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Artificial Intelligence in Science and Engineering

Biomedical

Medical Imaging  Epidemiology Engineering Geoscience Fluid Mechanics Civil Engineering

Inverse Problems Inference
Use strong inductive biases Predict complex, nonlinear
to infer variables from data relations from data
Challenges Opportunities
= Data are often scarce and noisy, yet we must = Integrating physics with data-driven models
deliver accuracy, reliability, and robustness enhances generalization, interpretability, and
= Multi-physics, multi-scale systems require reliability
robust coupling, scalability, and scale = Encoding physical laws enables trustworthy
adaptation of learning algorithms predictions and efficient surrogates for real-time

predictions and control (digital twins)
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Scientific Machine Learning as a Standalone Field

Priority Research Directions

Foundational research themes:

= Domain-awareness

BASIC RESEARCH NEEDS FOR
Scientific Machine Learning " Interpretability

Core Technologies for Artificial Intelligence

= Robustness

Capability research themes:
= Massive scientific data
analysis
= Machine

ENERGY .
learning-enhanced

modeling and simulation

‘ N. Baker, A. Frank, T. Bremer, A. Hagberg, Y. Kevrekidis, H. Najm, . Intelligent automation

M. Parashar, A. Patra, J. Sethian, S. Wild, K. Willcox, and S. Lee.

Workshop Report on Basic Research Needs for Scientific Machine and decision-support for
Learning: Core Technologies for Artificial Intelligence.
: mpl m
USDOE Office of Science (SC), Washington, DC (United States), complex systems
2019.

A. Heinlein (TU Delft) VORtech Lunch Lecture 2/28




Scientific Computing and Machine Learning

Numerical methods Machine learning models

Based on physical models Driven by data
+ Robust and generalizable + Do not require mathematical models
— Require availability of mathematical — Sensitive to data, limited extrapolation
models capabilities

Scientific machine learning
Combining the strengths and compensating the weaknesses of the individual approaches:
numerical methods improve machine learning techniques

machine learning techniques assist numerical methods
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Numerical Analysis and Machine Learning

Multiscale Methods Numerial Optimal Transport

High-Dimensional PDEs Bayesian Inference
Structure-Preserving Methods o
Finite Element Methods m—- pﬂ‘;';?s’.‘“ﬁfmﬁa ﬁiﬁﬂﬂmg
9 Vari-dnm] Inequalities g °
\ umgmal Analysis Scientific Machine Learning

o il Decp Learning
Uncertainty Quanification Data-Driven Reduced Modeling

A Posteriori Error Estimation Hybl'ld MOdEhIlg
e , Calculus of Vanationy i Medical Imaging
Inverse Problems Manifold Learning
e i g
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Scientific Machine Learning Techniques

e Y

NA-enhanced ML

Examples:

= physics-informed machine learning

= preconditioned optimizers and
gradient flow

= domain-decomposed and multiscale
neural networks

Numerical

Analysis (NA) Hybrid Models

ML-enhanced NA

Examples:

= learned discretizations and iterative
solvers

= inverse problems,

s reduced order and surrogate
models
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SCaLA - Scalable Scientific Computing and Learning Algorithms

Scientific
Machine
Learning

Performance
Computing

Method Development




Physics-informed neural networks — Adaptive sampling and localization via
domain decompostion

Based on joint work with

Victorita Dolean (Eindhoven University of Technology)
Bianca Giovanardi, Coen Visser (Delft University of Technology)
Amanda A. Howard and Panos Stinis (Pacific Northwest National Laboratory)
Siddhartha Mishra (ETH Ziirich)

Ben Moseley (Imperial College London)

Deep operator networks — Error analysis and localization via domain
decompostion

Based on joint work with

Damien Beecroft (University of Washington)
Amanda A. Howard and Panos Stinis (Pacific Northwest National Laboratory)
Johannes Taraz (Delft University of Technology)

Surrogate models for varying computational domains
Based on joint work with

Eric Cyr (Sandia National Laboratories)
Matthias Eichinger, Viktor Grimm, Axel Klawonn (University of Cologne)
Corné Verburg (Delft University of Technology)



Physics-informed neural networks —
Adaptive sampling and localization via
domain decompostion



Physics-Informed Neural Networks (PINNs) — Idea

In Lagaris et al. (1998), the authors solve the Boundary conditions . ..
boundary value problem

—AV,(x,0) =1 on [0,1],
\Ut(O, 0) = \Ut(l, 0) = 0,

via a collocation approach:

... can be enforced explicitly via the ansatz:
wf(xa 0) = A(X) + F(X7 NN(Xa 0))

= A satisfies the boundary conditions
= F does not contribute to the

min Y (AWi(x,6) +1)°

boundary conditions

0.2 T T T T T T 100 0.2 T T T T T T
— W(xi,0) — (AU (;,0) + 1) — V¢(x;,0) — (AW (x;,0) +1)2
1
0.1 50 0.1+
0 0 0r 0
—0.1 —50 —0.1
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Physics-Informed Neural Networks (PINNs)

In the physics-informed neural network (PINN) approach
introduced by Raissi et al. (2019), a neural network is
employed to discretize a partial differential equation

Nl =/, inQ.
PINNs use a hybrid loss function:
L(0) = wdatasLdata(0) + wppeLrpe(O),

where wyata and wppe are weights and

Lawa(0) = 1 — 3" (u(5,6) — w)?
= u\ X — Uuj -
data Naata 4—i=1 " Yo Hybrid loss
1 Nppe D Small data Some data Big data
Lrpe(8) = > (M[u](xi, 0) — f(xi))"-
Nppe £—i=1
See also Dissanayake and Phan-Thien (1994); Lagaris et al. (1998).
Advantages Drawbacks
L. Lots of physics Some physics No physics
= “Meshfree” = Training cost and
= Small data robustness = Known solution values can be
= Generalization properties = Convergence not included in Lyata
= High-dimensional problems well-understood . .
= Inverse and parameterized = Difficulties with scalability = Initial and boundary conditions
problems and multi-scale problems are also included in Lyata
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Error Estimate & Spectral Bias

Estimate of the generalization error (Mishra and Molinaro (2022))
The generalization error (or total error) satisfies

&6 < Cppeét + CrpE cMe NT/P

quad
= 8¢ =66 (X,0) = |lu—u"|, general. error (V Sobolev space, X training data set)
= &7 training error (/” loss of the residual of the PDE)
= N number of the training points and o convergence rate of the quadrature
= Cppe and Cyuag constants depending on the PDE, quadrature, and neural network

Rule of thumb: “As long as the PINN is trained well, it also generalizes well”

4 4 4 4
2 2 2 2
0 0 0 0
=5 -2 -2 -2
-4 -4 -4 -4
-6 -6 -6 -6
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
100 iterations 1000 iterations 10000 iterations 80000 iterations

Rahaman et al., On the spectral bias of neural networks, ICML (2019)

Related works: Cao et al. (2021), Wang, et al. (2022), Hong et al. (arXiv 2022), Xu et al. (2024), ...
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PACMANN - Point Adaptive Collocation Method for Artificial Neural Netwo

In Visser, Heinlein, and Giovanardi (subm. 2025; arXiv:2411.19632),
the collocation points are updated by solving the min-max problem

min |:wdatao€data(0) + max wppeLrpe(X, 0) | .
6 XcQ

This idea was already mentioned in Wang et al. (2022). Different from
other residual-based adaptive sampling methods, existing collocation
points are moved using gradient-based optimizers such as gradient
ascent, RMSprop (Hinton (2018)), or Adam (Kingma, Ba (2017)).

Algorithm 1: PACMANN with iteration counts P and T and stepsize s

Sample a set X of Nppg collocation points using a uniform sampling method;
while stopping criterion not reached do
Train the PINN for P iterations;
for k=1,..., T do
Compute squared residual R(x;) = (N[u](x;,0) — f(x;))? for all x; € X;
Compute gradient VxR(x;) for all x; € X;
Move the points in X according to the chosen optimization algorithm and stepsize s;
end

Resample points in X that moved outside 2 based on a uniform probability distribution;
end
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https://arxiv.org/abs/2411.19632

PACMANN - Point Adaptive Collocation Method for Artificial Neural Networks

In Visser, Heinlein, and Giovanardi (subm. 2025; arXiv:2411.19632),
the collocation points are updated by solving the min-max problem

min |:wdatae€data(0) + max wppeLrpe(X, 0) | .
6 XcQ

This idea was already mentioned in Wang et al. (2022). Different from
other residual-based adaptive sampling methods, existing collocation
points are moved using gradient-based optimizers such as gradient
ascent, RMSprop (Hinton (2018)), or Adam (Kingma, Ba (2017)).

Comparison against different methods

sampling method L; relative error mean
2500 coll. points mean 1SD  runtime [s]
uniform grid 25.9% 14.2% 425
Hammersley grid 0.61%  0.53% 443
random resampling  0.40%  0.35% 423
RAR 0.11% 0.05% 450
RAD 0.16%  0.10% 463
RAR-D 0.24%  0.21% 503

PACMANN-Adam  0.07% 0.05% 461
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PACMANN - Point Adaptive Collocation Method for Artificial Neural Networks

In Visser, Heinlein, and Giovanardi (subm. 2025; arXiv:2411.19632),
the collocation points are updated by solving the min-max problem

min [wdataefdata(e) + max wppeLrpe(X, 0) | .
6 XcQ

This idea was already mentioned in Wang et al. (2022). Different from
other residual-based adaptive sampling methods, existing collocation
points are moved using gradient-based optimizers such as gradient
ascent, RMSprop (Hinton (2018)), or Adam (Kingma, Ba (2017)).

Loss distribution after 25000 training steps Final loss distribution after 50 000 training steps

1072

-0.50

-0.75

~1.00 =25
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https://arxiv.org/abs/2411.19632

Scaling of PINNs for a Simple ODE Problem

« = cos(wx),

w(0) = 0,

for different values of w
using PINNs with
varying network
capacities.

Scaling issues

= Large computational
domains

= Small frequencies

Cf. Moseley, Markham, and
Nissen-Meyer (2023)
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(a) PINN (w =1, 2 layers, 16 hidden units)

(b) PINN (w =15, 2 layers, 16 hidden units)

10 0.075
i — Exact solution —— Exact solution
—— PINN 0030 —— PINN
05 0.025
- 5 0.000
-0.025
05 ~0.050
— -0.075
-6 -4 -2 [ 2 4 6 -6 -a -2 [ 2 4 6
x x
(c) PINN (w = 15, 4 layers, 64 hidden units) (d) PINN (w =15, 5 layers, 128 hidden units)
0075 0.075
—— Exact solution —— Exact solution
0050 —— PINN 0.050 LA ey
0025 0.025
0000 5 0.000
-0.025 -0.025
-0050 ~0.050
-0.075 -0.075
-6 -4 -2 [ 2 4 6 -6 -a -2 [ 2 4 6
x x
(e) Test loss
10° 4
107t 4
@ —— PINN (w =1, 2 layers, 16 hidden units)
-2 . 2
S 10 —— PINN (w =15, 2 layers, 16 hidden units)
i —— PINN (w =15, 4 layers, 64 hidden units)
1073 —— PINN (w =15, 5 layers, 128 hidden units)
104
[ 10000 20000 30000 40000 50000

Training step

(a) 321 free parameters

(d) 66433 free parameters
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Scaling of PINNs for a Simple ODE Problem

S I (a) PINN (w =1, 2 layers, 16 hidden units) (b) PINN (w =15, 2 layers, 16 hidden units)
olve 10 0075
¢ — Exact solution — Exact solution
— PINN 0.050 —— PINN
! 05 0.025
« = cos(wx),
5 00 . 0000
-0.025
u (O) = O7 -05 ~0.050
-10 ~0.075
. 6 4 <2 0 2 4 3 6 s =2 0 2 3 3
for different values of w * B . -
(c) PINN (w = 15, 4 layers, 64 hidden units) (d) PINN (w =15, 5 layers, 128 hidden units)

0.075

using PINNs with 007 — Exact salution =
0.050 ~— PINN 0.050 L PINN
varying network 0025 0025
0.000 > 0.000
capacities. 002 e
—-0.050 ~-0.050
-0.075 —-0.075
—'5 -4 2] o 2

-6 -4 -2 ] x 4 6 4 6
Scaling issues > () Test loss
= Large computational o]
domains @ . 2 layers, 16 hidden units)
f 1072 5, 2 layers, 16 hidden units)
. o .5, 4 layers, 64 hidden units)
= Small frequencies 107 Replace the global network by a coupled = inyers. 128 hiddenunits
_, local networks defined on an overlappin
10
Cf. Moseley, Markham, and 0 domain decomposition.
Nissen-Meyer (2023) T
(a) 321 free parameters (d) 66433 free parameters
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Domain Decomposition Methods

Graphics based on results from Heinlein, Perego, Rajamanickam (2022)
Historical remarks: The alternating

Schwarz method is the earliest domain
decomposition method (DDM), which has

been invented by H. A. Schwarz and 5
published in 1870: o Iy
= Schwarz used the algorithm to establish 0 2 ,
the existence of harmonic functions G

Iy

with prescribed boundary values on
regions with non-smooth boundaries.
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Finite Basis Physics-Informed Neural Networks (FBPINNs)

FBPINNSs (Moseley, Markham, Nissen-Meyer (2023)) 1D single-frequency problem

FBPINNSs employ the network architecture PINN solution]
J \ —— Exact solution
0.050 ~= PINN
U(017 ey 0J) = E il wj uj (01) 0.025
. = 0.000
and the loss function oms
-t Z j: wiu(x —fX) -0.050
N i=1 X €Q; ! J]( " ) ( I) 29
6 -4 -2 0 2 4 6
1
0.5
0
Moseley, Markham, Nissen-Meyer (2023)‘
T 107" 1071
- —— FBPINN —— FBRINN
wauy (04) — PINN —— PINN
1072 WW 1072 ww
510 ; 1073
107 1074
1 0 20000 40000 00 05 1.0 15 20
Training step FLOPS lel3
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Finite Basis Physics-Informed Neural Networks (FBPINNs)

FBPINNSs (Moseley, Markham, Nissen-Meyer (2023)) 1D single-frequency problem

FBPINNs employ the network architecture FEOF::NN global solution| EETEEE
J
u(6y,...,0,) = E  wjuj (6)) 0025
J=1 0.000
and the loss function o025

‘- N ZI 1 ZX; WJ”J](XI: )—f(x,)) ~0.050

FBPINN local solutions |
1 0.050 I ﬂ\ |
l l l
0.025 Il H ‘
0.5] st i I I
’ -0.025 | I \J
0 ~0.050 ‘1\ ‘\‘ “‘\
! 1 |
Moseley, Markham, Nissen-Meyer (2023)| 3 6
! o7 —— FBPINN o7 —— FBPINN
—— PINN — PINN
1072 WWM 1072 WW
= 107 i 10-2
1074 10-4
1 0 20000 40000 00 05 1.0 15 20
Training step FLOPS 1le13
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Multi-Level FBPINNSs

Multi-level FBPINNs (ML-FBPINNSs) Multiscale problems ...

ML-FBPINNSs (Dolean Heinlein, Mishra ...appear in most areas of modern science and engineering:
Moseley (2024)) are based on a hierarchy .
of domain decompositions:

+
Dual-phase steel; Groundwater flow; Arterial walls;

JL fig. courtesy of cf. Christie & Blunt cf. O’Connell et al.
J. Schroder. (2001) (SPE10).  (2008).

4L

+

+

This yields the network architecture:
&) Wy 5t 50,0 (g0
u(6; ,...,OJ(L)) = lel Zi:l w; u; (Oj )
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Multi-Level FBPINNSs

Muilti-level FBPINNs (ML-FBPINNs)

ML-FBPINNSs (Dolean, Heinlein, Mishra,
Moseley (2024)) are based on a hierarchy
of domain decompositions:

This yields the network architecture:
&) Wy 5t 50,0 (g0
u(6; ,...,BJ(L)) = lel Zi:l w; u; (Oj )

A. Heinlein (TU Delft)

Multiscale problems ...

...appear in most areas of modern science and engineering:

Groundwater flow; Arterial walls;
cf. Christie & Blunt cf. O’Connell et al.
(2001) (SPE10). (2008).

Dual-phase steel;
fig. courtesy of
J. Schroder.

Multi-frequency problem

Consider the multi-frequency Laplace problem
n

—Au=2 Z (wim)? sin (wimx) sin (wiTy) ,

i=1

with homogeneous Dirichlet boundary conditions and

wj = 2.

For increasing values of n, we obtain the solutions:
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Multi-Level FBPINNSs for a Multi-Frequency Problem — Strong Scaling

FBPINN FBPINN ©  FBPINN ®  FBPINN ®  FBPINN ®  FBPINN
[1,2] [1,2,4] [1,2,4,8] 1,2, 4,8, 16] [1,2,4,8,16,32] I[1,2, 4,8, 16, 32, 64]
(320, 320) (320, 320) (320, 320) (320, 320

(320, 320) (320, 320)

d

FBPINN
[1, 8, 64]
(320, 320) Exact solution

¥V FBPINN

#  SA-PINN
5-256
(320

L PINN

@ FourierPINN
5-256 [64]
(320, 320)

5-256
(320, 320) (320, 320)

100 4 10t 4
o 10°4 1004 + *
K 8
H £ v
£ £
2 2

1072 4 10724

1073 4 10-3 4

o 5000 10000 15000 20000 25000 30000 102 0?
Training step Total time elapsed (s)
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Multi-Frequency Problem — What the FBPINN Learns

FBPINN
[1,2 4,8, 16]

(80, 80)
1.00
0.75
0.50
0.25

0.00

1.00
0.75
0.50
0.25

0.00

0.0 0.5 1.0

Cf. Dolean, Heinlein, Mishra, Moseley (2024).
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Deep operator networks — Error analysis
and localization via domain decompostion




Function Versus Operator Learning

Function learning

Operator learning
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Deep Operator Networks (DeepONets / DONs)

Neural operators learn operators between function spaces using neural networks. Here, we learn the
solution operator of a initial-boundary value problem parametrized with p1, ..., pm using DeepONets
as introduced in Lu et al. (2021).

P1 by

: Single-layer case

P bp The DeepONet architecture is based on the

@ single-layer case analyzed in Chen and

- Chen (1995). In particular, the authors

@ _, : show universal approximation properties

th for continuous operators.

~

The architecture is based on the following ansatz for presenting the parametrized solution

P
U, pm) (6 8) = D bilpr, - pm) - ti(x, 1)
=1 N——— N~

branch trunk
Physics-informed DeepONets Other operator learning approaches
DeepONets are compatible with the PINN » FNOs: Li et al. (2021)
approach but physics-informed DeepONets = PCA-Net: Bhattacharya et al. (2021)

= Random features: Nelsen and Stuart (2021)
= CNOs: Raoni¢ et al. (2023)
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How a DeepONet Maps Between Function Spaces

To illustrate how a DeepONet operates, we consider the Korteweg—de Vries (KdV) equation

which models unidirectional waves in shallow water. Our goal is to train a DeepONet that predicts the
wave profile at a future time t from the observed height profile u(-, to).

P by
||
Pm bp
ty
x |—>| Trunk Net '—> :
tp

Here, the forecast time t is fixed to keep the learning task simple. A more general neural operator
can take the target time as an additional input to the trunk network.
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How a DeepONet Maps Between Function Spaces

To illustrate how a DeepONet operates, we consider the Korteweg—de Vries (KdV) equation

which models unidirectional waves in shallow water. Our goal is to train a DeepONet that predicts the

wave profile at a future time t from the observed height profile u(-, to).

HS u(il:l,to) bl
||
w(Tm, to) by
= |
O

ty
o | z |—>| Trunk Net '—> :
g tp

8 D—

Here, the forecast time t is fixed to keep the learning task simple. A more general neural operator

can take the target time as an additional input to the trunk network.

VORtech Lunch Lecture
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DeepONet Trunk Basis — Examples

Let us consider some examples of the left singular vectors for three differential equations:

A) advection-diffusion equation B) KdV equation  C) Burgers equation

J
5
o

o
=

Relative frequency f;/(max; f;)

=
=
Q

2% 50
Mode index i

The learned trunk bases have been investigated in more detail in Williams et al. (2024).
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DeepONet — Error Decomposition Results for the KdV Equation

Results for the KdV equation with t) = 0.0 and = 0.2. 900 training and 100 test configurations.
10° 10
10714 107!
bl
5 o /
%D 10724 &
Z o
o 2
2 =
% 1072 é 10-°
~
f— 6T 5T

— () — )

A> dsvp B) dsvp

T T T T T T T T
5 35 65 95 5 35 65 95

basis dimension

total error  trunk error  branch error
0 or OB
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DeepONet — Branch Error

Using the left singular vectors, the Unweighted mode loss
branch error becomes

1000 Training Steps

1004

m
55 = E J,-2 ||b, — V,'||§ o
——
i=1 =;

We call
0',-21_,'
the (weighted) mode loss because it

equals the loss contribution of the jth
mode. Accordingly, L; is the

Unweighted Mode Loss L;

unweighted mode loss.

This choice of left singular vectors

as the trunk basis is often denoted - - - - - -
POD-DeepONet in Lu et al. (2022). Mode index i
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DeepONet — Branch Error

Using the left singular vectors, the Unweighted mode loss
branch error becomes

2000 Training Steps

1004

m
55 = E J,-2 ||b, — V,'||§ o
——
i=1 =;

We call
0',-21_,'
the (weighted) mode loss because it

equals the loss contribution of the jth
mode. Accordingly, L; is the

Unweighted Mode Loss L;

unweighted mode loss.

This choice of left singular vectors

as the trunk basis is often denoted - - - - - -
POD-DeepONet in Lu et al. (2022). Mode index i
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DeepONet — Branch Error

Using the left singular vectors, the Unweighted mode loss
branch error becomes

3000 Training Steps

1004

At

m
55 = E J,-2 ||b, — V,'||§ o
——
i=1 =;

We call
0',-21_,'
the (weighted) mode loss because it

equals the loss contribution of the jth
mode. Accordingly, L; is the

Unweighted Mode Loss L;

unweighted mode loss.

This choice of left singular vectors

as the trunk basis is often denoted - - - - - -
POD-DeepONet in Lu et al. (2022). Mode index i
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DeepONet — Branch Error

Using the left singular vectors, the Unweighted mode loss
branch error becomes

4000 Training Steps

1004

R

m
55 = E J,-2 ||b, — V,'||§ o
——
i=1 =;

We call
0',-21_,'
the (weighted) mode loss because it

equals the loss contribution of the jth
mode. Accordingly, L; is the

Unweighted Mode Loss L;

unweighted mode loss.

This choice of left singular vectors

as the trunk basis is often denoted . - - - - -
POD-DeepONet in Lu et al. (2022). Mode index i
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DeepONet — Branch Error

Using the left singular vectors, the Unweighted mode loss
branch error becomes

4000 Training Steps

1004

R

m
53 = E J,-2 ||b, — V,'||§ o
——
i=1 =;

We call

=5
7

2
0','[.,‘

the (weighted) mode loss because it
10724

equals the loss contribution of the jth
mode. Accordingly, L; is the

Unweighted Mode Loss L;

unweighted mode loss.

=5
&

This choice of left singular vectors

as the trunk basis is often denoted . - - - - -
POD-DeepONet in Lu et al. (2022). Mode index i

— The coefficients of modes with large singular values are learned best. Errors for modes with small
singular values remain high.
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DeepONet — Branch Error

Using the left singular vectors, the (Weighted) mode loss
branch error becomes

4000 Training Steps

m
53 = E J,-2 ||b, — V,'||§ o
——
i=1 =;

104

L;

2
i

Weighted Mode Loss o7

We call
2
O; L,‘

2

the (weighted) mode loss because it
equals the loss contribution of the jth

g

mode. Accordingly, L; is the
unweighted mode loss.

=

This choice of left singular vectors

as the trunk basis is often denoted . . . . . .
0 10 20 30 40 50
POD-DeepONet in Lu et al. (2022). Mode index ¢
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DeepONet — Branch Error

Using the left singular vectors, the (Weighted) mode loss
branch error becomes

4000 Training Steps

m
53 = E J,-2 ||b, — V,'||§ o
——
i=1 =;

104

L;

2
i

Weighted Mode Loss o7

We call
2
O; L,‘

2

the (weighted) mode loss because it
equals the loss contribution of the jth

g

mode. Accordingly, L; is the
unweighted mode loss.

=

This choice of left singular vectors

as the trunk basis is often denoted . . . . . .
0 10 20 30 40 50
POD-DeepONet in Lu et al. (2022). Mode index ¢

— Analyzing the actual error contributions, the modes with medium singular values contribute
most.
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DeepONet — Branch Error

Using the left singular vectors, the (Weighted) mode loss
branch error becomes

4000 Training Steps

m
53 = E J,-2 ||b, — V,'||§ o
——
i=1 =;

104

L;

2
i

Weighted Mode Loss o7

We call
2
O; L,‘

2

the (weighted) mode loss because it
equals the loss contribution of the jth

g

mode. Accordingly, L; is the
unweighted mode loss.

=

This choice of left singular vectors

as the trunk basis is often denoted . . . . . .
0 10 20 30 40 50
POD-DeepONet in Lu et al. (2022). Mode index ¢

How to improve the performance on medium-sized singular value modes?
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Finite Basis DeepONets (FBDONSs)

Howard, Heinlein, Stinis (in prep.)

Variants:

Shared-trunk FBDONSs (ST-FBDONSs) Rl -agzinl0])\H

The trunk net learns spatio-temporal basis Combination of the stacking multifidelity approach
functions. In ST-FBDONs, we use the same with FBDONS.

trunk network for all subdomains. Heinlein, Howard, Beecroft, Stinis (2025)
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FBDONSs — Wave Equation

Wave equation

s s 5
F_QW’ (x,t) €[0,1]
st(x,0) =0,x € [0,1], s(0,t) =s(1,t) =0,

Solution: s(x,t) = Zi:1 by sin(nmx) cos(nﬂ'\/it)

Parametrization

Initial conditions for s parametrized by
b= (by,..

., bs) (normally distributed):

s(x,0) = Zi:1 bysin(nmx) x € [0, 1]

Training on 1000 random configurations.

A. Heinlein (TU Delft)

1 _E‘xact . . - Mean rel. , error on 100 config.
o & -) UO'O - 0.50 DeepONet 0.30£0.11
00;. das o 025 ML-ST-FBDON 0.05% 0.03
% ([1,4,8,16] subd.)
ML-ST-FED ML-FBDON
- 0.10 ([1,4,8,16] subd.) 0.08 +0.04
0.05
8 — Sharing the trunk network does not
— only save in the number of parameters
2_/\/ 0 77 MeSHEBEN but even yields better performance
o
e T N ;.o Cf. Howard, Heinlein, Stinis (in prep.)
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Surrogate models for varying
computational domains




Designing of Perforated Monopiles for Offshore Wind Energy

Perforated monopiles

Monopiles are the most used and cheapest solution
of support structures in offshore wind energy.
— Perforated monopiles reduce the wave load.

What is the optimal perforation shape?

<30-40m < 80-100m

| ——p
1

|

Monopile

Jacket/Tripod

submersible e

-
$3S

Fully resolved CFD simulations are costly, but rough predictions may be sufficient.
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Convolutional Neural Network-Based Surrogate Model

CNN-based approach

We employ a convolutional neural network (CNN) (LeCun (1998)) to predict the
stationary flow field, given an image of the geometry as input.

skip connections

bottleneck

encoder decoder

(igé’;":letry) U-Net architecture; cf. Ronneberger, Fischer, Brox (2015) (I;létiglclttion)
Related works (non-exhaustive) Operator learning (non-exhaustive)
* Guo, Li, lorio (2016) = FNOs: Li et al. (2021)
= Niekamp, Niemann, Schroder (2022) = PCA-Net: Bhattacharya et al. (2021)
= Stender, Ohlsen, Geisler, Chabchoub, = Random features: Nelsen and Stuart (2021)
Hoffmann, Schlaefer (2022) = CNOs: Raonic et al. (2023)
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Comparison OpenFOAM® Versus CNN (Relative Error 2 %)

We automatically generate geometries and compute the corresponding flow fields using OPENFOAM®.

Input data Output data
SDF (Signed Distance Function)

TR :
Q HEEEEE
%
— B —
I i
e

128 px

O NWHRAR| ORNWAHAUO
=

Cf. Eichinger, Heinlein, Klawonn (2021, 2022).
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Comparison OpenFOAM® Versus CNN (Relative Error 14 %)

We automatically generate geometries and compute the corresponding flow fields using OPENFOAM®.

Input data Output data

128 px

Q . I

O R NWHR ORNWIUO
=

uy, CFD uy, CNN

Cf. Eichinger, Heinlein, Klawonn (2021, 2022).
VORtech Lunch Lecture
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Comparison OpenFOAM® Versus CNN (Relative Error 31 %)

We automatically generate geometries and compute the corresponding flow fields using OPENFOAM®.

Input data Output data
SDF (Signed Distance Function) Ux
Q } iE >< 2 i i : i i :
. - N H 2 H &
256 px 256 px 256 px
ux CFD
6
5
a4
E
2
1
0
=1]!
a4
3
2
i1
0

uy, CFD uy, CNN

Cf. Eichinger, Heinlein, Klawonn (2021, 2022).
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Comparison OpenFOAM® Versus CNN

We automatically generate geometries and compute the corresponding flow fields using OPENFOAM®.

Input data Output data
SDF (Signed Distance Function) Ux Ux
256 px S 256 px - 256 px
OpenFOAM® simulation U-Net
avg. runtime per case training cost
create STL 0.15s # decoders 1 2
sr}appyHexMesh L # parameters ~ 34m &~ 53.5m
simpleFoan — time/epoch 195s 270s
total time ~ 50s

avg. inference cost

CPU: AMD Threadripper 2950X (8x 3.8 Ghz), 32GB RAM
pper 2050X ( ) CPU GPU
GPU: GeForce RTX2080Ti

avg. time 0.092s 0.0054s

Cf. Eichinger, Heinlein, Klawonn (2021, 2022).
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upervised Learning Approach — PDE Loss Using Finite Differences

Physics-informed loss function

We train the CNN by incorporating the PDE residuals,
discretized via finite differences, into the loss function:

1 Nppe 5
LppE = g IR (uenns Penn) (15
NppE i=1
Here, Nppg is the number of training configs.
Cf. Raissi et al. (2019), Dissanayake and Phan-Thien (1994),

Lagaris et al. (1998).

We explcitly enforce boundary conditions on the output

image — hard constraints

error |[Lunn=ullz | llwy—pll2 | Mean residual |# epochs 5 5
l[ull2 P2 [moment.]  mass| trained| [[R(ucnn, ponn)l®>>0  [|R(ucnn, penn)l|® = 0

train. 1.43%| 7.30%]|1.0-10"1| 1.5-10° 500 Here, we consider ther Navier—Stokes equations:

val. 2.52%| 8.67%|1.2:107!| 1.5.100

train ]| 5.03%[ 11.63%[3.210 2[7.7102] 1 R(ucun, penn) = —vAT+(u- V)i + Vp

val. 5.18%| 11.60%]4.2:1072(1.1.10~¢ 70

— Errors are comparable to the data-based approach, Cf. Grimm, Heinlein, Klawonn (2025).

but training requires more epochs.
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A New Paradigm for Scientific Software?

Hybrid workflows determine software design
= SciML codes combine machine learning modules with classical numerical algorithms and physics models.
= Mainstream ML frameworks (e.g., PyTorch, JAX, ...) excell in maintainance, usability, and
documentation.
= Automatic differentiation significantly simplifies core kernels, shifting major efforts towards data
processing as well as architecture and hyperparameter tuning.

Hardware and parallelization assumptions change

= Most architectures are not based on locality — except for, e.g., CNNs, GNNs, or explicit domain
decomposition. Hence, dominant kernels rely on dense linear algebra, favoring dense GPU/TPU kernels

over CPU/sparse stacks.
= Training often converges slowly in both iterations and computing time; training offline is preferred.

= Parallel scaling is more natural through data parallelism than through model decomposition.

Robustness and reproducibility guarantees often still work-in-progress
= Randomness in models (training) demand infrastructure for uncertainty quantification, ensembles, and
validation.
= Non-convex optimization problems make guarantees on convergence, robustness, and stability difficult.
Reproducibility is a major challenge.
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CWI Research Semester Programme:

Bridging Numerical Analysis and Scientific Machine Learning: Advances and Applications

Co-organizers: Victorita Dolean (TU/e), Alexander Heinlein (TU Delft), Benjamin Sanderse
(CWI), Jemima Tabbeart (TU/e), Tristan van Leeuwen (CWI)

= Autumn School (October 27-31, 2025):
= Chris Budd (University of Bath)
= Ben Moseley (Imperial College London)
= Gabriele Steidl (Technische Universitat Berlin)
= Andrew Stuart (California Institute of Technology)
= Andrea Walther (Humboldt-Universitat zu Berlin)
= Ricardo Baptista (University of Toronto)

= Workshop (December 1-3, 2025):

= Plenary talks (academia & industry) and panel discussion

Centrum Wiskunde & Informatica

= Poster session with prize sponsored by Math4NL
= Plenary speakers:

= Benjamin Peherstorfer (NYU)

= Elena Celledoni (NTNU)

= Jakob Sauer Jgrgensen (DTU)

= Marcelo Pereyra (Heriot-Watt University)

= Nicolas Boullé (ICL)

Join us for inspiring talks, hands-on sessions, and industry collaboration!



https://www.cwi.nl/en/education/semester-programmes/cwi-research-semester-programs/synergies-in-numerical-linear-algebra-and-machine-learning/

Scientific Machine Learning (SciML)

= SciML is a young field joining scientific computing and machine learning.
= The combination of scientific computing and machine learning comes in various forms.

= Recent progress rides on accessible hardware and open-source software.

Opportunities Challenges

= SciML techniques enhance classical = Many methods are not yet fully
numerical solvers and purely theoretically understood and lack
data-driven models. rigorous theoretical guarantees.

= Offline-trained surrogates yield fast = Achieving robust, efficient, stable
inference, speeding up or replacing training at scale, especially with sparse
costly workflow steps. or noisy data, is a topic of ongoing

research.

Topical Activity E [ﬁm
- "

Group

Thank you for your attention!

Scientific Machine

Learning E.



https://ems-tag-sciml.github.io/

	Physics-informed neural networks – Adaptive sampling and localization via domain decompostion  [2mm] Based on joint work with  [1.5mm] math text inlined[fg]math text inlinedfgmath text inlined[fg]math text inlinedfgtbl/hmode/beginp65mml Victorita Dolean  (Eindhoven University of Technology)   Bianca Giovanardi, Coen Visser  (Delft University of Technology)   Amanda A. Howard and Panos Stinis  (Pacific Northwest National Laboratory)   Siddhartha Mishra  (ETH Zürich)   Ben Moseley  (Imperial College London) tbl/finalizetbl/hmode/end 
	Deep operator networks – Error analysis and localization via domain decompostion [2mm] Based on joint work with  [1.5mm] math text inlined[fg]math text inlinedfgmath text inlined[fg]math text inlinedfgtbl/hmode/beginp65mml Damien Beecroft  (University of Washington)   Amanda A. Howard and Panos Stinis  (Pacific Northwest National Laboratory)   Johannes Taraz  (Delft University of Technology) tbl/finalizetbl/hmode/end 
	Surrogate models for varying computational domains [2mm] Based on joint work with  [1.5mm] math text inlined[fg]math text inlinedfgmath text inlined[fg]math text inlinedfgtbl/hmode/beginp65mml Eric Cyr  (Sandia National Laboratories)   Matthias Eichinger, Viktor Grimm, Axel Klawonn  (University of Cologne)   Corné Verburg  (Delft University of Technology) tbl/finalizetbl/hmode/end 

