob, Murphy, H., Stinis (arXiv 2024)
- DD for RaNNs, ELMS, Random Feature Method: Dong, Li (2021); Dang, Wang (2024); Sun, Dong, Wang (2024); Sun, Wang (2024); Chen, Chi, E, Yang (2022); Shang, H., Mishra, Wang (2025)
- DDMs for CNNs: Gu, Zhang, Liu, Cai (2022); Lee, Park, Lee (2022); Klawonn, Lanser, Weber (2024); Verburg, Heinlein, Cyr (2025)

An overview of the state-of-the-art in 2024:

A. Klawonn, M. Lanser, J. Weber

Machine learning, domain decomposition methods - a survey

Computational Science and Engineering. 2024

Physics-Informed Neural Networks (PINNs)

In the **physics-informed neural network (PINN)** approach introduced by **Raissi et al. (2019)**, a **neural network** is employed to **discretize a partial differential equation**

 $\mathcal{N}[u] = f, \text{ in } \Omega.$

PINNs use a hybrid loss function:

$$\mathcal{L}(\boldsymbol{\theta}) = \omega_{\mathsf{data}} \mathcal{L}_{\mathsf{data}}(\boldsymbol{\theta}) + \omega_{\mathsf{PDE}} \mathcal{L}_{\mathsf{PDE}}(\boldsymbol{\theta}),$$

where ω_{data} and ω_{PDE} are weights and

$$\begin{split} \mathcal{L}_{data}(\boldsymbol{\theta}) &= \frac{1}{N_{data}} \sum_{i=1}^{N_{data}} \left(u(\hat{\boldsymbol{x}}_i, \boldsymbol{\theta}) - u_i \right)^2, \\ \mathcal{L}_{PDE}(\boldsymbol{\theta}) &= \frac{1}{N_{PDE}} \sum_{i=1}^{N_{PDE}} \left(\mathcal{N}[u](\boldsymbol{x}_i, \boldsymbol{\theta}) - f(\boldsymbol{x}_i) \right)^2. \end{split}$$

See also Dissanayake and Phan-Thien (1994); Lagaris et al. (1998).

Advantages

- "Meshfree"
- Small data
- Generalization properties
- High-dimensional problems
- Inverse and parameterized problems

Drawbacks

- Training cost and robustness
- Convergence not
 well-understood
- Difficulties with scalability and multi-scale problems

Hybrid loss

- Known solution values can be included in *L*_{data}
- Initial and boundary conditions are also included in $\mathcal{L}_{\text{data}}$

A. Heinlein (TU Delft)

Error Estimate & Spectral Bias

Estimate of the generalization error (Mishra and Molinaro (2022))

The generalization error (or total error) satisfies

 $\mathcal{E}_{G} \leq C_{\mathsf{PDE}} \mathcal{E}_{\mathsf{T}} + C_{\mathsf{PDE}} C_{\mathsf{quad}}^{1/p} N^{-\alpha/p}$

- $\mathcal{E}_{G} = \mathcal{E}_{G}(\boldsymbol{X}, \boldsymbol{\theta}) := \| \mathbf{u} \mathbf{u}^{*} \|_{V}$ general. error (V Sobolev space, \boldsymbol{X} training data set)
- δ_T training error (*I^p* loss of the residual of the PDE)
- N number of the training points and α convergence rate of the quadrature
- C_{PDE} and C_{quad} constants depending on the PDE, quadrature, and neural network

Rule of thumb: "As long as the PINN is trained well, it also generalizes well"

Rahaman et al., On the spectral bias of neural networks, ICML (2019)

Related works: Cao et al. (2021), Wang, et al. (2022), Hong et al. (arXiv 2022), Xu et al (2024), ...

Scaling of PINNs for a Simple ODE Problem

Solve $u' = \cos(\omega x),$ u(0) = 0,

for different values of ω using **PINNs with** varying network capacities.

Scaling issues

- Large computational domains
- Small frequencies

Cf. Moseley, Markham, and Nissen-Meyer (2023)

Scaling of PINNs for a Simple ODE Problem

Solve $u' = \cos(\omega x),$ u(0) = 0,

for different values of ω using **PINNs with** varying network capacities.

Scaling issues

- Large computational domains
- Small frequencies

Cf. Moseley, Markham, and Nissen-Meyer (2023)

Finite Basis Physics-Informed Neural Networks (FBPINNs)

FBPINNs (Moseley, Markham, Nissen-Meyer (2023))

FBPINNs employ the network architecture

$$u(\theta_1,\ldots,\theta_J)=\sum_{j=1}^J\omega_j u_j(\theta_j)$$

and the loss function

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} \left(n \left[\sum_{\mathbf{x}_i \in \Omega_j} \omega_j u_j \right] (\mathbf{x}_i, \theta_j) - f(\mathbf{x}_i) \right)^2$$

1D single-frequency problem

A. Heinlein (TU Delft)

Finite Basis Physics-Informed Neural Networks (FBPINNs)

FBPINNs (Moseley, Markham, Nissen-Meyer (2023))

FBPINNs employ the network architecture

$$u(\theta_1,\ldots,\theta_J)=\sum_{j=1}^J\omega_j u_j(\theta_j)$$

and the loss function

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} \left(n \left[\sum_{\mathbf{x}_i \in \Omega_j} \omega_j u_j \right] (\mathbf{x}_i, \theta_j) - f(\mathbf{x}_i) \right)^2$$

1D single-frequency problem

A. Heinlein (TU Delft)

Multi-Level FBPINNs

Multi-level FBPINNs (ML-FBPINNs)

ML-FBPINNs (Dolean, Heinlein, Mishra, Moseley (2024)) are based on a hierarchy of domain decompositions:

This yields the network architecture

$$u(\theta_1^{(1)},\ldots,\theta_{J^{(L)}}^{(L)}) = \sum_{l=1}^{L} \sum_{i=1}^{N^{(l)}} \omega_j^{(l)} u_j^{(l)}(\theta_j^{(l)})$$

and the loss function

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} \left(\mathcal{N}[\sum_{\mathbf{x}_i \in \Omega_j^{(l)}} \omega_j^{(l)} u_j^{(l)}](\mathbf{x}_i, \boldsymbol{\theta}_j^{(l)}) - f(\mathbf{x}_i) \right)_{.}^2$$

Multi-Frequency Problem

Let us now consider the two-dimensional multi-frequency Laplace boundary value problem

$$-\Delta u = 2 \sum_{i=1}^{n} (\omega_i \pi)^2 \sin(\omega_i \pi x) \sin(\omega_i \pi y) \quad \text{in } \Omega,$$
$$u = 0 \qquad \qquad \text{on } \partial\Omega,$$

with $\omega_i = 2^i$.

For increasing values of *n*, we obtain the **analytical solutions**:

A. Heinlein (TU Delft)

Multi-Level FBPINNs

Multi-level FBPINNs (ML-FBPINNs)

ML-FBPINNs (Dolean, Heinlein, Mishra, Moseley (2024)) are based on a hierarchy of domain decompositions:

This yields the network architecture

$$u(\theta_1^{(1)},\ldots,\theta_{j^{(L)}}^{(L)}) = \sum_{l=1}^{L} \sum_{i=1}^{N^{(l)}} \omega_j^{(l)} u_j^{(l)}(\theta_j^{(l)})$$

and the loss function

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} \left(\mathcal{H}[\sum_{\mathbf{x}_i \in \Omega_j^{(l)}} \omega_j^{(l)} u_j^{(l)}](\mathbf{x}_i, \theta_j^{(l)}) - f(\mathbf{x}_i) \right)_{\cdot}^2$$

Multi-Frequency Problem

Let us now consider the two-dimensional multi-frequency Laplace boundary value problem

$$-\Delta u = 2 \sum_{i=1}^{n} (\omega_i \pi)^2 \sin(\omega_i \pi x) \sin(\omega_i \pi y) \quad \text{in } \Omega,$$
$$u = 0 \qquad \qquad \text{on } \partial\Omega,$$

with $\omega_i = 2^i$.

For increasing values of *n*, we obtain the **analytical solutions**:

Multi-Level FBPINNs for a Multi-Frequency Problem – Strong Scaling

A. Heinlein (TU Delft)

Multi-Frequency Problem – What the FBPINN Learns

Cf. Dolean, Heinlein, Mishra, Moseley (2024).

Further Directions for Domain Decomposition Approaches

Kolmogorov–Arnold networks (KANs)

 Finite basis Kolmogorov–Arnold networks (FBKANs): Howard, Jacob, Murphy, H., Stinis (arXiv 2024)

 Uncertainty quantification w/ conformalized (FB)KANs: Mollaali, Moya, Howard, H., Stinis, Lin (arXiv 2025)

Physics-informed randomized neural networks

trained, fixed, and SVD weights; nonlinear and linear neurons

	no	prec.	Schwarz prec.		
	iter	e _{L2}	iter	e _{L2}	
CG	> 2000	$1.95 \cdot 10^{-2}$	8	$5.03 \cdot 10^{-3}$	
CGS	> 2000	$2.63 \cdot 10^{-2}$	4	$5.04 \cdot 10^{-3}$	
BICG	> 2000	$1.03 \cdot 10^{-2}$	8	$5.08 \cdot 10^{-3}$	
GMRES	> 2000	$8.68 \cdot 10^{-2}$	13	$5.07 \cdot 10^{-3}$	

 Schwarz domain decomposition preconditioning for localized physics-informed randomized neural networks (PIRaNNs): Shang, H., Mishra, Wang (2025)

PACMANN – Point Adaptive Collocation Method for Artificial Neural Networks

In Visser, Heinlein, and Giovanardi (arXiv 2024), the collocation points are updated by solving the min-max problem

$$\min_{\boldsymbol{\theta}} \left[\omega_{\mathsf{data}} \mathcal{L}_{\mathsf{data}}(\boldsymbol{\theta}) + \max_{\boldsymbol{X} \subset \Omega} \omega_{\mathsf{PDE}} \mathcal{L}_{\mathsf{PDE}}(\boldsymbol{X}, \boldsymbol{\theta}) \right].$$

Different from the other residual-based adaptive sampling methods, the **existing collocation points are moved** using a gradient-based optimizers, such as gradient ascent, RMSprop (Hinton (2018)), Adam (Kingma, Ba (2017)), etc.

Burger's equation

sampling method	L_2 relat	ive error	mean	
Sumpling method	mean	1 SD	runtime [s]	
uniform grid	25.9%	14.2%	425	
Hammersley grid	0.61%	0.53%	443	
random resampling	0.40%	0.35%	423	
RAR	0.11%	0.05%	450	
RAD	0.16%	0.10%	463	
RAR-D	0.24%	0.21%	503	
PACMANN–Adam	0.07%	0.05%	461	

A. Heinlein (TU Delft)

PACMANN – Point Adaptive Collocation Method for Artificial Neural Networks

In Visser, Heinlein, and Giovanardi (arXiv 2024), the collocation points are updated by solving the min-max problem

$$\min_{\boldsymbol{\theta}} \left[\omega_{\mathsf{data}} \mathscr{L}_{\mathsf{data}}(\boldsymbol{\theta}) + \max_{\boldsymbol{X} \subset \Omega} \omega_{\mathsf{PDE}} \mathscr{L}_{\mathsf{PDE}}(\boldsymbol{X}, \boldsymbol{\theta}) \right].$$

Different from the other residual-based adaptive sampling methods, the **existing collocation points are moved** using a gradient-based optimizers, such as gradient ascent, RMSprop (Hinton (2018)), Adam (Kingma, Ba (2017)), etc.

5D Poisson equation

compling mothod	L ₂ relati	mean	
sampling method	mean	1 SD	runtime [s]
uniform grid	17.89%	0.94%	742
Hammersley grid	82.08%	3.23%	734
random resampling	11.03%	0.69%	772
RAR	56.84%	4.46%	753
RAD	10.07%	0.75%	851
RAR-D	88.30%	1.53%	774
PACMANN–Adam	5.93%	0.46%	778

PINNs for Time-Dependent Problems

We investigate the performance of PINNs for time-dependent problems. Therefore, consider the simple pedulum problem:

$$\frac{ds_1}{dt} = s_2,$$

$$\frac{ds_2}{dt} = -\frac{b}{m}s_2 - \frac{g}{L}\sin(s_1).$$

$$m = L = 1, b = 0.05,$$

$$g = 9.81$$

A. Heinlein (TU Delft)

Multifidelity Stacking FBPINNs

In Heinlein, Howard, Beecroft, and Stinis (2025), we combine stacking multifidelity PINNs with **FBPINNs** by using an FBPINN model in each stacking step.

A. Heinlein (TU Delft)

Multifidelity Stacking FBPINNs – Pendulum Problem

First, we consider a **pedulum problem** and **compare the stacking multifidelity PINN and FBPINN** approaches:

$$\begin{aligned} \frac{d\delta_1}{dt} &= \delta_2, \\ \frac{d\delta_2}{dt} &= -\frac{b}{m}\delta_2 - \frac{g}{L}\sin(\delta_1) \end{aligned}$$

with m = L = 1, b = 0.05, g = 9.81, and T = 20.

Exemplary partition of unity in time

Multifidelity Stacking FBPINNs – Pendulum Problem

First, we consider a **pedulum problem** and **compare the stacking multifidelity PINN and FBPINN** approaches:

$$\frac{d\delta_1}{dt} = \delta_2,$$
$$\frac{d\delta_2}{dt} = -\frac{b}{m}\delta_2 - \frac{g}{L}\sin(\delta_1)$$

with m = L = 1, b = 0.05, g = 9.81, and T = 20.

Model details:

method	arch.	# levels	# params	error
S-PINN	5×50, 1×20	4	63 018	0.0125
S-FBPINN	3x32, 1x 4	2	34 570	0.0074

Multifidelity Stacking FBPINNs – Allen–Cahn Equation

Finally, we consider the Allen-Cahn equation:

\$t

$$\begin{aligned} &-0.0001 \delta_{xx} + 5\delta^3 - 5\delta = 0, & t \in (0,1], x \in [-1,1], \\ &\delta(x,0) = x^2 \cos(\pi x), & x \in [-1,1], \\ &\delta(x,t) = \delta(-x,t), & t \in [0,1], x = -1, x = 1, \\ &\delta_x(x,t) = \delta_x(-x,t), & t \in [0,1], x = -1, x = 1. \end{aligned}$$

PINN gets stuck at fixed point of the of dynamical system; cf. Rohrhofer et al. (2023).

Deep Operator Networks (DeepONets / DONs)

Neural operators learn operators between function spaces using neural networks. Here, we learn the **solution operator** of a initial-boundary value problem parametrized with p_1, \ldots, p_m using **DeepONets** as introduced in **Lu et al. (2021)**.

Single-layer case

The DeepONet architecture is based on the single-layer case analyzed in Chen and Chen (1995). In particular, the authors show universal approximation properties for continuous operators.

The architecture is based on the following ansatz for presenting the parametrized solution

$$u_{(p_1,\ldots,p_m)}(\mathbf{x},t) = \sum_{i=1}^{p} \underbrace{b_i(p_1,\ldots,p_m)}_{\text{local}} \cdot \underbrace{t_i(\mathbf{x},t)}_{\text{local}}$$

Physics-informed DeepONets

DeepONets are **compatible** with the PINN approach but physics-informed DeepONets (PI-DeepONets) are challenging to train.

Other operator learning approaches

- FNOs: Li et al. (2021)
- PCA-Net: Bhattacharya et al. (2021)
- Random features: Nelsen and Stuart (2021)
- CNOs: Raonić et al. (2023)

A. Heinlein (TU Delft)

Deep Operator Networks (DeepONets / DONs)

Neural operators learn operators between function spaces using neural networks. Here, we learn the **solution operator** of a initial-boundary value problem parametrized with p_1, \ldots, p_m using **DeepONets** as introduced in **Lu et al. (2021)**.

Modified architecture

In our numerical experiments, we employ the **modified DeepONet architecture** introduced in Wang, Wang, and Perdikaris (2022).

The architecture is based on the following ansatz for presenting the parametrized solution

$$u_{(p_1,\ldots,p_m)}(\mathbf{x},t) = \sum_{i=1}^{p} \underbrace{b_i(p_1,\ldots,p_m)}_{\text{branch}} \cdot \underbrace{t_i(\mathbf{x},t)}_{\text{trunk}}$$

Physics-informed DeepONets

DeepONets are **compatible** with the PINN approach but physics-informed DeepONets (PI-DeepONets) are challenging to train.

Other operator learning approaches

- FNOs: Li et al. (2021)
- PCA-Net: Bhattacharya et al. (2021)
- Random features: Nelsen and Stuart (2021)
- CNOs: Raonić et al. (2023)

A. Heinlein (TU Delft)

Finite Basis DeepONets (FBDONs)

Howard, Heinlein, Stinis (in prep.)

Variants:

Shared-trunk FBDONs (ST-FBDONs)

The trunk net learns spatio-temporal basis functions. In ST-FBDONs, we use the **same trunk network for all subdomains**.

Stacking FBDONs

Combination of the **stacking multifidelity approach** with FBDONs.

Heinlein, Howard, Beecroft, Stinis (2025)

A. Heinlein (TU Delft)

FBDONs – Wave Equation

Wave equation

$$egin{aligned} &rac{d^2s}{dt^2} = 2rac{d^2s}{dx^2}, & (x,t)\in [0,1]^2 \ & ext{st}(x,0) = 0, x\in [0,1], & s(0,t) = s(1,t) = 0 \end{aligned}$$

Parametrization

Initial conditions for s parametrized by $b = (b_1, \ldots, b_5)$ (normally distributed):

$$s(x,0) = \sum_{n=1}^{5} b_n \sin(n\pi x) \quad x \in [0,1]$$

Solution: $s(x, t) = \sum_{n=1}^{5} b_n \sin(n\pi x) \cos(n\pi \sqrt{2}t)$

Training on 1 000 random configurations.

Mean rel. <i>l</i> ₂ error on 100 config.				
DeepONet	0.30 ± 0.11			
ML-ST-FBDON	0.05 ± 0.03			
([1, 4, 8, 16] subd.)				
ML-FBDON	0.08 ± 0.04			
([1, 4, 8, 16] subd.)	0.00 ± 0.04			

 \rightarrow Sharing the trunk network does not only save in the number of parameters but even yields **better performance**

Cf. Howard, Heinlein, Stinis (in prep.)

Scientific Machine Learning in Academia and Beyond: From Theory to Real-World Impact (in Industry)

- Dates: June 17, 2025, 12.30–17.30
- Location: Crowne Plaza Hotel, Utrecht
- Lunch & networking: 12.30–13.30; closing discussion & drinks to follow.
- An afternoon with talks, case studies, and lively discussions on advancing scientific machine learning from theory to real-world deployment tackling core challenges like *uncertainty quantification*, data assimilation, graph-based modelling, and operator learning.
- Confirmed plenary speakers:
 - Max Welling (UvA, CUSP AI)
 - Stefan Kurz (ETH Zürich & Bosch)
 - Koen Strien (Ignition Computing)
 - Maxim Pisarenco (ASML)
 - Jan Willem van de Meent (UvA)

CWI Research Semester Programme:

Bridging Numerical Analysis and Scientific Machine Learning: Advances and Applications

Co-organizers: Victorita Dolean (TU/e), Alexander Heinlein (TU Delft), Benjamin Sanderse (CWI), Jemima Tabbeart (TU/e), Tristan van Leeuwen (CWI)

- Autumn School (October 27–31, 2025):
 - Chris Budd (University of Bath)
 - Ben Moseley (Imperial College London)
 - Gabriele Steidl (Technische Universität Berlin)
 - Andrew Stuart (California Institute of Technology)
 - Andrea Walther (Humboldt-Universität zu Berlin)
 - Ricardo Baptista (University of Toronto)
- Workshop (December 1–3, 2025):
 - 3 days with plenary talks (academia & industry) and an industry panel
 - Confirmed plenary speakers:
 - Marta d'Elia (Atomic Machines)
 - Benjamin Peherstorfer (New York University)
 - Andreas Roskopf (Fraunhofer Institute)

Join us for inspiring talks, hands-on sessions, and industry collaboration!

Summary

Surrogate models for varying computational domains

• CNNs yield an surrogate model approach for predicting fluid flow inside varying computational domains; the model can be trained using data and/or physics.

Multilevel FBPINNs and Extensions

- Multilevel FBPINNs scale PINNs to large domains and high frequencies via domain decomposition and multilevel hierarchies.
- Extensions: Multifidelity stacking improves performance, e.g., for time-dependent problems; DeepONets predict parametrized problems with enhanced scalability.

Acknowledgements

- The Helmholtz School for Data Science in Life, Earth and Energy (HDS-LEE)
- German Research Foundation (DFG) [project number 277972093]

Thank you for your attention!

Topical Activity Group Scientific Machine Learning

