<=2» SCalLA fuDelft

Domain Decomposition for Physics-Informed Neural
Networks

Linear and Nonlinear Function Approximation and Operator Learning

Alexander Heinlein?
Workshop on the Statistical Theory of Neural Networks, Egmond aan Zee, The Netherlands, May 5-8,
2025

! Delft University of Technology



Numerical Analysis and Machine Learning

Numerical methods

Machine learning models

Based on physical models Driven by data
+ Robust and generalizable + Do not require mathematical models
— Require availability of mathematical — Sensitive to data, limited extrapolation
models capabilities

Scientific machine learning (SciML)

Combining the strengths and compensating the weaknesses of the individual approaches:
numerical methods improve machine learning techniques

machine learning techniques  assist numerical methods
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Physics-Informed Neural Networks (PINNs) — Idea

In Lagaris et al. (1998), the authors solve the
boundary value problem

—AV,(x,0) =1 on [0,1],
\Ut(O,G) = \Ut(l,e) = O,

via a collocation approach:

min Y (AWi(x,6) +1)°

Boundary conditions ...
... can be enforced explicitly via the ansatz:
V,(x,0) = A(x) + F(x,NN(x, 0))

= A satisfies the boundary conditions
= F does not contribute to the
boundary conditions
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Physics-Informed Neural Networks (PINNs)

In the physics-informed neural network (PINN) approach
introduced by Raissi et al. (2019), a neural network is
employed to discretize a partial differential equation

Nl =/, inQ.
PINNs use a hybrid loss function:
L(0) = wdatasLdata(0) + wppeLrpe(O),

where wyata and wppe are weights and

Lawa(0) = 1 — 3" (u(5,6) — w)?
= u\ X — Uuj -
data Naata 4—i=1 " Yo Hybrid loss
1 Nppe D Small data Some data Big data
Lrpe(8) = > (M[u](xi, 0) — f(xi))"-
Nppe £—i=1
See also Dissanayake and Phan-Thien (1994); Lagaris et al. (1998).
Advantages Drawbacks
L. Lots of physics Some physics No physics
= “Meshfree” = Training cost and
= Small data robustness = Known solution values can be
= Generalization properties = Convergence not included in Lyata
= High-dimensional problems well-understood . .
= Inverse and parameterized = Difficulties with scalability = Initial and boundary conditions
problems and multi-scale problems are also included in Lyata
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Error Estimate & Spectral Bias

Estimate of the generalization error (Mishra and Molinaro (2022))
The generalization error (or total error) satisfies

&6 < Cppeét + CrpE cMe NT/P

quad

8c = &¢ (X, 0) = |lu—u”|,, general. error (V Sobolev space, X training data set)
= &7 training error (/” loss of the residual of the PDE)

= N number of the training points and o convergence rate of the quadrature

= Cppe and Cyuag constants depending on the PDE, quadrature, and neural network

Rule of thumb: “As long as the PINN is trained well, it also generalizes well”

4 4 4 4
2 2 2 2
0 0 0 0
-2 -2 -2 -2
-4 -4 -4 -4
-6 -6 -6 -6
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
100 iterations 1000 iterations 10000 iterations 80000 iterations

Rahaman et al., On the spectral bias of neural networks, ICML (2019)

Related works: Cao et al. (2021), Wang, et al. (2022), Hong et al. (arXiv 2022), Xu et al (2024), ...

A. Heinlein (TU Delft) Statistical Theory of Neural Networks
- TN



Scaling of PINNs for a Simple ODE Problem

Solve Lo (a) PINN (w =1, 2 layers, 16 hidden units) 0.075 (b) PINN (w = 15, 2 layers, 16 hidden units)
. —— Exact solution —— Exact solution
—— PINN 0030 —— PINN
/ 05
« = cos(wx), 002
- 5 0.000
~-0.025
u (O) = 07 -05 -0.050
-1.0 -0.075
. -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
for different values of w : ) ' ’ ) )
(c) PINN (w = 15, 4 layers, 64 hidden units) (d) PINN (w =15, 5 layers, 128 hidden units)
usi ng PINNs with 0075 — Exact solution 0075 —— Exact solution
0.050 ~— PINN 0.050 =PIl
varying network 003 0025
0.000 > 0.000
capacmes. ~0.025 04025
-0.050 ~-0.050
-0.075 -0.075
-6 -4 -2 o - 3 4 6 -6 -4 -2 1] 2 4 6
Scaling issues . () Test loss
= Large computational o
domains @ —— PINN (w=1, 2 layers, 16 hidden units)
81072 —— PINN (w =15, 2 layers, 16 hidden units)
H 3 —— PINN (w = 15, 4 layers, 64 hidden units)
- Sma" freq uencies 1073 —— PINN (w =15, 5 layers, 128 hidden units)
1074
Cf. Moseley, Markham, and 0 10000 20000 30000 40000 50000
. Training step
Nissen-Meyer (2023)
(a) 321 free parameters (d) 66433 free parameters
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Scaling of PINNs for a Simple ODE Problem

S I (a) PINN (w =1, 2 layers, 16 hidden units) (b) PINN (w = 15, 2 layers, 16 hidden units)
olve 10 0075
— Exact solution — Exact solution
— PINN 0.050 —— PINN
! 05 0.025
« = cos(wx),
5 00 . 0000
-0.025
u (O) = O7 -05 ~0.050
-10 —0.075
. 6 4 =2 0 2 4 6 6 s =2 0 2 4 3
for different values of w * B . -
(c) PINN (w = 15, 4 layers, 64 hidden units) (d) PINN (w =15, 5 layers, 128 hidden units)

0.075

using PINNs with 007 — Exact salution —
0.050 ~—— PINN 0.050 - PINN
varying network 0025 0025
0.000 > 0.000
capacities. ~002s e
—-0.050 ~-0.050
-0.075 —-0.075
6 4 2 0 2

-6 -4 -2 o - 3 4 6 4 6
Scaling issues . () Test loss
= Large computational o
domains @ . 2 layers, 16 hidden units)
f 1072 5, 2 layers, 16 hidden units)
. o .5, 4 layers, 64 hidden units)
= Small frequencies 107 Replace the global network by a coupled - clinyers, 128 hiddenunits
_, local networks defined on an overlappin
10
Cf. Moseley, Markham, and 0 domain decomposition.
Nissen-Meyer (2023) T
(a) 321 free parameters (d) 66433 free parameters
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Domain Decomposition Methods

Decomposing a large global problem into

smaller local problems:
= Better robustness and scalability of
numerical solvers

= Improved computational efficiency

Images based on Heinlein, Perego, Rajamanickam (2022)

= Introduce parallelism

Historical remarks: The alternating
Schwarz method is the earliest domain

decomposition method (DDM), which has Q0
been invented by H. A. Schwarz and
published in 1870: oM o Iy o
= Schwarz used the algorithm to establish ! : oY,
the existence of harmonic functions Iy

with prescribed boundary values on
regions with non-smooth boundaries.
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Domain Decomposition Methods and Machine Learning — Literature

A non-exhaustive literature overview:

= Machine Learning for adaptive BDDC, FETI-DP, and AGDSW: Heinlein, Klawonn, Lanser, Weber
(2019, 2020, 2021, 2021, 2021, 2022); Klawonn, Lanser, Weber (2024)

= cPINNs, XPINNs: Jagtap, Kharazmi, Karniadakis (2020); Jagtap, Karniadakis (2020)

= Classical Schwarz iteration for PINNs or DeepRitz (D3M, DeepDDM, etc):: Li, Tang, Wu, and Liao
(2019); Li, Xiang, Xu (2020); Mercier, Gratton, Boudier (arXiv 2021); Dolean, Heinlein, Mercier,
Gratton (subm. 2024 / arXiv:2408.12198); Li, Wang, Cui, Xiang, Xu (2023); Sun, Xu, Yi (arXiv 2023,
2024); Kim, Yang (2023, 2024, 2024)

= FBPINNs, FBKANs: Moseley, Markham, Nissen-Meyer (2023); Dolean, H., Mishra, Moseley (2024,
2024); H., Howard, Beecroft, Stinis (2025); Howard, Jacob, Murphy, H., Stinis (arXiv 2024)

= DD for RaNNs, ELMS, Random Feature Method: Dong, Li (2021); Dang, Wang (2024); Sun, Dong,
Wang (2024); Sun, Wang (2024); Chen, Chi, E, Yang (2022); Shang, H., Mishra, Wang (2025)

= DDMs for CNNs: Gu, Zhang, Liu, Cai (2022); Lee, Park, Lee (2022); Klawonn, Lanser, Weber (2024);
Verburg, Heinlein, Cyr (2025)

An overview of the state-of-the-art in 2024:

\ A. Klawonn, M. Lanser, J. Weber
Machine learning, domain decomposition methods — a survey

Computational Science and Engineering. 2024
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https://arxiv.org/abs/2408.12198

Finite Basis Physics-Informed Neural Networks (FBPINNs)

FBPINNSs (Moseley, Markham, Nissen-Meyer (2023)) 1D single-frequency problem
[PINN solution]
0.075

FBPINNs employ the network architecture
J 0.050 : IEIXNalit pen
U(017 sy 0J) = Zj:l wjuj (01) 0.025
and the loss function o
-0.050
ae NZ,I ZX_ ol 8) = 1)” |
i€ -6 -4 -2 0 2 4 6

1

0.5

[Moseley, Markham, Nissen-Meyer (2023)]
! - 107 —— FBPINN 107 —————
waug (04) — PINN — PINN
1072 WWM 1072 ww

1 0 20000 40000 00 05 1.0 15 20
Training step FLOPS lel3
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Finite Basis Physics-Informed Neural Networks (FBPINNs)

FBPINNSs (Moseley, Markham, Nissen-Meyer (2023)) 1D single-frequency problem

FBPINNs employ the network architecture \FD%Z'NN global solution — Bactslution
J
u(01, e, 0_]) = E  wjuj (91) 0.025
j=1 0.000
and the loss function o025

”‘—NZ,I Zx,. il 6) — f0e)T |
[FBPINN local solutions | |
1 =TI
| AR AN

0.000 1
0.5 1l 1 I
-0.025 “ ‘f ‘
I I
0 -0.050 w | |
[Moseley, Markham, Nissen-Meyer (2023)]7 6
T 1077 1071
FBPINN —— FBPINN
PINN —— PINN
1072 10-2
01072 = 10-3
1074 10-4
1 0 20000 40000 00 05 1.0 15 20
Training step FLOPS 1le13
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Multi-Level FBPINNSs

Muilti-level FBPINNs (ML-FBPINNs)

ML-FBPINNs (Dolean, Heinlein, Mishra,
Moseley (2024)) are based on a hierarchy
of domain decompositions:

K Q (]
I |
e ,
level 1 | o® 1
... ]
AR S A AR e
level 2 | (1% - o ]
o BT )
o® o® o® o®

ymmm sy S -ppe - opa-s-sppo-opme-oon y
level 4 LG I n(“’l Q(4>' nwl Q(AJI Q(4>' ol l o
A I R A R ]

This yields the network architecture

L N
u(6r,...000) =" >« (6]

and the loss function

N %ZN:I (Y 0w 10, 6)—f(x))’
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Multi-Level FBPINNSs

Multi-level FBPINNs (ML-FBPINNs) Multi-Frequency Problem

ML-FBPINNSs (D0|ean’ Heinlein, Mishra, Let us now consider the two-dimensional
R Iti-fi Lapl b d | bl
Moseley (2024)) are based on a hierarchy A

n
of domain decompositions: —Au=2 E (wi)? sin (wimx) sin (wiTy) in Q,
i=1
vl 1 | ¢ u=20 on 0%,
level 2§ af - o | with w; =27
o® o o® o® For increasing values of n, we obtain the analytical

[E—— RSN S SSSSSSSSESNNNSSNN RS ESSE ,  solutions:
level 4 [N I o l oW ' oW l oW l oW ' oW l o® ! —
This yields the network architecture

L N
u(0§1)7 IO 79_(11(_2)) = ZI:I Zi:l oJJ(I) uJ(I) (al(l))

and the loss function

- %Z,N:l (n[zx,@o & (I 1(xi, 0(’ )—f(x,-))?
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Multi-Level FBPINNSs for a Multi-Frequency Problem — Strong Scaling

©  FBPINN ®  FBPINN ®  FBPINN ®
[1,2,4,8] [1,2, 4,8, 16] [1,2,4,8,16,32] [1,2, 4 8 16 32 64]
FBPINN

(320, 320) (320, 320) 320, 320)
[1, 8, 64]

(320, 320) Exact solution

%
|

FBPINN FBPINN
[1,2] [1,2,4]
(320, 320) (320, 320)

¥V FBPINN

#  SA-PINN
5-256
(320

L PINN

@ FourierPINN
5-256 5-256 [64]
(320, 320) (320, 320) (320, 320)

100 4 10t 4
o 10°4 1004 +
K 8
H £ v
£ £
2 2

1072 4 10724

1073 4 10-3 4

o 5000 10000 15000 20000 25000 30000 102 10°
Training step Total time elapsed (s)

A. Heinlein (TU Delft) Statistical Theory of Neural Networks




Multi-Frequency Problem — What the FBPINN Learns

FBPINN
[1,2 4,8, 16]

(80, 80)
1.00
0.75
0.50
0.25

0.00

1.00
0.75
0.50
0.25

0.00

0.0 0.5 1.0

Cf. Dolean, Heinlein, Mishra, Moseley (2024).
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Multi-Level FBPINNSs for a Multi-Frequency Problem — Weak Scaling

FBPINN FBPINN ©  FBPINN ® FBPINN ®  FBPINN ® FBPINN
11,2, 41 [1,2,4,8] [1,2,4,8,16] [1,2,4,8,16,32] [1,2, 4,8, 16, 32, 64]
(20, 20 (40, 40) 80, 80) ( (320, 320)

160, 160)

10° 4 10° 4
10714 ° 1071 4 +
@ ® "
a b
° °
= o +
7 e a
s <4 £
: | - +
] |
-2 | -2 |
E 10 E 10 +
® ©
E E
S S
= =
1073 4 1073 4
0 5000 10000 15000 20000 25000 30000 102
Training step Total time elapsed (s)

— Details and results for the Helmholtz equation can be found in Dolean, Heinlein,

Mishra, Moseley (2024).
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Domain decomposition for randomized
neural networks




Randomized Neural Networks (RaNNs)

Neural networks

A standard multilayer perceptron (MLP) with L

hidden layers is a parametric model of the form
u(x,0) = Fyy - FP o o FMbi(x),

where A is linear, and the ith hidden layer is
nonlinear FV"%(x) = o(W; - x + b;).

In order to optimize the loss function
mein L(0),

all parameters 6 = (A, Wi, by, ..
trained.

., Wy, by) are

A. Heinlein (TU Delft)

Randomized neural networks

In randomized neural networks (RaNNs) as
introduced by Pao and Takefuji (1992),

u(x,A)=Fy - F/" " o...0oF" " (x),

the weights in the hidden layers are randomly
initialized and fixed; only A is trainable.

Q—0
CrARE D
QS
® :
OO
The model is linear with respect to the trainable
parameters A, and the optimization problem reads

mjn L(A).

This can simplify the training process.

Statistical Theory of Neural Networks




Physics-Informed Randomized Neural Networks (PIRaNNs)

Physics-informed randomized neural networks (PIRaNNs) make use of the aforementioned
linearization of the model with respect to the trainable parameters as well as the fact that RaNNs
retain universal approximation properties, as shown in Igelnik and Pao (1995).

Consider a linear differential operator 4. Then,
solving the PDE

Ala]l =/, inQ.

Enforcement of boundary conditions
We construct u to explicitly satisfy BCs:

u(x,A) = G(x) + L(x)N(x, A)
using PIRaNNs yields the linear equation system

= 11 is a feedforward neural network with
Alul(xi) = f(xi), i=1,..., NepE, trainable parameters A
= G and L are fixed functions, chosen such
where Nppe is the number of collocation points. that u satisfies the boundary conditions

The resulting linear equation system
HA=f
generally does not have a unique solution. In fact, H is typically rectangular, dense, and

ill-conditioned.

Solving the system using least squares corresponds to applying the classical PINN loss function to
the RaNN model u. As we will see, this approach offers a potentially efficient alternative.
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Domain Decomposition-Based PIRaNNs

FBPINNSs (Moseley, Markham, Nissen-Meyer (2023))  Domain decomposition for RaNNs

FBPINNs employ the network architecture We employ the FBPINNs approach; cf. Shang,
u(By,...,0)) = ZJ (@) Heinlein, Mishra, Wang (acc. 2025). This is
. j=1 closely related to the random feature method

and the loss function (RFM) by Chen, Chi, E, Yang (2022). In

L= % Z:\; (H[ZXIEQJ wju](xi, ;) — f(x,-))'2 particular, we soJIve
= AR i (A))(x) = 1(x),

P o
\ for i =1,..., Nppg; the boundary condtions are
0.5 - incorporated directly into the u;.
2 Qo \ S EEm— ;
| | |

H
0 250 500
o

o
o

Q4 10 \1)

1000

1200

haoo

by
00 02 04 06 08 10

The hidden weights are randomly initialized, the
1 resulting matrices H and H' H are block-sparse.
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Preconditioning for Domain Decomposition-Based PIRaNNs

One-level Schwarz preconditioner

Overlap 6 = 1h Solution of local problem

Based on an overlapping domain decomposition,
we define a one-level Schwarz operator for
K=H"H

N
=i _ T—1p.
Mod K = _ RIK'RK,

where R; and RIT are restriction and prolongation

operators corresponding to Q/, and Kj := R,-KRI.T.

Here, the matrix K; could be singular in which

case we use a pseudo inverse KI.‘*' instead of Kl._l.

We also consider restricted and scaled additive
Schwarz preconditioners; cf. Cai, Sarkis (1999).

A. Heinlein (TU Delft)

Singular Value Decomposition

As discussed before, on each subdomain €2;, the RaNN is
ui(x, Aj) = F - F/ "% 0. .0 F{""" (x)
T
¢k(x)] .

where k is the width of the last hidden layer and the ®,
are the randomized basis functions.

Consider a reduced SVD & = UX VT, where the entries
of the matrix are ®; ; = ®;(x;). Then, we consider

= A; [1(x)

o(x, A7) = AV [1(x) o]

where VT is obtained by omitting the right singular
vectors corresponding to small singular values.

O Q\ O
@A G ® O

Sy o
@ : : @

oAl 5
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Results for the Multi-Frequency Problem (n=2)

. HH
105 ——

X /

Eigenvalues

0 50 100 150 200 250

+ x M@HTH
02 o MAHTH

+ MHTH

Imaginary axis
°
S

2 4 6 8 10 12 14 16
Real axis
-1 _ -1 _ =1 -1 _ =u -1 _ =
M= =1 M _MAS M _MRAS M _MSAS
iter €2 | iter e |iter €2 | iter €2
CG > 2000 1.95-1072| 8 5.03.1073| — — — —

CGS > 2000 2.63-1072| 4 5.04-1073| 24 5.03-1073| 6 5.04.1073
BICG > 2000 1.03-1072| 8 5.08-1073| 32 5.05.10~3| 11 5.09-10~3
GMRES | > 2000 8.68-10-2| 13 5.07-1073| 31 5.06-1073| 11 5.08-1073

4 x 4 subdomains; DoF = 256; N = 1600; 6° € U(—1,1); stop.: |[M~1rk||2/||M~1r0|| 2 < 1075
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Results for the Multi-Frequency Problem (n=2) — Effect of the SVD

We now investigate the effect of omitting right singular vectors associated with singular values
below a varying tolerance 7.

7 DoF M1 Omin  Tmax iter €2
/] 1071° 10° | >2000 3.72:102

1074 512 M, | 107 10° 27 5.46-107°
Mgis | 1077 10° 30 5.49:107°

/| 107®%  10° | >2000 3.75-1072

1073 436 M, | 107> 10° 16 1.28-107*
Mgis | 107¢  10% 18 1.28:107*

/| 107> 10° | >2000 4.51-1072

1072 335 M,d | 107% 10* 14 7.14.107*
Mgis | 1074 103 13 7.11.107*

/| 1073 10° | >2000 5.01-102

107 212 M, | 1072 10° 12 7131073
Mgis | 1073 102 11 7.10-10°3

4 x 4 subdomains; N = 1600; 8° € U(—1,1); stop.: ||[M~1rk||2/[|M~1r0|| 2 < 105
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Results for the Multi-Frequency Problem

10— Py 107t
8 8 +
o | % +
= “ s} +
g 102 . g 10 _+
= E
£ 5
5 2
g 20~
o 5000 10000 15000 20000 25000 30000 102
Training step Total time elapsed (s)
Multi-level FBPINNS; cf. Dolean, Heinlein, Mishra, Moseley (2024)
100 100
) v R o 6=2
10 e GMRES + 6=3
107t -1 -1
. . é 10 . v g 10 .
£ 10 e « Vv 2 .
H g ov 2 .
,_Su 1073 E 10-2 ov E 10-2 .
3 19-4 & &
5 10 3 = +
& E E .
~ s 5
107 = 107 = 107 *
10°° *
1077
104 1074
0 20 40 60 80 100 100 10! 102 103 100 101 102
Iteration step Total time elapsed (s) Total time elapsed (s)
DD-PIRaNNs; cf. Shang, Heinlein, Mishra, Wang (acc. 2025)
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Domain decomposition-based
physics-informed deep operator networks




Deep Operator Networks (DeepONets / DONs)

Neural operators learn operators between function spaces using neural networks. Here, we learn the
solution operator of a initial-boundary value problem parametrized with p1, ..., pm using DeepONets
as introduced in Lu et al. (2021).

P1 by

: Single-layer case

P bp The DeepONet architecture is based on the

@ single-layer case analyzed in Chen and

- Chen (1995). In particular, the authors

@ _, : show universal approximation properties

th for continuous operators.

~

The architecture is based on the following ansatz for presenting the parametrized solution

P
U, pm) (6 8) = D bilpr, - pm) - ti(x, 1)
=1 N——— N~

branch trunk
Physics-informed DeepONets Other operator learning approaches
DeepONets are compatible with the PINN » FNOs: Li et al. (2021)
approach but physics-informed DeepONets = PCA-Net: Bhattacharya et al. (2021)

= Random features: Nelsen and Stuart (2021)
= CNOs: Raoni¢ et al. (2023)

A. Heinlein (TU Delft) Statistical Theory of Neural Networks
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Deep Operator Networks (DeepONets / DONs)

Neural operators learn operators between function spaces using neural networks. Here, we learn the
solution operator of a initial-boundary value problem parametrized with p1, ..., pm using DeepONets
as introduced in Lu et al. (2021).

p1 L Branch Net by
: : Modified architecture
Pm Encoder by

In our numerical experiments, we employ the

@ modified DeepONet architecture

Encoder t introduced in Wang, Wang, and Perdikaris
\I—I/ 5 (2022).
Trunk Net s

The architecture is based on the following ansatz for presenting the parametrized solution

P
U, pm) (6 8) = D bilpr, - pm) - ti(x, 1)
=1 N——— N~

~

branch trunk
Physics-informed DeepONets Other operator learning approaches
DeepONets are compatible with the PINN » FNOs: Li et al. (2021)
approach but physics-informed DeepONets = PCA-Net: Bhattacharya et al. (2021)

= Random features: Nelsen and Stuart (2021)

(Pl-DeepONets) are challenging to train.
= CNOs: Raoni¢ et al. (2023)
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Finite Basis DeepONets (FBDONSs)

=
T ¥V
“:‘{:.},, fzgé
. Q e ¢
Q Q3 .,
™
= HH
Howard, Heinlein, Stinis (in prep.)
Variants:
Shared-trunk FBDONSs (ST-FBDONSs) Rl -agzinl0])\H
The trunk net learns spatio-temporal basis Combination of the stacking multifidelity approach
functions. In ST-FBDONs, we use the same with FBDONS.
trunk network for all subdomains. Heinlein, Howard, Beecroft, Stinis (2025)
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FBDONSs — Wave Equation

Wave equation Parametrization
d? d? Initial conditions for s parametrized b
GHO RO (x, 1) € [0, 1]2 paramerieec By
dt? dx? b = (bi,...,bs) (normally distributed):

st(x,0) =0,x € [0,1], s(0,t) =s(1,t) =0, 5(x,0) = Zizl bysin(nmx) x € [0,1]

Solution: s(x, t) = Zi:1 by sin(nmx) cos(nm/2t)  Training on 1000 random configurations.
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Scientific Machine Learning in Academia and Beyond:

From Theory to Real-World Impact (in Industry)

= Dates: June 17, 2025, 12.30-17.30
= Location: Crowne Plaza Hotel, Utrecht -

= Lunch & networking: 12.30-13.30; closing !"‘ go'mPUt:]tional
discussion & drinks to follow. W >cience

= An afternoon with talks, case studies, and lively

discussions on advancing scientific machine
learning from theory to real-world deployment —
tackling core challenges like uncertainty
quantification, data assimilation, graph-based
modelling, and operator learning.

= Confirmed plenary speakers:
= Max Welling (UvA, CUSP Al)
= Stefan Kurz (ETH Zirich & Bosch)
= Koen Strien (Ignition Computing)
= Maxim Pisarenco (ASML)
= Jan Willem van de Meent (UvA)



https://www.computationalsciencenl.nl/en/events/scientific-machine-learning-in-academia-and-industry/

CWI Research Semester Programme:

Bridging Numerical Analysis and Scientific Machine Learning: Advances and Applications

Co-organizers: Victorita Dolean (TU/e), Alexander Heinlein (TU Delft), Benjamin Sanderse
(CWI), Jemima Tabbeart (TU/e), Tristan van Leeuwen (CWI)

= Autumn School (October 27-31, 2025):
= Chris Budd (University of Bath)
= Ben Moseley (Imperial College London) Centrum Wiskunde & Informatica
= Gabriele Steidl (Technische Universitat Berlin)
= Andrew Stuart (California Institute of Technology)
= Andrea Walther (Humboldt-Universitat zu Berlin)
= Ricardo Baptista (University of Toronto)

= Workshop (December 1-3, 2025):

= 3 days with plenary talks (academia & industry)
and an industry panel
= Confirmed plenary speakers:
= Marta d’Elia (Atomic Machines)
= Benjamin Peherstorfer (New York University)

= Andreas Roskopf (Fraunhofer Institute)

Join us for inspiring talks, hands-on sessions, and industry collaboration!


https://www.cwi.nl/en/education/semester-programmes/cwi-research-semester-programs/synergies-in-numerical-linear-algebra-and-machine-learning/

Summary

Muiltilevel Finite Basis Physics Informed Neural Networks (ML-FBPINNSs)
= Schwarz domain decomposition architectures improve the scalability of PINNs to
large domains / high frequencies, keeping the complexity of the local networks low.
= As classical domain decomposition methods, one-level FBPINNSs are not scalable to
large numbers of subdomains; multilevel FBPINNs enable scalability.

Extensions to Stacking Multifidelity PINNs, RaNNs, and DeepONets

= Multifidelity stacking PINNs with FBPINNSs improve accuracy and efficiency for
time-dependent problems.

= RaNNs reduce computational cost but face ill-conditioning, mitigated by Schwarz
preconditioning and SVD.

= DeepONets provide efficient predictions for parametrized problems but struggle with
multiscale problems. Domain decomposition improves scalability and performance.
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Thank you for your attention!

Scientific Machine

Learning E.



https://ems-tag-sciml.github.io/
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