
SCaLASCaLA

Scientific Machine Learning

Alexander Heinlein1

VORtech Lunch Lecture, Delft, September 29, 2025
1Delft University of Technology

Artificial Intelligence in Science and Engineering

Medical Imaging Epidemiology Biomedical
Engineering Geoscience Fluid Mechanics Civil Engineering

Inverse Problems
Use strong inductive biases
to infer variables from data

Unsupervised Learning
Use weak inductive biases to
uncover structure from data

Inference
Predict complex, nonlinear

relations from data

Challenges
• Data are often scarce and noisy, yet we must

deliver accuracy, reliability, and robustness
• Multi-physics, multi-scale systems require

robust coupling, scalability, and scale
adaptation of learning algorithms

Opportunities
• Integrating physics with data-driven models

enhances generalization, interpretability, and
reliability

• Encoding physical laws enables trustworthy
predictions and efficient surrogates for real-time
predictions and control (digital twins)

A. Heinlein (TU Delft) VORtech Lunch Lecture 1/28

Scientific Machine Learning as a Standalone Field

N. Baker, A. Frank, T. Bremer, A. Hagberg, Y. Kevrekidis, H. Najm,
M. Parashar, A. Patra, J. Sethian, S. Wild, K. Willcox, and S. Lee.
Workshop Report on Basic Research Needs for Scientific Machine
Learning: Core Technologies for Artificial Intelligence.
USDOE Office of Science (SC), Washington, DC (United States),
2019.

Priority Research Directions
Foundational research themes:

• Domain-awareness
• Interpretability
• Robustness

Capability research themes:
• Massive scientific data

analysis
• Machine

learning-enhanced
modeling and simulation

• Intelligent automation
and decision-support for
complex systems

A. Heinlein (TU Delft) VORtech Lunch Lecture 2/28

Scientific Computing and Machine Learning

Numerical methods
Based on physical models

+ Robust and generalizable
– Require availability of mathematical

models

Machine learning models
Driven by data

+ Do not require mathematical models
– Sensitive to data, limited extrapolation

capabilities

Scientific machine learning
Combining the strengths and compensating the weaknesses of the individual approaches:

numerical methods improve machine learning techniques
machine learning techniques assist numerical methods

A. Heinlein (TU Delft) VORtech Lunch Lecture 3/28

Numerical Analysis and Machine Learning

A. Heinlein (TU Delft) VORtech Lunch Lecture 4/28

Scientific Machine Learning Techniques

Numerical
Analysis (NA)

Machine Learning
(ML)Hybrid Models

NA-enhanced ML
Examples:

• physics-informed machine learning
• preconditioned optimizers and

gradient flow
• domain-decomposed and multiscale

neural networks

ML-enhanced NA
Examples:

• learned discretizations and iterative
solvers

• inverse problems,
• reduced order and surrogate

models

A. Heinlein (TU Delft) VORtech Lunch Lecture 5/28

SCaLASCaLA – Scalable SScientific CComputing aand LLearning AAlgorithms

High-
Performance
Computing

Machine
Learning

Numerical Analysis &
Scientific Computing

Scientific
Machine
Learning

Method Development

Th
eo

re
tic

al
An

aly
sis

Software Development

Outline

1 Physics-informed neural networks – Adaptive sampling and localization via
domain decompostion
Based on joint work with

Victorita Dolean (Eindhoven University of Technology)
Bianca Giovanardi, Coen Visser (Delft University of Technology)
Amanda A. Howard and Panos Stinis (Pacific Northwest National Laboratory)
Siddhartha Mishra (ETH Zürich)
Ben Moseley (Imperial College London)

2 Deep operator networks – Error analysis and localization via domain
decompostion
Based on joint work with

Damien Beecroft (University of Washington)
Amanda A. Howard and Panos Stinis (Pacific Northwest National Laboratory)
Johannes Taraz (Delft University of Technology)

3 Surrogate models for varying computational domains
Based on joint work with

Eric Cyr (Sandia National Laboratories)
Matthias Eichinger, Viktor Grimm, Axel Klawonn (University of Cologne)
Corné Verburg (Delft University of Technology)

Physics-informed neural networks –
Adaptive sampling and localization via
domain decompostion

Physics-Informed Neural Networks (PINNs) – Idea
In Lagaris et al. (1998), the authors solve the
boundary value problem

−∆Ψt(x, θ) = 1 on [0, 1],
Ψt(0, θ) = Ψt(1, θ) = 0,

via a collocation approach:

min
θ

∑
xi

(∆Ψt(xi , θ) + 1)2

Boundary conditions . . .

. . . can be enforced explicitly via the ansatz:

Ψt(x, θ) = A(x) + F (x, NN(x, θ))

• A satisfies the boundary conditions
• F does not contribute to the

boundary conditions

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2
Ψt(xi,θ)

0 0.2 0.4 0.6 0.8 1
−100

−50

0

50

100

(∆Ψt(xi,θ) + 1)2

(∆Ψt(xi , θ) + 1)2 >> 0
0 0.2 0.4 0.6 0.8 1

−0.2

−0.1

0

0.1

0.2
Ψt(xi,θ)

0 0.2 0.4 0.6 0.8 1

−1

0

1

(∆Ψt(xi,θ) + 1)2

(∆Ψt(xi , θ) + 1)2 ≈ 0

A. Heinlein (TU Delft) VORtech Lunch Lecture 6/28

Physics-Informed Neural Networks (PINNs)
In the physics-informed neural network (PINN) approach
introduced by Raissi et al. (2019), a neural network is
employed to discretize a partial differential equation

N[u] = f, in Ω.

PINNs use a hybrid loss function:
L(θ) = ωdataLdata(θ) + ωPDELPDE(θ),

where ωdata and ωPDE are weights and

Ldata(θ) = 1
Ndata

∑Ndata

i=1
(u(x̂i , θ) − ui)2 ,

LPDE(θ) = 1
NPDE

∑NPDE

i=1
(N[u](xi , θ) − f(xi))2 .

See also Dissanayake and Phan-Thien (1994); Lagaris et al. (1998).

Advantages
• “Meshfree”
• Small data
• Generalization properties
• High-dimensional problems
• Inverse and parameterized

problems

Drawbacks
• Training cost and

robustness
• Convergence not

well-understood
• Difficulties with scalability

and multi-scale problems

x

t
...

...

...

...

...

...

...

...

u L

∂u
∂t ,
∂u
∂x ,
. . .

Hybrid loss
Small data Some data Big data

Lots of physics Some physics No physics

• Known solution values can be
included in Ldata

• Initial and boundary conditions
are also included in Ldata

A. Heinlein (TU Delft) VORtech Lunch Lecture 7/28

Error Estimate & Spectral Bias
Estimate of the generalization error (Mishra and Molinaro (2022))
The generalization error (or total error) satisfies

EG ≤ CPDEET + CPDEC1/p
quadN−α/p

• EG = EG (X , θ) := ∥u − u∗∥V general. error (V Sobolev space, X training data set)
• ET training error (lp loss of the residual of the PDE)
• N number of the training points and α convergence rate of the quadrature
• CPDE and Cquad constants depending on the PDE, quadrature, and neural network

Rule of thumb: “As long as the PINN is trained well, it also generalizes well”

100 iterations 1 000 iterations 10 000 iterations 80 000 iterations
Rahaman et al., On the spectral bias of neural networks, ICML (2019)

Related works: Cao et al. (2021), Wang, et al. (2022), Hong et al. (arXiv 2022), Xu et al. (2024), . . .
A. Heinlein (TU Delft) VORtech Lunch Lecture 8/28

PACMANN – Point Adaptive Collocation Method for Artificial Neural Networks
In Visser, Heinlein, and Giovanardi (subm. 2025; arXiv:2411.19632),
the collocation points are updated by solving the min-max problem

min
θ

[
ωdataLdata(θ) + max

X⊂Ω
ωPDELPDE(X , θ)

]
.

This idea was already mentioned in Wang et al. (2022). Different from
other residual-based adaptive sampling methods, existing collocation
points are moved using gradient-based optimizers such as gradient
ascent, RMSprop (Hinton (2018)), or Adam (Kingma, Ba (2017)).

x0
i

x4
i

x1

x
2

Algorithm 1: PACMANN with iteration counts P and T and stepsize s
Sample a set X of NPDE collocation points using a uniform sampling method;
while stopping criterion not reached do

Train the PINN for P iterations;
for k = 1, . . . , T do

Compute squared residual R(xi) = (N[u](xi , θ) − f(xi))2 for all xi ∈ X;
Compute gradient ∇xR(xi) for all xi ∈ X;
Move the points in X according to the chosen optimization algorithm and stepsize s;

end
Resample points in X that moved outside Ω based on a uniform probability distribution;

end

A. Heinlein (TU Delft) VORtech Lunch Lecture 9/28

https://arxiv.org/abs/2411.19632

PACMANN – Point Adaptive Collocation Method for Artificial Neural Networks
In Visser, Heinlein, and Giovanardi (subm. 2025; arXiv:2411.19632),
the collocation points are updated by solving the min-max problem

min
θ

[
ωdataLdata(θ) + max

X⊂Ω
ωPDELPDE(X , θ)

]
.

This idea was already mentioned in Wang et al. (2022). Different from
other residual-based adaptive sampling methods, existing collocation
points are moved using gradient-based optimizers such as gradient
ascent, RMSprop (Hinton (2018)), or Adam (Kingma, Ba (2017)).

x0
i

x4
i

x1

x
2

Comparison against different methods
sampling method
2500 coll. points

L2 relative error mean
runtime [s]mean 1 SD

uniform grid 25.9% 14.2% 425
Hammersley grid 0.61% 0.53% 443
random resampling 0.40% 0.35% 423
RAR 0.11% 0.05% 450
RAD 0.16% 0.10% 463
RAR-D 0.24% 0.21% 503
PACMANN–Adam 0.07% 0.05% 461

RAD

RAR

PACMANN
A. Heinlein (TU Delft) VORtech Lunch Lecture 9/28

https://arxiv.org/abs/2411.19632

PACMANN – Point Adaptive Collocation Method for Artificial Neural Networks
In Visser, Heinlein, and Giovanardi (subm. 2025; arXiv:2411.19632),
the collocation points are updated by solving the min-max problem

min
θ

[
ωdataLdata(θ) + max

X⊂Ω
ωPDELPDE(X , θ)

]
.

This idea was already mentioned in Wang et al. (2022). Different from
other residual-based adaptive sampling methods, existing collocation
points are moved using gradient-based optimizers such as gradient
ascent, RMSprop (Hinton (2018)), or Adam (Kingma, Ba (2017)).

x0
i

x4
i

x1

x
2

0.0 0.2 0.4 0.6 0.8 1.0
t

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

x

10 12

10 10

10 8

10 6

10 4

10 2

Loss distribution after 25 000 training steps

0.0 0.2 0.4 0.6 0.8 1.0
t

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

x
10 13

10 11

10 9

10 7

10 5

10 3

Final loss distribution after 50 000 training steps

A. Heinlein (TU Delft) VORtech Lunch Lecture 9/28

https://arxiv.org/abs/2411.19632

Scaling of PINNs for a Simple ODE Problem
Solve

u
′ = cos (ωx) ,

u (0) = 0,

for different values of ω

using PINNs with
varying network
capacities.

Scaling issues
• Large computational

domains
• Small frequencies

Cf. Moseley, Markham, and
Nissen-Meyer (2023)

(a) 321 free parameters (d) 66 433 free parameters
A. Heinlein (TU Delft) VORtech Lunch Lecture 10/28

Scaling of PINNs for a Simple ODE Problem
Solve

u
′ = cos (ωx) ,

u (0) = 0,

for different values of ω

using PINNs with
varying network
capacities.

Scaling issues
• Large computational

domains
• Small frequencies

Cf. Moseley, Markham, and
Nissen-Meyer (2023)

(a) 321 free parameters (d) 66 433 free parameters

Idea
Replace the global network by a coupled
local networks defined on an overlapping
domain decomposition.

A. Heinlein (TU Delft) VORtech Lunch Lecture 10/28

Domain Decomposition Methods

Graphics based on results from Heinlein, Perego, Rajamanickam (2022)

Historical remarks: The alternating
Schwarz method is the earliest domain
decomposition method (DDM), which has
been invented by H. A. Schwarz and
published in 1870:

• Schwarz used the algorithm to establish
the existence of harmonic functions
with prescribed boundary values on
regions with non-smooth boundaries.

Ω

Γ2

Γ1
Ω′

1

∂Ω′
1

Ω′
2

∂Ω′
2

A. Heinlein (TU Delft) VORtech Lunch Lecture 11/28

Finite Basis Physics-Informed Neural Networks (FBPINNs)
FBPINNs (Moseley, Markham, Nissen-Meyer (2023))
FBPINNs employ the network architecture

u(θ1, . . . , θJ) =
∑J

j=1
ωjuj (θj)

and the loss function

L =
1
N

∑N

i=1

(
N[

∑
xi ∈Ωj

ωj uj](xi , θj) − f(xi)
)2

.

0

0.5

1

0 0.2 0.4 0.6 0.8 1

−1

0

1

u

Ω1

ω1

ω1u1 (θ1)

Ω2

ω2

ω2u2 (θ2)

Ω3

ω3

ω3u3 (θ3)

Ω4

ω4

ω4u4 (θ4)

1D single-frequency problem
PINN solution

Moseley, Markham, Nissen-Meyer (2023)

A. Heinlein (TU Delft) VORtech Lunch Lecture 12/28

Finite Basis Physics-Informed Neural Networks (FBPINNs)
FBPINNs (Moseley, Markham, Nissen-Meyer (2023))
FBPINNs employ the network architecture

u(θ1, . . . , θJ) =
∑J

j=1
ωjuj (θj)

and the loss function

L =
1
N

∑N

i=1

(
N[

∑
xi ∈Ωj

ωj uj](xi , θj) − f(xi)
)2

.

0

0.5

1

0 0.2 0.4 0.6 0.8 1

−1

0

1

u

Ω1

ω1

ω1u1 (θ1)

Ω2

ω2

ω2u2 (θ2)

Ω3

ω3

ω3u3 (θ3)

Ω4

ω4

ω4u4 (θ4)

1D single-frequency problem
FBPINN global solution

FBPINN local solutions

Moseley, Markham, Nissen-Meyer (2023)

A. Heinlein (TU Delft) VORtech Lunch Lecture 12/28

Multi-Level FBPINNs

Multi-level FBPINNs (ML-FBPINNs)
ML-FBPINNs (Dolean, Heinlein, Mishra,
Moseley (2024)) are based on a hierarchy
of domain decompositions:

combined

==
level 1

++
level 2

++
level 3

++
level 4

++
level 5

++

This yields the network architecture:

u
(
θ

(1)
1 , . . . , θ

(L)
J(L)

)
=

∑L

l=1

∑N(l)

i=1
ω

(l)
j u(l)

j
(
θ

(l)
j

)

Multiscale problems . . .
. . . appear in most areas of modern science and engineering:

Dual-phase steel;
fig. courtesy of
J. Schröder.

Groundwater flow;
cf. Christie & Blunt
(2001) (SPE10).

Arterial walls;
cf. O’Connell et al.
(2008).

Multi-frequency problem
Consider the multi-frequency Laplace problem

−∆u = 2
∑n

i=1
(ωi π)2 sin (ωi πx) sin (ωi πy) ,

with homogeneous Dirichlet boundary conditions and
ωi = 2i .
For increasing values of n, we obtain the solutions:

n = 1 n = 3 n = 5

A. Heinlein (TU Delft) VORtech Lunch Lecture 13/28

Multi-Level FBPINNs

Multi-level FBPINNs (ML-FBPINNs)
ML-FBPINNs (Dolean, Heinlein, Mishra,
Moseley (2024)) are based on a hierarchy
of domain decompositions:

combined

==
level 1

++
level 2

++
level 3

++
level 4

++
level 5

++

This yields the network architecture:

u
(
θ

(1)
1 , . . . , θ

(L)
J(L)

)
=

∑L

l=1

∑N(l)

i=1
ω

(l)
j u(l)

j
(
θ

(l)
j

)

Multiscale problems . . .
. . . appear in most areas of modern science and engineering:

Dual-phase steel;
fig. courtesy of
J. Schröder.

Groundwater flow;
cf. Christie & Blunt
(2001) (SPE10).

Arterial walls;
cf. O’Connell et al.
(2008).

Multi-frequency problem
Consider the multi-frequency Laplace problem

−∆u = 2
∑n

i=1
(ωi π)2 sin (ωi πx) sin (ωi πy) ,

with homogeneous Dirichlet boundary conditions and
ωi = 2i .
For increasing values of n, we obtain the solutions:

n = 1 n = 3 n = 5

A. Heinlein (TU Delft) VORtech Lunch Lecture 13/28

Multi-Level FBPINNs for a Multi-Frequency Problem – Strong Scaling

0 5000 10000 15000 20000 25000 30000
Training step

10 3

10 2

10 1

100

101

No
rm

al
ise

d
L1

 te
st

 lo
ss

102 103

Total time elapsed (s)

10 3

10 2

10 1

100

101

No
rm

al
ise

d
L1

 te
st

 lo
ss

FBPINN
[1, 2]

(320, 320)

FBPINN
[1, 2, 4]

(320, 320)

FBPINN
[1, 2, 4, 8]
(320, 320)

FBPINN
[1, 2, 4, 8, 16]

(320, 320)

FBPINN
[1, 2, 4, 8, 16, 32]

(320, 320)

FBPINN
[1, 2, 4, 8, 16, 32, 64]

(320, 320)

FBPINN
[64]

(320, 320)

FBPINN
[1, 8, 64]

(320, 320) Exact solution

0.0 0.5 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

PINN
5-256

(320, 320)

FourierPINN
5-256

(320, 320)

SA-PINN
5-256

(320, 320)

0 5000 10000 15000 20000 25000 30000
Training step

10 3

10 2

10 1

100

101

No
rm

ali
se

d L
1 t

es
t lo

ss

102 103

Total time elapsed (s)

10 3

10 2

10 1

100

101

No
rm

ali
se

d L
1 t

es
t lo

ss

FBPINN
[1, 2]

(320, 320)

FBPINN
[1, 2, 4]

(320, 320)

FBPINN
[1, 2, 4, 8]
(320, 320)

FBPINN
[1, 2, 4, 8, 16]

(320, 320)

FBPINN
[1, 2, 4, 8, 16, 32]

(320, 320)

FBPINN
[1, 2, 4, 8, 16, 32, 64]

(320, 320)

FBPINN
[64]

(320, 320)

FBPINN
[1, 8, 64]

(320, 320) Exact solution

0.0 0.5 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

PINN
5-256

(320, 320)

FourierPINN
5-256

(320, 320)

SA-PINN
5-256

(320, 320)

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

A. Heinlein (TU Delft) VORtech Lunch Lecture 14/28

Multi-Frequency Problem – What the FBPINN Learns

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00

FBPINN
[1, 2, 4, 8, 16]

(80, 80)

0.5

0.0

0.5

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00
Level 1

0.5

0.0

0.5

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00
Level 2

0.5

0.0

0.5

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00
Level 3

0.5

0.0

0.5

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00
Level 4

0.5

0.0

0.5

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00
Level 5

0.5

0.0

0.5

Cf. Dolean, Heinlein, Mishra, Moseley (2024).

A. Heinlein (TU Delft) VORtech Lunch Lecture 15/28

Deep operator networks – Error analysis
and localization via domain decompostion

Function Versus Operator Learning
Function learning

Operator learning

A. Heinlein (TU Delft) VORtech Lunch Lecture 16/28

Deep Operator Networks (DeepONets / DONs)
Neural operators learn operators between function spaces using neural networks. Here, we learn the
solution operator of a initial-boundary value problem parametrized with p1, . . . , pm using DeepONets
as introduced in Lu et al. (2021).

p1
...
pm

Branch Net

b1
...
bp

x
t Trunk Net

t1
...
tp

⊗
u

Single-layer case
The DeepONet architecture is based on the
single-layer case analyzed in Chen and
Chen (1995). In particular, the authors
show universal approximation properties
for continuous operators.

The architecture is based on the following ansatz for presenting the parametrized solution

u(p1,...,pm)(x, t) =
∑p

i=1
bi (p1, . . . , pm)︸ ︷︷ ︸

branch

· ti (x, t)︸ ︷︷ ︸
trunk

Physics-informed DeepONets
DeepONets are compatible with the PINN
approach but physics-informed DeepONets
(PI-DeepONets) are challenging to train.

Other operator learning approaches
• FNOs: Li et al. (2021)
• PCA-Net: Bhattacharya et al. (2021)
• Random features: Nelsen and Stuart (2021)
• CNOs: Raonić et al. (2023)

A. Heinlein (TU Delft) VORtech Lunch Lecture 17/28

How a DeepONet Maps Between Function Spaces
To illustrate how a DeepONet operates, we consider the Korteweg–de Vries (KdV) equation

∂u
∂t = −u ∂u

∂x − 0.01∂3u
∂x3 ,

which models unidirectional waves in shallow water. Our goal is to train a DeepONet that predicts the
wave profile at a future time t̂ from the observed height profile u(·, t0).

p1
...
pm

Branch Net

b1
...
bp

x Trunk Net

t1
...
tp

⊗
u

u
(·,

t 0
)

u
(·,

t̂)

Here, the forecast time t̂ is fixed to keep the learning task simple. A more general neural operator
can take the target time as an additional input to the trunk network.

A. Heinlein (TU Delft) VORtech Lunch Lecture 18/28

How a DeepONet Maps Between Function Spaces
To illustrate how a DeepONet operates, we consider the Korteweg–de Vries (KdV) equation

∂u
∂t = −u ∂u

∂x − 0.01∂3u
∂x3 ,

which models unidirectional waves in shallow water. Our goal is to train a DeepONet that predicts the
wave profile at a future time t̂ from the observed height profile u(·, t0).

u(x1, t0)
...

u(xm, t0)

Branch Net

b1
...
bp

x̂ Trunk Net

t1
...
tp

⊗
u(x̂, t̂)

x
1
x
2

..
.

x
m

u
(·,

t 0
)

x̂

u
(·,

t̂)

Here, the forecast time t̂ is fixed to keep the learning task simple. A more general neural operator
can take the target time as an additional input to the trunk network.

A. Heinlein (TU Delft) VORtech Lunch Lecture 18/28

DeepONet Trunk Basis – Examples
Let us consider some examples of the left singular vectors for three differential equations:

A) advection-diffusion equation B) KdV equation C) Burgers equation

A) B) C)
1 25 50

Mode index i

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
fr

eq
u

en
cy

f i
/(

m
ax

j
f j

)

D)

φ10

φ1

The learned trunk bases have been investigated in more detail in Williams et al. (2024).

A. Heinlein (TU Delft) VORtech Lunch Lecture 19/28

DeepONet – Error Decomposition Results for the KdV Equation
Results for the KdV equation with t0 = 0.0 and t̂ = 0.2. 900 training and 100 test configurations.

5 35 65 95

N

10−4

10−3

10−2

10−1

100

R
el

at
iv

e
tr

ai
n

in
g

er
ro

r
δ

A)

δ

δT
δB
δSV D

5 35 65 95

N

10−4

10−3

10−2

10−1

100

R
el

at
iv

e
te

st
er

ro
r
δ

B)

δ

δT
δB
δSV D

5 35 65 95

j

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

P
ro

je
ct

io
n

er
ro

r
∆

(i
,N

)

C)

∆(i = j, N = 50)

∆(i = 1, N = j)

∆(i = j, N = j)

5 35 65 95

j

10−1

100

101

102

S
in

gu
la

r
va

lu
es
σ
j

D) 0

20

40

60

80

100

120

M
ea

n
fr

eq
u

en
cy

f j

5 35 65 95

N

10−4

10−3

10−2

10−1

100

R
el

at
iv

e
tr

ai
n

in
g

er
ro

r
δ

A)

δ

δT
δB
δSV D

5 35 65 95

N

10−4

10−3

10−2

10−1

100

R
el

at
iv

e
te

st
er

ro
r
δ

B)

δ

δT
δB
δSV D

5 35 65 95

j

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

P
ro

je
ct

io
n

er
ro

r
∆

(i
,N

)

C)

∆(i = j, N = 50)

∆(i = 1, N = j)

∆(i = j, N = j)

5 35 65 95

j

10−1

100

101

102

S
in

gu
la

r
va

lu
es
σ
j

D) 0

20

40

60

80

100

120

M
ea

n
fr

eq
u

en
cy

f j

basis dimension
total error trunk error branch error SVD truncation error

δ δT δB δSVD

A. Heinlein (TU Delft) VORtech Lunch Lecture 20/28

DeepONet – Branch Error
Using the left singular vectors, the
branch error becomes

EB =
m∑

i=1

σ2
i ∥bi − vi ∥2

2︸ ︷︷ ︸
=:Li

.

We call
σ2

i Li

the (weighted) mode loss because it
equals the loss contribution of the ith
mode. Accordingly, Li is the
unweighted mode loss.

This choice of left singular vectors
as the trunk basis is often denoted
POD-DeepONet in Lu et al. (2022).

Unweighted mode loss

0 10 20 30 40 50

Mode index i

10−3

10−2

10−1

100

U
nw

ei
gh

te
d

M
od

e
L

os
s
L
i

1000 Training Steps

A. Heinlein (TU Delft) VORtech Lunch Lecture 21/28

DeepONet – Branch Error
Using the left singular vectors, the
branch error becomes

EB =
m∑

i=1

σ2
i ∥bi − vi ∥2

2︸ ︷︷ ︸
=:Li

.

We call
σ2

i Li

the (weighted) mode loss because it
equals the loss contribution of the ith
mode. Accordingly, Li is the
unweighted mode loss.

This choice of left singular vectors
as the trunk basis is often denoted
POD-DeepONet in Lu et al. (2022).

Unweighted mode loss

0 10 20 30 40 50

Mode index i

10−3

10−2

10−1

100

U
nw

ei
gh

te
d

M
od

e
L

os
s
L
i

2000 Training Steps

A. Heinlein (TU Delft) VORtech Lunch Lecture 21/28

DeepONet – Branch Error
Using the left singular vectors, the
branch error becomes

EB =
m∑

i=1

σ2
i ∥bi − vi ∥2

2︸ ︷︷ ︸
=:Li

.

We call
σ2

i Li

the (weighted) mode loss because it
equals the loss contribution of the ith
mode. Accordingly, Li is the
unweighted mode loss.

This choice of left singular vectors
as the trunk basis is often denoted
POD-DeepONet in Lu et al. (2022).

Unweighted mode loss

0 10 20 30 40 50

Mode index i

10−3

10−2

10−1

100

U
nw

ei
gh

te
d

M
od

e
L

os
s
L
i

3000 Training Steps

A. Heinlein (TU Delft) VORtech Lunch Lecture 21/28

DeepONet – Branch Error
Using the left singular vectors, the
branch error becomes

EB =
m∑

i=1

σ2
i ∥bi − vi ∥2

2︸ ︷︷ ︸
=:Li

.

We call
σ2

i Li

the (weighted) mode loss because it
equals the loss contribution of the ith
mode. Accordingly, Li is the
unweighted mode loss.

This choice of left singular vectors
as the trunk basis is often denoted
POD-DeepONet in Lu et al. (2022).

Unweighted mode loss

0 10 20 30 40 50

Mode index i

10−3

10−2

10−1

100

U
nw

ei
gh

te
d

M
od

e
L

os
s
L
i

4000 Training Steps

A. Heinlein (TU Delft) VORtech Lunch Lecture 21/28

DeepONet – Branch Error
Using the left singular vectors, the
branch error becomes

EB =
m∑

i=1

σ2
i ∥bi − vi ∥2

2︸ ︷︷ ︸
=:Li

.

We call
σ2

i Li

the (weighted) mode loss because it
equals the loss contribution of the ith
mode. Accordingly, Li is the
unweighted mode loss.

This choice of left singular vectors
as the trunk basis is often denoted
POD-DeepONet in Lu et al. (2022).

Unweighted mode loss

0 10 20 30 40 50

Mode index i

10−3

10−2

10−1

100

U
nw

ei
gh

te
d

M
od

e
L

os
s
L
i

4000 Training Steps

→ The coefficients of modes with large singular values are learned best. Errors for modes with small
singular values remain high.

A. Heinlein (TU Delft) VORtech Lunch Lecture 21/28

DeepONet – Branch Error
Using the left singular vectors, the
branch error becomes

EB =
m∑

i=1

σ2
i ∥bi − vi ∥2

2︸ ︷︷ ︸
=:Li

.

We call
σ2

i Li

the (weighted) mode loss because it
equals the loss contribution of the ith
mode. Accordingly, Li is the
unweighted mode loss.

This choice of left singular vectors
as the trunk basis is often denoted
POD-DeepONet in Lu et al. (2022).

(Weighted) mode loss

0 10 20 30 40 50

Mode index i

101

102

103

104

W
ei

gh
te

d
M

od
e

L
os

s
σ

2 i
L
i

4000 Training Steps

A. Heinlein (TU Delft) VORtech Lunch Lecture 21/28

DeepONet – Branch Error
Using the left singular vectors, the
branch error becomes

EB =
m∑

i=1

σ2
i ∥bi − vi ∥2

2︸ ︷︷ ︸
=:Li

.

We call
σ2

i Li

the (weighted) mode loss because it
equals the loss contribution of the ith
mode. Accordingly, Li is the
unweighted mode loss.

This choice of left singular vectors
as the trunk basis is often denoted
POD-DeepONet in Lu et al. (2022).

(Weighted) mode loss

0 10 20 30 40 50

Mode index i

101

102

103

104

W
ei

gh
te

d
M

od
e

L
os

s
σ

2 i
L
i

4000 Training Steps

→ Analyzing the actual error contributions, the modes with medium singular values contribute
most.

A. Heinlein (TU Delft) VORtech Lunch Lecture 21/28

DeepONet – Branch Error
Using the left singular vectors, the
branch error becomes

EB =
m∑

i=1

σ2
i ∥bi − vi ∥2

2︸ ︷︷ ︸
=:Li

.

We call
σ2

i Li

the (weighted) mode loss because it
equals the loss contribution of the ith
mode. Accordingly, Li is the
unweighted mode loss.

This choice of left singular vectors
as the trunk basis is often denoted
POD-DeepONet in Lu et al. (2022).

(Weighted) mode loss

0 10 20 30 40 50

Mode index i

101

102

103

104

W
ei

gh
te

d
M

od
e

L
os

s
σ

2 i
L
i

4000 Training Steps

How to improve the performance on medium-sized singular value modes?

A. Heinlein (TU Delft) VORtech Lunch Lecture 21/28

Finite Basis DeepONets (FBDONs)

Ω1 Ω2

Ω3Ω4

+

Howard, Heinlein, Stinis (in prep.)
Variants:
Shared-trunk FBDONs (ST-FBDONs)
The trunk net learns spatio-temporal basis
functions. In ST-FBDONs, we use the same
trunk network for all subdomains.

Stacking FBDONs
Combination of the stacking multifidelity approach
with FBDONs.
Heinlein, Howard, Beecroft, Stinis (2025)

A. Heinlein (TU Delft) VORtech Lunch Lecture 22/28

FBDONs – Wave Equation
Wave equation

d2s
dt2 = 2 d2s

dx2 , (x , t) ∈ [0, 1]2

st(x , 0) = 0, x ∈ [0, 1], s(0, t) = s(1, t) = 0,

Solution: s(x , t) =
∑5

n=1 bn sin(nπx) cos
(
nπ

√
2t

)

Parametrization
Initial conditions for s parametrized by
b = (b1, . . . , b5) (normally distributed):

s(x , 0) =
∑5

n=1
bn sin(nπx) x ∈ [0, 1]

Training on 1 000 random configurations.

Mean rel. l2 error on 100 config.
DeepONet 0.30 ± 0.11
ML-ST-FBDON 0.05 ± 0.03
([1, 4, 8, 16] subd.)
ML-FBDON 0.08 ± 0.04([1, 4, 8, 16] subd.)

→ Sharing the trunk network does not
only save in the number of parameters
but even yields better performance

Cf. Howard, Heinlein, Stinis (in prep.)

A. Heinlein (TU Delft) VORtech Lunch Lecture 23/28

Surrogate models for varying
computational domains

Designing of Perforated Monopiles for Offshore Wind Energy

Perforated monopiles
Monopiles are the most used and cheapest solution
of support structures in offshore wind energy.
→ Perforated monopiles reduce the wave load.

What is the optimal perforation shape?

Fully resolved CFD simulations are costly, but rough predictions may be sufficient.

A. Heinlein (TU Delft) VORtech Lunch Lecture 24/28

Convolutional Neural Network-Based Surrogate Model
CNN-based approach
We employ a convolutional neural network (CNN) (LeCun (1998)) to predict the
stationary flow field, given an image of the geometry as input.

input
(geometry)

encoder

bottleneck

decoder

output
(prediction)

skip connections

U-Net architecture; cf. Ronneberger, Fischer, Brox (2015)

Related works (non-exhaustive)
• Guo, Li, Iorio (2016)
• Niekamp, Niemann, Schröder (2022)
• Stender, Ohlsen, Geisler, Chabchoub,

Hoffmann, Schlaefer (2022)

Operator learning (non-exhaustive)
• FNOs: Li et al. (2021)
• PCA-Net: Bhattacharya et al. (2021)
• Random features: Nelsen and Stuart (2021)
• CNOs: Raonić et al. (2023)

A. Heinlein (TU Delft) VORtech Lunch Lecture 25/28

Comparison OpenFOAM® Versus CNN (Relative Error 2 %)
We automatically generate geometries and compute the corresponding flow fields using OpenFOAM®.

Input data
SDF (Signed Distance Function)

256 px

1
2
8
p
x< 0

> 0

Output data
ux

256 px

1
2
8
p
x

ux

256 px

1
2
8
p
x

ux CFD ux CNN ux ERR

uy CFD uy CNN uy ERR

Cf. Eichinger, Heinlein, Klawonn (2021, 2022).

A. Heinlein (TU Delft) VORtech Lunch Lecture 26/28

Comparison OpenFOAM® Versus CNN (Relative Error 14 %)
We automatically generate geometries and compute the corresponding flow fields using OpenFOAM®.

Input data
SDF (Signed Distance Function)

256 px

1
2
8
p
x< 0

> 0

Output data
ux

256 px

1
2
8
p
x

ux

256 px

1
2
8
p
x

ux CFD ux CNN ux ERR

uy CFD uy CNN uy ERR

Cf. Eichinger, Heinlein, Klawonn (2021, 2022).

A. Heinlein (TU Delft) VORtech Lunch Lecture 26/28

Comparison OpenFOAM® Versus CNN (Relative Error 31 %)
We automatically generate geometries and compute the corresponding flow fields using OpenFOAM®.

Input data
SDF (Signed Distance Function)

256 px

1
2
8
p
x< 0

> 0

Output data
ux

256 px

1
2
8
p
x

ux

256 px

1
2
8
p
x

ux CFD ux CNN ux ERR

uy CFD uy CNN uy ERR

Cf. Eichinger, Heinlein, Klawonn (2021, 2022).

A. Heinlein (TU Delft) VORtech Lunch Lecture 26/28

Comparison OpenFOAM® Versus CNN
We automatically generate geometries and compute the corresponding flow fields using OpenFOAM®.

Input data
SDF (Signed Distance Function)

256 px

1
2
8
p
x< 0

> 0

Output data
ux

256 px

1
2
8
p
x

ux

256 px

1
2
8
p
x

OpenFOAM® simulation

avg. runtime per case

create STL 0.15 s
snappyHexMesh 37 s
simpleFoam 13 s

total time ≈ 50 s

CPU: AMD Threadripper 2950X (8×3.8 Ghz), 32GB RAM
GPU: GeForce RTX 2080Ti

U-Net

training cost

decoders 1 2

parameters ≈ 34 m ≈ 53.5 m
time/epoch 195 s 270 s

avg. inference cost

CPU GPU

avg. time 0.092 s 0.0054 s
Cf. Eichinger, Heinlein, Klawonn (2021, 2022).

A. Heinlein (TU Delft) VORtech Lunch Lecture 26/28

Unsupervised Learning Approach – PDE Loss Using Finite Differences
Physics-informed loss function
We train the CNN by incorporating the PDE residuals,
discretized via finite differences, into the loss function:

LPDE =
1

NPDE

∑NPDE

i=1
∥R(uCNN, pCNN)∥2

2

Here, NPDE is the number of training configs.

Cf. Raissi et al. (2019), Dissanayake and Phan-Thien (1994),
Lagaris et al. (1998).

We explcitly enforce boundary conditions on the output
image → hard constraints

error ∥uNN −u∥2
∥u∥2

∥pNN −p∥2
∥p∥2

mean residual # epochs
moment. mass trained

train. 1.43 % 7.30 % 1.0·10−1 1.5·100
500val. 2.52 % 8.67 % 1.2·10−1 1.5·100

train. 5.03 % 11.63 % 3.2·10−2 7.7·10−2
5 000val. 5.18 % 11.60 % 4.2·10−2 1.1·10−1

→ Errors are comparable to the data-based approach,
but training requires more epochs.

∥R(uCNN, pCNN)∥2 >> 0 ∥R(uCNN, pCNN)∥2 ≈ 0

Here, we consider ther Navier–Stokes equations:

R(uCNN, pCNN) =
[

−ν∆u⃗ + (u · ∇) u⃗ + ∇p
∇ · u

]
Cf. Grimm, Heinlein, Klawonn (2025).

A. Heinlein (TU Delft) VORtech Lunch Lecture 27/28

A New Paradigm for Scientific Software?

Hybrid workflows determine software design
• SciML codes combine machine learning modules with classical numerical algorithms and physics models.

• Mainstream ML frameworks (e.g., PyTorch, JAX, . . .) excell in maintainance, usability, and
documentation.

• Automatic differentiation significantly simplifies core kernels, shifting major efforts towards data
processing as well as architecture and hyperparameter tuning.

Hardware and parallelization assumptions change
• Most architectures are not based on locality – except for, e.g., CNNs, GNNs, or explicit domain

decomposition. Hence, dominant kernels rely on dense linear algebra, favoring dense GPU/TPU kernels
over CPU/sparse stacks.

• Training often converges slowly in both iterations and computing time; training offline is preferred.

• Parallel scaling is more natural through data parallelism than through model decomposition.

Robustness and reproducibility guarantees often still work-in-progress
• Randomness in models (training) demand infrastructure for uncertainty quantification, ensembles, and

validation.

• Non-convex optimization problems make guarantees on convergence, robustness, and stability difficult.
Reproducibility is a major challenge.

A. Heinlein (TU Delft) VORtech Lunch Lecture 28/28

4TU.AMI – SRI “Bridging Numerical Analysis and Machine Learning”

Christoph Silke Glas Matthias
Brune Schlottbom

Francesca Alexander Matthias Deepesh
Bartolucci Heinlein Möller Toshniwal

Victorita Wil Jemima Karen
Dolean Schilders Tabeart Veroy-Grepl

Xiaodong
Cheng

CWI Research Semester Programme:
Bridging Numerical Analysis and Scientific Machine Learning: Advances and Applications

Co-organizers: Victorita Dolean (TU/e), Alexander Heinlein (TU Delft), Benjamin Sanderse
(CWI), Jemima Tabbeart (TU/e), Tristan van Leeuwen (CWI)

• Autumn School (October 27–31, 2025):
• Chris Budd (University of Bath)
• Ben Moseley (Imperial College London)
• Gabriele Steidl (Technische Universität Berlin)
• Andrew Stuart (California Institute of Technology)
• Andrea Walther (Humboldt-Universität zu Berlin)
• Ricardo Baptista (University of Toronto)

• Workshop (December 1–3, 2025):
• Plenary talks (academia & industry) and panel discussion
• Poster session with prize sponsored by Math4NL
• Plenary speakers:

• Benjamin Peherstorfer (NYU)
• Elena Celledoni (NTNU)
• Jakob Sauer Jørgensen (DTU)
• Marcelo Pereyra (Heriot-Watt University)
• Nicolas Boullé (ICL)

Join us for inspiring talks, hands-on sessions, and industry collaboration!

https://www.cwi.nl/en/education/semester-programmes/cwi-research-semester-programs/synergies-in-numerical-linear-algebra-and-machine-learning/

Summary

Scientific Machine Learning (SciML)
• SciML is a young field joining scientific computing and machine learning.
• The combination of scientific computing and machine learning comes in various forms.
• Recent progress rides on accessible hardware and open-source software.

Opportunities
• SciML techniques enhance classical

numerical solvers and purely
data-driven models.

• Offline-trained surrogates yield fast
inference, speeding up or replacing
costly workflow steps.

Challenges
• Many methods are not yet fully

theoretically understood and lack
rigorous theoretical guarantees.

• Achieving robust, efficient, stable
training at scale, especially with sparse
or noisy data, is a topic of ongoing
research.

Thank you for your attention!
Topical Activity
Group
Scientific Machine
Learning

https://ems-tag-sciml.github.io/

	Physics-informed neural networks – Adaptive sampling and localization via domain decompostion [2mm] Based on joint work with [1.5mm] math text inlined[fg]math text inlinedfgmath text inlined[fg]math text inlinedfgtbl/hmode/beginp65mml Victorita Dolean (Eindhoven University of Technology) Bianca Giovanardi, Coen Visser (Delft University of Technology) Amanda A. Howard and Panos Stinis (Pacific Northwest National Laboratory) Siddhartha Mishra (ETH Zürich) Ben Moseley (Imperial College London) tbl/finalizetbl/hmode/end
	Deep operator networks – Error analysis and localization via domain decompostion [2mm] Based on joint work with [1.5mm] math text inlined[fg]math text inlinedfgmath text inlined[fg]math text inlinedfgtbl/hmode/beginp65mml Damien Beecroft (University of Washington) Amanda A. Howard and Panos Stinis (Pacific Northwest National Laboratory) Johannes Taraz (Delft University of Technology) tbl/finalizetbl/hmode/end
	Surrogate models for varying computational domains [2mm] Based on joint work with [1.5mm] math text inlined[fg]math text inlinedfgmath text inlined[fg]math text inlinedfgtbl/hmode/beginp65mml Eric Cyr (Sandia National Laboratories) Matthias Eichinger, Viktor Grimm, Axel Klawonn (University of Cologne) Corné Verburg (Delft University of Technology) tbl/finalizetbl/hmode/end

