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1 Introduction

Post-burn wounds present a significant challenge for individuals, affecting a considerable number of people
worldwide. Beyond the immediate pain and discomfort they cause, these wounds, particularly those
proximal to joints, can lead to functional impairments and immobility. Understanding the evolution of
wounds following burn trauma is paramount for clinicians to devise effective treatment strategies. While
numerical models have proven effective in providing accurate approximations of wound evolution, they
come with limitations. These models are often computationally expensive, requiring substantial time for
execution, and altering parameters necessitates rerunning the entire model.

Recent research has shifted towards exploring the potential of machine learning, specifically neural
networks, in predicting skin evolution post-burn trauma. Advantages of using neural network surrogates
include high accuracies and fast evaluation. This study serves as an introduction to the application of
neural networks in this domain. Additionally, it formulates a new approach for contributing novel insights
to the field of wound evolution prediction.

The study is organised in the following way. Chapter 2 provides a foundational understanding of
the biology of dermal wound healing, setting the stage for subsequent discussions. In Chapter 3, the
classical theory of elastic deformation is explored, as this theory forms the basis for the mathematical
model describing wound evolution, which incorporates the concept of morphoelasticity. Chapter 4 delves
into the specifics of morphoelasticity. Chapter 5 introduces the morphoelastic mathematical model for
burn injuries, bridging the gap between biological principles and mathematical formulations. Chapter 6
provides an overview of machine learning, particularly focusing on neural networks. Chapter 7 surveys
existing applications of neural networks to predicting skin evolution after burn trauma, providing a
comprehensive understanding of the current state of the field. Finally, chapter 8 outlines our plans for
a new research approach, building upon the insights gained from prior chapters and contributing to the
advancement of predictive modelling in post-burn wound evolution.
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2 The Biology of Dermal Wound Healing

This chapters serves to give a comprehensive description of the current biological understanding of der-
mal wound healing. Section 2.1 gives a brief introduction into skin anatomy and physiology. Section 2.2
highlights the extracellular matrix, a vital component of the skin that needs to be rebuilt during wound
healing. Section 2.3 delves into the four phases of wound healing and explains the biological and mechan-
ical processes at work. Lastly, section 2.4 focuses on skin injuries due to severe burns. The emphasis is
on complications due to an abnormal healing response.

2.1 The Human Skin

The human skin is a complex, multilayered organ, consisting of heterogeneous cell types and extracellular
components [15]. It is one of the largest organs in the human body, having a surface area of approximately
2m2 and making up 16% of the total body weight [38]. Amongst its many functions, the most important
ones are preventing the organism from dehydrating, while protecting it from its environment. Skin is
dynamic, able to heal itself and responsive to the external environment, ensuring human survival [16].
As schematically depicted in Figure 1, the skin consists of three layers: the epidermis, the dermis and
the subcutis.

Figure 1: Schematic structure of the skin. Comparison of thick, hairless skin (left) and thin, hairy skin
(right). The three skin layers are clearly visible. Taken from [16].

The epidermis is the outermost layer and is approximately 0.1mm thick, although thickness can vary
depending on the location [16]. It primarily functions as a protective barrier. The main cell type in the
epidermis is the keratinocyte, which constitutes 90% of epidermal cells [36]. Keratinocytes differentiate
upwards through the epidermis. Their maturation stages can be divided into four physical layers. It
takes approximately 35 days for the whole epidermal layer to be replaced by new cells [38].

Immediately below and connected to the epidermis lies the dermis. Its thickness varies between 0.3mm
(e.g., on the eyelids) and 0.6mm (e.g., on the back and soles) [37]. The dermis serves numerous valuable
purposes: it provides firmness, flexibility and tensile strength to the skin. Moreover, it binds water,
regulates the temperature and contains receptors of sensory stimuli [15]. The dermis is less cellular than
the epidermis, consisting primarily of fibrous extracellular matrix (ECM), that surrounds the dermal cells
and other constituents (e.g. neurovascular network, sensory receptors). The ECM plays an important
role in wound healing and will be treated in more detail in the subsequent section. The most abundant
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cell type in the dermis is the fibroblast, that migrates through the tissue and is responsible for producing
and maintaining the ECM [16]. Other skin cells present are immune cells that protect from pathogens,
e.g., macrophages; mast cells that are involved in allergic reactions, blood vessel, and nerve cells [37].

Directly below the dermis lies the subcutis (sometimes called the hypodermis), a layer of loose con-
nective tissue and fat. Subcutaneous tissue varies in thickness across the body, additionally depending
on the sex of the individual [38]. It insulates the body, serves as a reserve energy supply and cushions
the skin [15].

2.2 The Extracellular Matrix

The extracellular matrix is often referred to as the “ground substance” of the dermis. It is an intricate
structure of different molecules that fills the space between skin cells and provides structural integrity,
elasticity and mechanical strength to the tissue. Figure 2 provides a schematic visualisation of the ECM
in healthy human skin. The following subsections aim to give a detailed overview of ECM anatomy and
physiology, with special emphasis on ECM remodelling.

2.2.1 Composition of the ECM

The major constituent of the ECM is collagen, a protein making up 70% of the dermis [16]. The period-
ically banded collagen fibers form a network that provides tensile strength and structural support [39].
Different types of collagen are present, the most abundant ones being type I, III, and V [37].

Another central component of the ECM is elastin, a protein that provides elasticity to the skin.
Elastic fibres return the skin to its normal configuration after being stretched or deformed [15]. Elastin
and collagen together maintain skin’s firmness and flexibility.

Additionally, the ECM contains proteoglycans (PGs) and glycosaminoglycans (GAGs). These are large
molecules that are interspersed between and stick to collagen fibers in the ECM [39]. An example of a
GAG is hyaluronic acid. PGs and GAGs are able to bind water molecules, providing a gel-like milieu and
thus regulating the hydration of the skin. They effectively ensure skin’s plumpness and smoothness [37].

Glycoproteins like fibronectin and laminin are adhesive molecules that promote cell attachment to
the ECM. One of the functions of the ECM is to act as a scaffold for the skin cells, enabling them to
adhere and migrate through the matrix. Fibronectin and laminin provide these anchor points.

The ECM is a reservoir for signalling molecules, such as growth factors, cytokines, and hormones, that
are involved in cell communication. Skin cells have receptors on their surface that are able to recognise
specific signalling molecules. When one of the latter binds, it triggers a certain response from the cell
(e.g., migration or the secretion of a specific molecule) [2]. Growth factors, a specific kind of signalling
molecules, regulate the growth, proliferation, and differentiation of cells [2].

Figure 2: ECM in healthy human skin. The three skin layers are clearly visible (A). The ECM is a
complex network of molecules that surrounds and supports the cells (B). It has attachment sites for the
skin cells, allowing for cell adhesion and migration through the matrix (C). Taken from [39].
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2.2.2 ECM Remodelling

The ECM is a highly dynamic structure that is constantly being remodelled. This entails a process
in which ECM components are synthesised, deposited, degraded, and reorganised [34]. Fibroblasts and
myofibroblasts are key cellular players in ECM remodelling.

As discussed in section 2.1, fibroblasts are the most common type of cells in the dermis. They
are responsible for synthesising and depositing the components that constitute the extracellular matrix,
as detailed in subsection 2.2.1 [16]. Fibroblasts can differentiate into myofibroblasts, resulting into a
specialised skin cell that has contractile properties, resembling both fibroblasts and smooth muscle cells
[28]. Myofibroblasts are also involved in producing constituents of the ECM.

An important instance in which ECM remodelling occurs is during wound healing and tissue repair.
In the case of a dermal wound, part of the ECM is completely destroyed and requires reconstruction
[14]. Here, fibroblast-to-myofibroblast differentiation occurs. Myofibroblasts play an important role
during wound healing. Through their contractile properties, they exert mechanical forces on the ECM,
contributing to its realignment and restructuring [28]. This additionally leads to wound contraction: the
edges of the wound are drawn together, facilitating the healing process [28]. The subsequent section will
delve more into the complex process of wound healing.

2.3 The Phases of Wound Healing

Wounds to the skin can be categorised in a number of different ways. One distinction is between epidermal
and dermal wounds. In this work, the focus is on the latter, where we assume that the wound is as deep
as to affect the dermis, where the ECM is damaged or destroyed.

Dermal wound healing is a complex sequence of overlapping events which are often described separately
but in reality form a continuum referred to as the healing cascade [7]. For the ease of explanation, we shall
also make the distinction of four separate phases: hemostasis, inflammation, proliferation and remodelling.
The following subsections serve to explain the current biological understanding of each healing phase in
more detail. Please refer to Figure 3 for a schematic overview.

Figure 3: Healing cascade phases of dermal wounds. Taken from [18].

2.3.1 Hemostasis

The moment healthy tissue is injured, the healing response commences. Blood vessels in the area constrict
to reduce blood flow [17]. As the blood components spill into the site of the injury, the platelets come
into contact with exposed collagen and other elements of the ECM [7]. This triggers the platelets to
release clotting factors. They aggregate at the site of injury, forming a blood clot to stop the bleeding.
The fibrin clot acts as a temporary barrier and releases signalling molecules to initiate healing [5]. It also
serves as a temporary matrix through which cells can migrate [17].

2.3.2 Inflammation

Hemostasis is followed by the inflammatory phase, which is characterised by the removal of pathogens.
Now, the blood vessels near the injury dilate and become more permeable. This promotes the trans-
portation of leukocytes (neutrophils and monocytes), which adhere to the blood vessel walls and migrate
out of the bloodstream, into the tissue [24].

Neutrophils are the first to arrive at the site of the injury to combat pathogens. The major function
of the neutrophil is to remove foreign material, bacteria, non-functional host cells, and damaged matrix
components that may be present in the wound site [7]. Neutrophils have a relatively short lifespan.
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Monocytes differentiate into macrophages, which are very potent immune cells that engulf and kill
pathogens [36]. They are also responsible for removing nonfunctional host cells, bacteria-filled neutrophils,
damaged ECM, foreign debris, and any remaining bacteria from the wound site [7].

Macrophages release certain signalling molecules, such as growth factors and cytokines, to recruit
even more immune cells to the site of injury [17]. The inflammatory response causes redness, swelling
and wamth in the wounded area. The presence of wound macrophages is a marker that the inflammatory
phase is nearing an end and that the proliferative phase is beginning [7].

2.3.3 Proliferation

Once the wound site is cleaned out, fibroblasts from the surrounding undamaged skin migrate in and
proliferate. They synthesise and deposit new ECM components, including collagen, to rebuild the tissue
framework [17].

Another predominant cell type proliferating during this phase is the endothelial cell (i.e., cells that
form the walls of blood vessels). New blood vessels are formed through a process called angiogenesis,
supplying oxygen and nutrients to support healing [7].

Initially, granulation tissue is formed, consisting of proliferating fibroblasts, newly formed blood vessels
and loose ECM. This is temporary tissue that is later substituted for the real ECM [39]. The granulation
tissue fills the wound from the base up, gradually filling the wound defect [14].

Signalling molecules induce fibroblasts already located in the wound site to transform into myofibrob-
lasts [17]. They exhibit less proliferation compared to the fibroblasts coming in from the wound periphery.
Myofibroblasts are also responsible for producing constituents of the ECM [28]. As myofibroblasts are
able to exert large contractile forces, their presence effectively turns the granulation tissue into a tem-
porary contractile organ [35]. This pulls the wound edges toward the center, which results in a gradual
reduction of the wound area [31].

During the proliferative phase, epithelisation occurs: epithelial cells (keratinocytes) from the wound
edges start to migrate and proliferate across the wound periphery. They gradually cover the granulation
tissue and in doing so effectively close the wound [31].

2.3.4 Remodelling

The remodelling phase is the longest healing phase and can take up to a year [31]. Clinically, this is
perhaps the most important phase, as granulation tissue becomes mature scar tissue over this time [15].
It is characterised by collagen remodelling and further contraction [31].

In the healing wound, granulation tissue is initially comprised of large amounts of type III collagen.
During this phase, fibroblasts gradually change the type III collagen to collagen type I [15]. This leads to
increased tensile strength of the scar. However, scar tissue will always remain weaker, as the final tensile
strength is about 80% of that of surrounding healthy skin [24].

The collagen fibres additionally undergo some reorganisation. The collagen that is initially laid down
is thinner than that in uninjured skin and is orientated parallel to the skin (instead of the basket weave
pattern seen in uninjured skin) [17]. Over time, the collagen fibers are reabsorbed and deposited thicker,
rearranged and cross-linked, such that they align along mechanical tension lines [31]. The latter contrasts
with the random alignment of collagen fibres in healthy ECM [24].

As granulation tissue matures into scar tissue, the cell densities decrease. Many of the cells undergo
apoptosis (i.e. programmed cell death). This leaves a relatively acellular and avascular, flat and thin scar
of gradually increasing strength [30]. The extracellular matrix has been successfully restored, but with
slightly different properties than the pre-injured ECM.

2.4 Burn Injuries to the Skin

A burn is an injury to the skin usually caused by heat. Since burns are a type of wound, they heal in
a similar way as described in section 2.3. However, one distinction between general wound healing is
that in the case of a burn, hemostasis is often bypassed. The reason for this is that intense heat can
cause coagulation and destruction of blood vessels, leading to reduced or almost immediate cessation of
bleeding [19]. As a result, the hemostasis phase is not as prominent or may not occur at all in many burn
injuries. That is why, when a burn occurs, the body’s response is to initiate the inflammatory phase of
wound healing directly [11].

Severe burns can lead to a significant decrease in mobility in the affected area over the long term,
primarily due to the development of contractures and hypertrophic scarring. As detailed in section 2.3,
contraction is a natural response of the body, facilitating healing. However, when excessive, contractions
may become pathological [7]. If long-term reduced mobility occurs, it is commonly named a contracture
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[11]. The degree of contracture severity is influenced by factors such as the size of the wound, its location
on the body and the extent of the skin tightening [44]. Contractures can inflict significant pain and
discomfort on the patient and may lead to lifelong disabilities that can profoundly impact their future.

Another complication often arising in severe burn injuries is hypertrophic scarring. This pathological
condition is characterised by a stiff, raised and uneven-textured scar, that does not extend far from the
edges of the original wound [24]. Hypertrophic scarring is due to excessive healing, where an excess of
ECM is produced and deposited [7]. In wound healing that leads to pathological scars, the inflammatory
response is often greater and continues for an unusually long period of time. During the proliferative
phase, fibroblasts and myofibroblasts continue to proliferate and synthesise ECM components much longer
than usual, possibly due to this prolonged inflammation [24]. This leads to hypertrophic scarring, which
can inflict pain, discomfort, and itch on the patient. Hypertrophic scars can also restrict movement if
they are located close to a joint [14].
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3 The Classical Theory of Elastic Deformation

This chapter introduces the well-established and widely understood principles of classical elasticity. It
provides a solid foundation for understanding the fundamental concepts of deformation, stress, and
strain. This background knowledge will serve as a framework for grasping the concept of morphoelasticity,
introduced in the subsequent chapter 4. This chapter is largely based on the books ‘An Introduction to
Continuum Mechanics’ by J.N.Reddy [42] and ‘Continuum Mechanics’ by A. J. M. Spencer [46].

Elasticity is the material property of a solid body to undergo deformation when subjected to an
external force and to return to its original shape once the force is removed. This is in contrast to
plasticity, in which the body is unable to withstand temporary changes to its shape and undergoes
permanent deformation. Elasticity theory is concerned with the deformation of bodies under the influence
of applied forces and, in particular, with the stresses and strains which result from deformations.

3.1 Descriptions of Motion

We consider a body B that occupies the region of space R0 ⊆ R3 at t = 0. R0 is called the reference
configuration. We may view B as a set of particles, having a continuous distribution of matter in space
and time. This is why we refer to B as a continuous body. After a time t, B has moved and deformed,
such that it now occupies the region Rt ⊆ R3, called the current or deformed configuration. Figure 4
displays a schematic visualisation.

The motion of B may be described by a mapping of the form

f : (R0,R+) → Rt.

Thus, given a particle in B that is initially at the point with position vector X, we can find the position
vector x at time t that corresponds to the same particle by applying f :

x = f(X, t). (1)

Equation (1) is referred to as the material or Lagrangian description. We assume that the deformation
of B is continuous, so that f is a continuous and bijective function for any t. Hence, the inverse function
exists, and we may also write

X = f−1(x, t). (2)

The relationship in equation (2) is called the spatial or Eulerian description.

Figure 4: Reference and current configurations of the body B.

The displacement vector u of a particle from its positionX in the reference configuration to its position
vector x at time t is given by

u = x−X.

In Lagrangian description, u is considered a function of X and t, so that

u(X, t) = f(X, t)−X.

In Eulerian description, however, u is a function of x and t:

u(x, t) = x− f−1(x, t).

A rigid-body motion is one in which all material particles of the body B undergo the same linear
and angular displacements. However, a deformable body is one in which the material particles can move
relative to each other. In the former case, the deformation may be determined only by considering the
change of distance between any two arbitrary but infinitesimally close points of the continuum.
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3.2 Deformation Gradient Tensor

The deformation gradient tensor F is the fundamental measure of deformation in continuum mechanics.
It is the second-order tensor which maps infinitesimal line elements in the reference configuration to line
elements in the current configuration, consisting of the same material particles. Figure 5 provides a
schematic visualisation. It is defined by the following relation:

dx = F dX, (3)

where F = ∇f(X, t) = ∂x
∂X is the deformation gradient tensor. For continuous deformations, F is nonsin-

gular, such that we may also write:
dX = F−1 dx,

where F−1 = ∇f−1(x, t) = ∂X
∂x is the inverse deformation tensor.

Figure 5: The deformation gradient tensor acting on a line segment.

The deformation gradient tensor F can be expressed in terms of the displacement vector u in the
following manner:

F = ∇u+ I. (4)

Similarly, for F−1 we have the following relation:

F−1 = I−∇u.

According to the polar decomposition theorem, the invertible second-order tensor F may be uniquely
decomposed into a product of two second-order tensors:

F = RU = VR. (5)

Here R is proper orthogonal (i.e. RT = R−1 and detR = 1) and represents a rigid rotation. U and V
are called the right and left stretch tensor, respectively. Their names are partly an indication of their
position relative to the rotation tensor R. The tensors U and V are symmetric positive definite.

Combining Equations (3) and (5) results into the following expression:

dx = (RU) dX = (VR) dX.

The polar decomposition implies that the deformation of a line element dX in the reference configuration
onto dx in the deformed configuration can be decomposed in two ways. Either a pure stretch deformation
is applied (i.e. dx′ = UdX) followed by a rotation (i.e. dx = Rdx′) or equivalently, by applying a rigid
rotation first (i.e. dx′ = RdX), followed by a stretching (i.e. dx = Vdx′). Please refer to Figure 6 for a
more visual representation.
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Figure 6: Representation of the polar decomposition of the deformation gradient. Taken from [49].

[I need to make a similar picture as above but then in the same style as the others I used and made
before.]

3.3 Cauchy-Green Deformation Tensors

The deformation gradient tensor is not rotation-independent, as it accounts for both stretching and
shearing effects, as well as rotations. In continuum mechanics, it is often convenient to use rotation-
independent measures of deformation. As a rotation followed by its inverse rotation leads to no change
(RRT = RTR = I) we can exclude the rotation by multiplying F by its transpose:

C = FT F. (6)

This leads to the rotation-independent, symmetric second-order tensor C, called the right Cauchy–Green
deformation tensor.

Let dS = ||dX|| be the initial distance between two material particles of the body B and let ds = ||ds||
be the distance between the same particles at time t. Then there exists the following relation for the
right Cauchy-Green tensor:

ds2 = dXT C dX. (7)

We thus observe that C can be interpreted as a tensorial description of the relationship between distance
in the current configuration and displacement in the initial configuration.

Reversing the order of multiplication in Equation (6) leads to the left Cauchy–Green deformation
tensor, which is defined as

B = FFT .

Like the right Cauchy-Green tensor, B is symmetric. The relation with distance is the following:

dS2 = dxT B−1 dx. (8)

This means that, given an infinitesimal vector dx between neighbouring particles in the current configu-
ration, B−1 may be used to determine dS, the original distance between those particles.

In a rigid motion, the deformation gradient tensor F is proper orthogonal (i.e., FT = F−1). In this
case, B and C are both equal to the identity tensor. This is in accordance with the physical interpretation
of the Cauchy-Green tensors, as distances between any two material points remain unchanged by a rigid
motion.

The left and right Cauchy-Green tensors are closely related to the left and right stretch tensors defined
in Equation (5). Using this equation, we find that

C = FT F = UT RT RU = U2.

Similarly we have
B = FFT = VRRT VT = V2.

Since the stretch tensors are symmetric positive definite, it follows that the Cauchy-Green tensors are as
well.
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3.4 Strain

A useful measure of deformation is one with the property that a rigid motion leads to a deformation of
zero. This leads to the concept of strain, used to evaluate how much a given displacement differs locally
from a rigid body displacement. The Lagrangian strain tensor EL is defined in the following manner:

(ds)2 − (dS)2 = 2 dXT EL dX. (9)

Let us first consider the physical interpretation. Given two particles in the body B, such that dX is the
vector separating them in Lagrangian coordinates, the Lagrangian strain tensor allows us to calculate
how much the line segment is stretched in the current configuration, relative to the initial configuration
(as measured by (ds)2 − (dS)2). This implies that the strain tensors enables the degree of stretching to
be evaluated, for any direction of the vector dX.

Similarly, the Eulerian strain tensor EE is defined as

(ds)2 − (dS)2 = 2 dxT EE dx. (10)

Importantly, the strain tensors are equal to the zero tensor at a material point if and only if the body is
completely unstretched in the neighbourhood of that point (ds = dS).

Equations (9) and (10) can respectively be combined with the definitions of the Cauchy-Green tensors
given in Equations (7) and (8), to obtain more formal definitions for the strain tensors. This results into
the following relations:

EL =
1

2
(C− I) , (11)

EE =
1

2

(
I−B−1

)
. (12)

The tensors EL and EE are relatively difficult to calculate and manipulate. Luckily, many solid bodies
experience only small changes of shape when under the influence of forces of reasonable magnitudes. The
consequence is that we can simplify Equations (11) and (12) in the case when all displacements are small.
We then assume that the displacement gradient is small (i.e. ||∇u|| << 1). This enables us to perform
a linearisation of the strain tensors, where higher order terms can be neglected. It turns out that the
linearisations of the two strain tensors are the same, which implies that there is little difference in the
material and spatial coordinates of a given material point in the continuum (under our assumption). This
gives rise to the following expressions:

EL ≃ EE ≃ εεε =
1

2

[
∇u+ (∇u)

T
]
.

Here εεε is called the infinitesimal strain tensor. Using Equation (4), εεε can also be expressed in terms of
the deformation gradient tensor F:

εεε =
1

2

(
F+ FT

)
− I.

We must keep in mind that the infinitesimal strain tensor is only a valid representation of strain when
all deformations are small. On top of that, the infinitesimal strain tensor is sensitive to rotations. It is
therefore not a true measure of deformation, since it is not invariant to all rigid motion.

3.5 Stress

In continuum mechanics, stress is a physical quantity that describes forces that are present during the
deformation of a body B. It expresses the internal forces that neighbouring material particles exert on
each other. These macroscopic forces are in truth the net result of a very large number of intermolecular
forces and collisions between the particles in these molecules.

Stress is effectively a measure of the internal forces exerted over an arbitrary internal area element
and has units of force per area. If δA is an ifinitesimal area element of the body B with normal vector
n̂ and F is the total force acting over that surface element, than the stress vector T(n̂) satisfied the
following relation:

T(n̂) = lim
δA→0

δF(n̂)

δA
=
dF

dA
.

The stress vector depends on its location in the body, as well as the orientation of the plane on which it
is acting, as defined by its normal vector n̂. The component of T that is in the direction of n̂ is called
normal stress, whereas the component that is normal to n̂ is called shear stress.
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If we are interested in the state of stress at a point in B, we must consider all stress vectors T(n̂)
associated with all planes that pass through that point. However, according to Cauchy’s stress theorem,
it is enough to know the stress vectors on three mutually perpendicular planes. The stress vector on any
other plane passing through that point can then be found through a coordinate transformation.

The Cauchy’s stress theorem states that there exists a second order tensor σσσ, independent of n̂, such
that the following relationship exists:

T(n̂) = n̂ · σσσ. (13)

σσσ is known as the Chauchy stress tensor. Equation (13) implies that the stress vector at any point in B
can be expressed in terms of the components of σσσ: the stress vectors on the planes perpendicular to the
coordinate axes, see Figure 7. This completely defines the state of stress at this point.

Figure 7: Components of stress in three dimensions. Taken from [48].

3.6 Constitutive Equations

In an elastic solid, the presence of a stress will generally lead to a strain. This means that the body will
become stretched or decompressed in response to the internal forces it experiences. The relationship be-
tween stress and strain, dependent on the material taken into consideration, is defined by the constitutive
law for the material.

The simplest example of a constitutive law is Hooke’s law for isotropic solids. This relation is given
(in component form) by

σij = λδij
∑
k

εkk + 2µεij . (14)

Here σσσ is the stress tensor, εεε is the strain tensor, δδδ is the Kronecker delta, and λ and µ are the Lamé
coefficients. The latter are characteristic of the material considered.

An isotropic material is one for which every material property at a point is the same in all directions.
In other words, the material possesses no preferred orientation. Example of isotropic solids are metals in
their usual polycrystalline form. Equation (14) is appropriate for describing the deformation of a simple,
isotropic, perfectly elastic solid (e.g., steel under small deformations). However, more complex material
requires more complex constitutive equations.

Anisotropic materials have mechanical properties that vary with direction (e.g., wood). There is an
extension of Hooke’s Law, which relates stress and strain in a more general form, taking into account
anisotropic materials. The constitutive equation is given by

σσσ = Cεεε, (15)

and is known by the generalised Hooke’s law. Here C is a fourth-order tensor known as the elasticity or
stiffness tensor, containing all the material’s elastic constants, which describe the relationship between
stress and strain in different directions. In an isotropic material, the stiffness tensor simplifies because
the material’s properties are the same in all directions, and Equation (15) can be reduced to equation
(14).

Note that for Hooke’s law, the stress-strain relationship is assumed to be linear. This is just one of
many possible relationships that can exist between stress and strain in materials. For example, many
elastic materials undergo plastic deformations when they are stressed beyond a certain limit, known as
the yield stress. Once the yield stress is reached, the change in strain does not correspond anymore to the
change in stress as described by Hooke’s law. Plastic deformation does not return to the original shape
upon unloading. This means that the stress-strain relationship has changed.
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Biological materials in particular display complicated plastic behaviour. Not only can plasticity occur
in response to mechanical stress, the action of cells can directly modify the structure of a tissue. This is
why we need a more complicated constitutive law for tissue elasticity.
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4 Morphoelasticity and the Zero Stress State

Growth is the process by which a body increases in size through the addition of mass. In biological
systems, growth may occur in many different forms. In skin healing, soft tissue growth occurs, changing
the fundamental mechanical structure of tissue. Continuum mechanics and nonlinear elasticity provide a
natural framework to study growth. The basic idea is that in a biological growth process, the deformation
of a body can be due to both a change of mass, and an elastic response. This concept is known as
morphoelasticity and it forms the backbone of the mathematical model for burn injuries, presented in
chapter 5.

This chapter serves to explain the concept of morphoelasticity. Section 4.1 firstly explains the impor-
tance of taking residual stresses into account when considering tissue growth. Section 4.2 then explains
the concept of the zero stress state and lastly, section 4.3 connects this to the concept of morphoelasticity.

4.1 Residual Stresses

Additionally to exhibiting plastic behaviour, many biological materials experience residual stress [24].
Residual stresses remain in a solid material after the original cause of the stresses has been removed. It
occurs when a body is bound to itself in such a way that it cannot deform back to relieve its internal
stresses.

The classical example of residual stress in biology was first described by Chuong and Fung [6], where
they show that cylindrical arteries experience residual stress. After a longitudinal cut, the artery deforms
out of its cylindrical shape and the residual stresses are relieved.

When determining how a body responds to an applied force, residual stresses must be taken into
consideration as well. Soft tissue growth and dermal wound healing are examples of biological processes
that involve changes to the fundamental mechanical structure of tissue, which possibly leads to residual
stresses [24]. In order to account for that, Rodriguez et al. [43] proposed a theory for describing soft
tissue growth, based on the concept of a zero stress state. The subsequent section considers this concept
into more detail.

4.2 The Zero Stress State

The zero stress state is a locally-defined representation of the deformation of a solid body, required to
relieve all elastic stresses at a given point on the interior. It is a hypothetical configuration in which
the body ”would like to be”. Mathematically, the zero stress state corresponds to a multiplicative
decomposition of the deformation gradient tensor F [43]. Given a particle in B, if X, x, and χχχ are
position vectors in the initial, current and zero stress state configurations, respectively, then this gives
the following decomposition:

F =
∂x

∂X
=
∂x

∂χχχ

∂χχχ

∂X
= Fe Fg. (16)

Here Fg is a second-order tensor representing growth (or shrinkage). It essentially maps infinitesimal
vectors in the initial configuration of the body, to infinitesimal vectors in a local zero stress configuration.
The elastic component Fe is a second-order tensor that maps infinitesimal vectors in the zero stress state
configuration, to infinitesimal vectors in the current configuration. Fe represents deformation due to
mechanical forces.
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Figure 8: Rodriguez et al. [43] proposed that residual stress can be accounted for by decomposing
the deformation from the initial to the current configuration as the product of an elastic and a growth
deformation. Taken from [24]. Note that here Fg = Z and F−1

e = Y.

4.3 Morphoelasticity

The concept of morphoelasticity was first introduced by Goriely et al. [22], detailing the process of
coupling an elastic model to a continually evolving zero stress state. The first theory of biological
morphoelasticity was presented by Rodriguez et al. [43] and was later modified and expanded by Hall
[24].

The fundamental assumption of morphoelasticity is the decoupling of the deformation gradient tensor
as given in Equation (16). Physically, this decomposition can be interpreted as follows [13]. Biological
growth is a map from a stress-free initial configuration to another (hypothetical) zero stress configuration.
Due to the grown material, the latter will not fit in Euclidean space, as it will overlap or tear (have gaps).
This means that Fg may break the continuity of the tissue. The purpose of the elastic part of the
deformation Fe is then to restore the continuity by moving apart the overlapping regions (at the expense
of introducing compressive stress) or filling the gaps (by introducing tensile stress). This means that the
current configuration is no longer stress-free, even when it is unloaded, and will thus experiences residual
stress. Figure 8 provides a schematic visualisation.

In his PhD thesis, Hall [24] expanded upon the concept of morphoelasticity, formulating how the
zero stress state changes in time, in response to tissue growth and remodelling. Hall [24] derived several
related evolution equations that mathematically describe the change of effective strain over time. In his
work, effective strain is defined as a local measure for the difference between the current configuration of
the tissue and a hypothetical configuration where the tissue is mechanically relaxed. Assuming that the
effective strains are small, Hall additionally formulated an evolution equation that describes the dynamic
change of the infinitesimal effective strain over time. His derivations are not straight-forward and rather
lengthy, containing multiply subtleties. That is why we will not go into detail here and refer the interested
reader to the PhD thesis of Hall [24]. The final derived equation that describes how the infinitesimal
effective strain changes over time will be stated in the subsequent chapter, in Equation (19).
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5 Morphoelastic Model for Burn Injuries

This chapter presents the mathematical model for skin evolution after burn trauma. The general math-
ematical framework is presented in section 5.1. A more precise description for the relevant biological
constituents is formulated in sections 5.2 - 5.5. Section 5.6 treats the mechanical components present in
the model. Lastly, the complete system is summarised in section 5.7.

5.1 Mathematical Framework

The general morphoelastic model for post-burn wound contraction was developed by Koppenol [30], who
used the theory of morphoelasticity developed by Hall [24] to incorporate the formation of long term
deformations (contraction) into the dermal layer of the skin.

The model considers four biological constituents and three mechanical components as the primary
variables. The biological constituents are the fibroblasts (N), the myofibroblasts (M), a generic signalling
molecule (c), and collagen (ρ). The mechanical components are the dermal layer displacement (u), the
the dermal layer displacement velocity (v), and the effective strain (εεε). The following system of partial
differential equations is used as a basis for the model:

Dzi
Dt

+ zi(∇ · v) = −∇ · Ji +Ri, (17)

ρt

(
Dv

Dt
+ v(∇ · v)

)
= ∇ · σσσ + f , (18)

Dεεε

Dt
+ εεε skw(∇v)− skw(∇v)εεε+ (tr (εεε)− 1) sym(∇v) = −G. (19)

Let us first explain some notation. We note that the operator D
Dt stands for the material derivative:

D

Dt
≡ ∂

∂t
+ v · ∇.

If the material derivative is applied to a second-second tensor, then it is applied to each of the scalar
elements of this tensor separately.

Secondly, any second-order tensor L may be written as the sum of a symmetric and skew-symmetric
part in the following manner:

L =
1

2

(
L+ LT

)
+

1

2

(
L− LT

)
= sym(L) + skew(L).

Here, sym(L) is a second-order tensor with the property sym(L) = sym(L)T and skew(L) is a second-order
tensor with the property skew(L) = −skew(L)T .

Equation (17) is the conservation equation for the cell density / concentration for each of the four
biological constituents. Here zi represents the concentration, Ji is the flux per unit area, and Ri is a
reaction term representing the kinetics of constituent i, for i ∈ {N,M, c, ρ}. A more precise expression
for Ji and Ri for each of the constituents will be given in sections 5.2 to 5.5.

Equation (18) is the conservation equation for linear momentum. Here ρt represents the total mass
density of the dermal tissue, σσσ is the stress tensor, and f is the total body force working on the dermal
layer. Note that v = Du

Dt . The constitutive relation for σσσ, as well as a more precise expression for f will
be given in section 5.6. We note that Equation (18) actually gives rise to multiple equations, one for each
component of the velocity vector v. For example, in 3D this would result in three equations.

Lastly, Equation (19) is the evolution equation that describes how the infinitesimal effective strain
(εεε) changes over time. It is this equation that captures the morphoelasticity of the dermal layer, taking
into account permanent deformation (in this case contraction) and residual stresses. It was formulated
by Hall [24] and is based on his extensive theory on the zero stress state and morphoelasticity. The
second-order tensor G is a growth tensor that describes the rate of active change of the effective strain.
It will be formulated in section 5.6. We note that Equation (19) actually gives rise to multiple equations,
one for each component of the strain tensor εεε. For example, in 3D this would result in nine equations.

5.2 The Fibroblast Population

In order to simplify notation, we from now on replace zi by i. Hence, zN becomes N , the cell density
of the fibroblasts in the dermis. Let us first describe the appropriate flux-term JN , that incorporates
both random movement of fibroblasts through the dermal layer and the directed movement of fibroblasts
up the gradient of signalling molecule c, if present. The former is modelled by a cell density dependent
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Fickian diffusion, and the latter process is modelled using a simple model for chemotaxis [26]. Taken
together this gives

JN = −DFF∇N + χFN∇c, (20)

where F = N + M . Here DF is the (myo)fibroblast diffusion parameter and χF is the chemotactic
parameter.

Equation (17) also contains a reaction term RN describing the kinetics of the fibroblasts. Three things
are taken into consideration: proliferation, differentiation into myofibroblasts and apoptosis. The first is
modelled using an adjusted logistic growth model. The presence of a signalling molecule c is assumed to
enhance both proliferation and cell differentiation. We obtain the following expression:

RN = rF

(
1 +

rmax
F c

aIc + c

)
(1− κFF )N

1+q − kF cN − δNN. (21)

Here, the parameter rF is the cell division rate, rmax
F is the maximum factor with which the cell division

rate can be enhanced due to the presence of the signalling molecule, aIc is the concentration of the
signalling molecule that causes the half-maximum enhancement of the cell division rate. κFF represents
the reduction in the cell division rate due to crowding, q is a fixed constant, kF is the signalling molecule-
dependent cell differentiation rate of fibroblasts into myofibroblasts, and δN is the apoptosis rate of
fibroblasts.

5.3 The Myofibroblast Population

For the myofibroblasts, the flux-term in Equation (17) in very similar to the one for the fibroblasts. In the
same way it accounts for random movement of myofibroblasts through the dermal layer and the directed
movement of myofibroblasts up the gradient of signalling molecule c. We obtain:

JM = −DFF∇M + χFM∇c. (22)

The reaction term describing the kinetics of myofibroblasts is also very similar. Almost the same
adjusted logistic growth model as used for the fibroblast population is used, the only difference being the
assumption that myofibroblasts solely divide when the generic signalling molecule is present. This gives
us the following:

RM = rF

(
(1 + rmax

F )c

aIc + c

)
(1− κFF )M

1+q − kF cM − δMM, (23)

where δM is the apoptosis rate of myofibroblasts.

5.4 The Generic Signalling Molecule

We assume that the signalling molecules diffuse through the dermis according to linear Fickian diffusion.
This gives the following flux-term:

Jc = −Dc∇c, (24)

where Dc is the diffusion coefficient of the generic signalling molecule.
Furthermore, we assume that both fibroblasts and myofibroblasts release and consume the signalling

molecules. Additionally, signalling molecules are removed from the dermis through proteolytic breakdown
(breakdown of proteins into smaller components). The reaction term becomes the following:

Rc =
kc(N + ηIM)c

aIIc + c
− δc g(N,M, c, ρ)c. (25)

Here, kc is the maximum net secretion rate of the signalling molecule, ηI is the ratio of myofibroblasts
to fibroblasts in the maximum net secretion rate of the signalling molecules and the collagen molecules,
aIIc is the concentration of the signalling molecule that causes the half-maximum net secretion rate of the
signalling molecule, and δc is the proteolytic breakdown rate of the signalling molecule.

The function g(N,M, c, ρ) represents the concentration of a generic metalloproteinase (MMP). This
enzyme is assumed to remove the signalling molecules through a proteolytic breakdown. In this study,
we take the following relationship:

g(N,M, c, ρ) =
(N + ηIIM)ρ

1 + aIIIc c
. (26)

The parameter ηII is the ratio of myofibroblasts to fibroblasts in the secretion rate of the MMPs and
the 1/(1 + aIIIc c) term represents the inhibition of the secretion of the MMPs due to the presence of the
signalling molecule.
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5.5 The Collagen Molecules

For collagen, we assume that there is no active transport in the dermis, as secreted collagen molecules
are attached to the ECM instantly. This means that the flux-term in Equation (17) is zero:

Jρ = 0. (27)

For the reaction term, three things are incorporated: collagen molecules are produced by both fibroblasts
and myofibroblasts, the secretion rate is enhanced in the presence of the signalling molecule, and there is
a proteolytic collagen breakdown analogous to the removal of the signalling molecules. This collectively
results into

Rρ = kρ

(
1 +

kmax
ρ c

aIVc + c

)
(N + ηM)− δρ g(N,M, c, ρ)ρ. (28)

Here, kρ is the collagen molecule secretion rate, kmax
ρ is the maximum factor with which the secretion rate

can be enhanced due to the presence of the signalling molecule, aIVc is the concentration of the signalling
molecule that causes the half-maximum enhancement of the secretion rate, and δρ is the degradation rate
of the collagen molecules.

5.6 The Mechanical Components

In Equation (18), a visco-elastic constitutive relation is used for the stress-strain relation in the dermal
layer. The visco-elastic relation for the dermal stress is:

σσσ = µ1sym(∇v) + µ2[tr(sym(∇v))I] +
E
√
ρ

1 + ν

(
εεε+ tr(εεε)

ν

1− 2ν
I

)
. (29)

Here µ1 and µ2 are the shear and bulk viscosity, respectively, and ν is the Poisson’s ratio. E
√
ρ represents

Young’s modulus (stiffness), which we assume to be dependent on the concentration of the collagen
molecules.

Additionally, the total body force f in Equation (18) needs a more precise description. We assume that
the myofibroblasts generate an isotropic stress, due to their pulling on the ECM, which is proportional
to the product of the cell density of the myofibroblasts and a simple function of the concentration of the
collagen molecules:

f = ∇ ·ψψψ, (30)

ψψψ = ξM

(
ρ

R2 + ρ2

)
I. (31)

ψψψ is a second-order tensor representing the total generated stress by the myofibroblast population, the
parameter ξ is the generated stress per unit cell density and the inverse of the unit collagen concentration,
and R is a fixed constant.

Lastly, we consider the growth contribution tensor G in Equation (19). We assume that the rate
of active change of the effective strain is proportional to four things: the product of the amount of
effective strain, the local concentration of the MMPs, the local concentration of the signalling molecule,
and the inverse of the local concentration of the collagen molecules. Taken collectively, this results into
the following symmetric tensor:

G = ζ

(
g(N,M, c, ρ)c

ρ

)
εεε = ξ

(
(N + ηIIM)c

1 + aIIIc c

)
εεε, (32)

where the parameter ξ is the rate of morphoelastic change.

5.7 The complete system of equations

Combining Equations (17) - (32) gives us the complete mathematical model that describes post-burn
evolution of the dermal layer:

DN

Dt
+N(∇ · v) = −∇ · (−DFF∇N + χFN∇c) + rF

(
1 +

rmax
F c

aIc + c

)
(1− κFF )N

1+q − kF cN − δNN,

DM

Dt
+M(∇ · v) = −∇ · (−DFF∇M + χFM∇c) + rF

(
(1 + rmax

F )c

aIc + c

)
(1− κFF )M

1+q − kF cM − δMM,

Dc

Dt
+ c(∇ · v) = −∇ · (−Dc∇c) +

kc(N + ηIM)c

aIIc + c
− δc

(N + ηIIM)ρ

1 + aIIIc c
c,

Dρ

Dt
+ ρ(∇ · v) = kρ

(
1 +

kmax
ρ c

aIVc + c

)
(N + ηM)− δρ

(N + ηIIM)ρ

1 + aIIIc c
ρ, (33)
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ρt

(
Dv

Dt
+ v(∇ · v)

)
= ∇ ·

(
µ1sym(∇v) + µ2[tr(sym(∇v))I] +

E
√
ρ

1 + ν

(
εεε+ tr(εεε)

ν

1− 2ν
I

))
+∇ ·

(
ξM

(
ρ

R2 + ρ2

)
I

)
,

Dεεε

Dt
+ εεε skw(∇v)− skw(∇v)εεε+ (tr (εεε)− 1) sym(∇v) = −ξ

(
(N + ηIIM)c

1 + aIIIc c

)
εεε.
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6 Machine Learning Background

The function of this chapter is twofold: firstly, it serves to give an introduction into machine learning
and specifically artificial neural networks. Section 6.1 gives a comprehensive overview of neural networks,
covering all relevant concepts and terms. This section is based on the following sources: [21], [3], and
[25]. Additionally, this chapter introduces specific neural network types that are of interest in this study.
Section 6.2 gives a description of Physics-Informed Neural Networks (PINNs), section 6.3 introduces
Deep Operator Networks (DeepONets) and the combination of the two, physics-informed DeepONets is
discussed is section 6.4.

6.1 A Brief Overview of Neural Networks

This section serves to give an introduction into neural networks. Subsection 6.1.1 gives a general descrip-
tion and considers the general architecture. Subsection 6.1.2 covers activation functions used to introduce
non-linearity in the network. Training of the network is explained in subsection 6.1.3. This is followed by
the explanation of forward propagation and backpropagation in subsections 6.1.4 and 6.1.5, respectively.
Different optimisation algorithms are considered in subsection 6.1.6. Lastly, the testing and validation of
a network is discussed in subsection 6.1.7.

6.1.1 General Architecture and Description

Neural networks are computational models designed to mimic the brain’s learning process. They consist of
interconnected nodes, or neurons, each performing simple computations [21]. The neurons are organised
in layers, including an input layer, one or more hidden layers, and an output layer. A hidden layer is
called dense or fully-connected if each neuron in the layer is connected to all neurons in the subsequent
layer. The number of layers in the network is called the depth. That is why the term deep learning or
deep neural network refers to networks with multiple hidden layers. The width of the network is defined
as the number of neurons in the hidden layers. Figure 9 provides a visualisation of a fully-connected,
deep neural network.

Figure 9: A visualisation of a fully-connected, deep neural network. Input layer in blue, two hidden layers
in black and output layer in green. Taken from [50].

A neural network is used to approximate a mapping f that takes as input a vector x ∈ Rn and outputs
a vector y ∈ Rm, such that y = f(x). It has been shown that neural networks are universal function
approximators. This means that, with enough hidden layers, a neural network is able to approximate
any (nonlinear) continuous function f arbitrarily well [21]. A neural network is essentially a parametrised

mapping f̂ that takes as input x ∈ Rn and outputs ŷ ∈ Rm. It tries to learn the values of certain
parameters θθθ, such that f̂(x;θθθ) ≈ f(x), i.e., ŷ ≈ y.

In order to approximate both linear and nonlinear mappings, a neural network uses a combination of
an affine transformation and a nonlinear activation function. Let us assume we have a fully-connected
network with L hidden layers. Each neuron in the first hidden layer takes as input the whole vector x and
applies the affine transformation g(x, θθθ) = g(x,w, b) = wTx+ b. Here w ∈ Rn is a vector of the weights
of the neuron and b ∈ R is the bias. If we combine these weights and biases in a matrix W1 ∈ Rn1×n and
b1 ∈ Rn1 respectively for all n1 neurons in this hidden layer, the transformed vector x̂ can be computed
as

x̂ =W1x+ b1.

The transformed vector is subsequently passed through a fixed nonlinear activation function α to obtain
the hidden values of the first layer:

h1 = α(x̂) = α(W1x+ b1).
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Note that the activation function is applied element-wise to the vector x̂, but itself is still a scalar function.
There are many choices for an activation function. They will be discussed in greater detail in subsection
6.1.2.

The output h1 ∈ Rn1 of the first hidden layer is taken as input of each node in the second hidden
layer and the same process is repeated. This continues through all layers of the network. To summarise,
a neural network with L hidden layers can be written as

h1 = α(W1x+ b1), (34)

hi+1 = α(Wi+1hi + bi+1), for i = 1, . . . , L− 1 (35)

ŷ = β(WL+1hL). (36)

Here ŷ ∈ Rm is the output of the neural network. Note that for the output layer there is often a different
activation function used, denoted by β. One may also add a bias vector to the last layer. The vectors
hi ∈ Rni for i = 1, . . . L are the respective outputs of the hidden layers, which can be thought of as
the intermediate states of the network. The matrices Wi ∈ Rni×ni−1 and vectors bi, for i = 1, . . . L + 1
contain the weights and biases, respectively. These are collectively called the learnable parameters of the
network, which are learned through a process called training. Subsection 6.1.3 will cover the training of
learnable parameters.

If we define

F1 := α(W1x+ b1),

Fi := α(Wi+1hi + bi+1), for i = 1, . . . , L− 1

FL := β(WL+1hL),

we can formulate the neural network as the composition of parameter-dependent functions:

f̂(x;θθθ) = FL ◦ · · · ◦ F1(x). (37)

Here θθθ denotes all learnable parameters.

6.1.2 Activation Functions

Activation functions introduce non-linearity into neural networks, enabling them to approximate nonlinear
functions and thereby capture intricate relationships within data [21]. Without activation function, the
output of the neural network would be a linear combination of the inputs, which greatly restrict the
usability. Common activation functions include the sigmoid, tanh and Rectified Linear Unit (ReLU)
functions, which are visualised in Figure 10.

The ReLU function is defined by
α(x) = max(0, x).

The advantage of the ReLU function is that it is computationally efficient. A disadvantage is that it can
cause nodes to ”die”, since the gradient for x < 0 is always zero. This implies that backpropagation is no
longer possible and learning can terminate. More on backpropagation can be found in subsection 6.1.5.
There exist adaptations of the ReLU activation function, designed to prevent the problem described
above. One of them is the Leaky ReLU, defined in the following manner:

α(x) = max(0.1x, x).

The sigmoid function is defined by

α(x) =
1

1 + e−x
.

Perks of the sigmoid function are that it normalises the outputs of the hidden layers and it has a smooth
gradient. A large drawback is that it suffers from vanishing gradients if the values of |x| are large. This
can slow down or even terminate learning. For this reason, the sigmoid function is not often used as
activation function in hidden layers. However, it is useful in the output layer of classification models,
where it returns a probability (a score between 0 and 1).

The hyperbolic tangent can be written as

α(x) = tanh(x) =
ex − e−x

ex + e−x
.

The tanh has the same properties as the sigmoid function, except that it is zero-centered, making it more
suitable for inputs with strongly negative, neutral, and strongly positive values.
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Figure 10: Three common activation functions.

It is clear that each activation function has its advantages and disadvantages. When training a neural
network, one should try different functions to find which one performs best for the specific task at hand.

6.1.3 Loss Functions and Training

Let I and O be the input and output sets, respectively:

I = {x1, . . . ,xN}, (38)

O = {y1, . . . ,yN},

where xi ∈ Rn and yi ∈ Rm, for i = 1, . . . , N . Subsection 6.1.1 described how one can think of a neural
network as a function f̂ that takes as input a vector xi ∈ I and outputs a corresponding ŷi ∈ Rm.
In Equation 37 we have seen that it is actually a composition of parameterised functions, so that we
can write f̂(xi;θ)θ)θ) = ŷi. The aim of the neural network is to approximate the possibly non-linear, but
continuous function f that has the same inputs xi ∈ I but outputs the corresponding yi ∈ O. The neural
network performs well if ŷi ≈ yi, for all i = 1, . . . , N

Its objective is to find the values of the weights and biases, collectively denoted by θθθ, such that
deviations of the network output from the desired output are penalised. Training a neural network
means solving the following general optimisation problem:

min
θθθ

N∑
i=1

L
(
f̂(xi;θθθ),yi

)
. (39)

Here L is a general loss function, which defines a distance metric between the network output and the
desired output y. There are many choices for L. One example is the mean squared error (MSE) defined
by

LMSE
(
f̂(xi;θθθ),yi

)
=

1

N

∣∣∣∣f̂(xi;θθθ)− yi
∣∣∣∣2
2
.

Other well-known loss functions are the root mean squared error (RMSE) andmean absolute error (MAE):

LRMSE(
(
f̂(xi;θθθ),yi

)
) =

1√
N

∣∣∣∣f̂(xi;θθθ)− yi
∣∣∣∣
2
,

LMAE(
(
f̂(xi;θθθ),yi

)
) =

1

N

∣∣∣∣f̂(xi;θθθ)− yi
∣∣∣∣
1
.

The set I defined in (38) is often called the training set, containing the training data. One element
of the training set is called a training sample. During training, the training data is passed through the
network multiple times to adapt or train the learnable parameters θθθ. Training consists of three phases:
forward propagation, backpropagation, and optimisation. The former two will be treated in subsection
6.1.4 and 6.1.5, respectively. The latter refers to solving Equation (39), which usually means solving a
complex, higly non-convex optimisation problem. This is realised using a gradient-based optimisation
algorithm. Section 6.1.6 will delve into this subject in greater detail.

6.1.4 Initialisation and Forward Propagation

The first phase in training is the computation of the predictions ŷi = f̂(xi, θθθ) for each sample in the
training set. This is called forward propagation. For a given training sample, the prediction can be
calculated using the scheme detailed in Equations (34) - (36): the input values are fed to the first layer
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of the network, multiplied by its weights and added to its bias, and then passed through a nonlinear
activation function before being passed to the next layer. This process is repeated until the output layer
is reached, giving the prediction based on the current set of weights and biases in the network.

These weights and biases need to be initialised in order to compute the first predictions. This is done
once at the beginning of training and then they are shared across all training samples during forward
propagation. Initialisation can be done in multiple ways and often depends on the network architecture
considered. One common technique is Xavier initialisation or normalised initialisation [20]. Here the
weights are drawn from the uniform distribution:

W ∼ U

[
−
√
6

√
nj + nj+1

,

√
6

√
nj + nj+1

]
,

where nj is the number of inputs of the j-th layer and nj+1 is the number of outputs of the (j + 1)-th
layer.

After forward propagation, the loss function L
(
f̂(xi;θθθ),yi

)
between the predictions and actual values

can be evaluated for each training sample. By adding all terms we can now formulate the minimisation
problem that needs to be solved, as given in Equation (39).

6.1.5 The Computational Graph and Backpropagation

To solve Equation (39), the gradient of the sum of loss functions with respect to the learnable parameters
θθθ needs to be determined. Due to linearity, the gradients of the separate terms in the objective function
can be calculated individually and then summed. This means that the network needs to determine

∇θθθL
(
f̂(xi;θθθ),yi

)
,

for i = 1, . . . N . The learnable parameters θθθ are actually the weight matrices Wj and bias vectors bj , for
j = 1, . . . , L+ 1 (for each hidden layer in the network and the output layer).

When training a neural network, the numerical evaluation of a gradient expression needs to determined
many times and this can be computationally expensive. The backpropagation algorithm provides an easy
and computationally cheap solution, making efficient use of the chain rule for differentiation. It works by
recursively applying the chain rule and computing the gradient of the loss with respect to the output of
each layer, and then propagating these gradients backward through the network to compute the gradients
with respect to the parameters in each layer.

For illustrative purposes, let L(ŷ) ∈ R, ŷ ∈ Rm, θθθ ∈ Rn, and ŷ = g(θθθ). The chain rule for differentia-
tion is then given by

∂L
∂θi

=

m∑
j=1

∂L
∂yj

∂yj
∂θi

.

Hence, the gradient of L with respect to θθθ can be written as

∇θθθL =

(
∂ŷ

∂θθθ

)T

∇ŷL,

where ∂ŷ
∂θθθ denotes the Jacobian matrix of function g. Now assume we have L(ŷ) ∈ R, ŷ ∈ Rm, h ∈ Rk,

θθθ ∈ Rn, ŷ = g(h), and h = l(θθθ). The gradient of L with respect to θθθ now becomes

∇θθθL =

(
∂h

∂θθθ

)T (
∂ŷ

∂h

)T

∇ŷL.

Here ∂ŷ
∂h and ∂h

∂θθθ denote the Jacobian matrices of function g and l, respectively. This principle of obtaining
the gradient of the loss function with respect to the network’s learnable parameters as a product of
its gradient and Jacobian matrices at each network layer, is at the backbone of the backpropagation
algorithm.

One way to conceptualise this better is by considering the computational graph of the neural network.
Here each variable and operation (addition, multiplication, the application of an activation function)
is denoted by a node in the graph. The graph keeps track of the order in which these operations are
performed. Let us consider a simple example of a network with one input x ∈ R, one hidden layer with
one node and one output ŷ ∈ R. We consider only one sample of the training set. The output of the first
hidden layer can be determined by

h = α(w1x+ b). (40)
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Assuming that the network output is calculated using no activation function and no bias, we have

ŷ = w2h. (41)

This gives rise to a loss function L(ŷ, y), where y ∈ R is the desired output. The computational graph of
this simple neural network is depicted in Figure 11.

x ×

w1

+

b

α(·) ×

w2

L(·, ·)

y

Figure 11: The computational graph of a simple neural network with one input x ∈ R, one hidden layer
with one neuron and one output ŷ ∈ R. The grey nodes in the computational graph denote operations,
whereas the purple nodes denote variables.

Sweeping through the computational graph from left to right gives the sequential order of operations
in which we can break down Equations (40), (41) and the calculation of the loss function L(ŷ, y). For
each intermediate step, we can determine the partial derivatives of the output with respect to the inputs:

f = w1x =⇒ ∂f

∂x
= w1,

∂f

∂w1
= x,

g = f + b =⇒ ∂g

∂f
= 1,

∂g

∂b
= 1,

h = α(g) =⇒ ∂h

∂g
= α′(g),

i = w2h =⇒ ∂i

∂h
= w2,

∂i

∂w2
= h,

j = L(i, y) =⇒ ∂L
∂i
,

∂L
∂y

.

Subsequently, determining the derivative of the loss L with respect to the learnable parameters (in this
case w1, w2, and b) is done by traversing the computational graph in a reverse direction. This process
involves multiplying the corresponding partial derivatives, effectively applying the chain rule multiple
times:

∂L
∂w1

=
∂L
∂i

∂i

∂h

∂h

∂g

∂g

∂f

∂f

∂w1
,

∂L
∂w2

=
∂L
∂i

∂i

∂w2
,

∂L
∂b

=
∂L
∂i

∂i

∂h

∂h

∂g

∂g

∂b
.

6.1.6 Optimisation Algorithms

After both forward propagation and backpropagation, the gradients with respect to each learnable pa-
rameter of the objective function that the network aims to minimise are known. These gradients can
then be used in a gradient-based algorithm to find the updates of the learnable parameters.

Let us first introduce the standard gradient descent algorithm for finding the updated weights and
biases of the network. This is also called batch gradient descent. It is in line with what we have considered

so far: solving Equation (39) by determining ∇θθθL
(
f̂(xi;θθθ),yi

)
for i = 1, . . . , N . That is: for all samples

in the training set. The idea is to utilise the fact that the gradient shows the direction of steepest ascent
of the objective function. This implies that minus the gradients points into the direction of reaching a
minimum. That is why the gradient descent algorithm calculates the updates of the learnable parameters
as follows:

θθθupdated = θθθ − λ ∗ ∇θθθ

[
N∑
i=1

L
(
f̂(xi;θθθ),yi

)]
. (42)
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Here λ is the learning rate. This is a very important hyperparameter of the network and should be
initialised by the researcher. Choosing a learning rate that is too large may result in jumping over the
minimum of the objective function, whereas choosing it too small can result in a very long computation
time or never reaching a minimum.

After the learnable parameters are updated, the learning process recommences: forward propagation
is applied to the whole training set, this time using the updated weights and biases. The new loss function
that needs to be minimised is calculated and backpropagation is used do determine the gradient with
respect to the updated parameters. Subsequently, the gradient descent algorithm updates the parameters
once again, using the scheme in Equation (42). This process is repeated until a predefined stopping
criterion is met. Once the network has finished training, the weights and biases of the last iteration are
frozen.

In standard gradient descent, the entire training dataset is used to compute the gradient of the
objective function with respect to the model parameters in each training step. This can become very
computationally expensive, especially when training set is large. That is why in practice mini-batch
gradient descent is utilised. Here, the training set is randomly divided into disjoint sets of a fixed size.
Such a set is called a mini-batch and the number of samples in a batch is a hyperparameter often denoted
by the batch size. The idea is then to approximate the gradient of the objective function (which is
separable, as it consists of summed terms) with the the gradient of only those terms that correspond to
samples from one mini-batch. Each mini-batch contributes to one update of the model’s parameters. We
say that one epoch is completed after the model has iterated through all the mini-batches in the training
dataset exactly once.

For illustrative purposes, let us assume we subdivide the training set into K disjoint sets S1, . . . , SK

with batch size k. We then approximate

∇θθθ

[
N∑
i=1

L
(
f̂(xi;θθθ),yi

)]
≈ ∇θθθ

∑
i∈Sj

L
(
f̂(xi;θθθ),yi

) =
∑
i∈Sj

∇θθθL
(
f̂(xi;θθθ),yi

)
.

The mini-batch gradient descent algorithm calculates the updates of the learnable parameters as follows:

θθθupdated = θθθ − λ ∗ ∇θθθ

∑
i∈Sj

L
(
f̂(xi;θθθ),yi

) . (43)

The network iterates over the mini-batches, each time performing forward propagation and calculating
the loss. It then performs backpropagation to compute the gradients of the loss with respect to the
learnable parameters. Subsequently, the learnable parameters are updated using the scheme in Equation
(43). This process is repeated for the desired number of epochs. For each new epoch, the data is randomly
shuffled to ensure that the model doesn’t learn patterns that might be specific to the order of the data
in the training set, and new groups of mini-batches are created.

There exist many optimisation algorithms that are based on mini-batch stochastic gradient descent,
but utilise a adaptive learning rate λ. Popular examples include AdaGRAD [8], RMSprop [27] and Adam
[29]. While mini-batch gradient descent uses a fixed learning rate for all parameters, Adagrad, RMSprop,
and Adam dynamically adjust the learning rates based on the historical behavior of each parameter
during training. This approach is particularly useful in dealing with different scales and is shown to be
more robust [45].

6.1.7 Testing and Validation

After the training phase, the neural network is ready to be evaluated on unseen data to assess its
generalisation capabilities. This phase is crucial for determining how well the model performs on data it
has never seen during training. The evaluation process involves freezing the weights and biases obtained
from the final iteration of the training phase and subjecting the neural network to a test dataset.

To ensure a fair evaluation, a separate dataset for testing is used that the neural network has not been
exposed to during training. Typically, the original dataset is divided into two subsets: the training set
and the test set. The training set is employed for updating the model’s parameters, while the test set,
held out during training, serves as an unbiased measure of the model’s performance. The division ratio
can be chosen by the researcher and often depends on the amount of data available. Some examples are:
90%, 80%, 70% (training) vs 10%, 20%, 30% (testing), respectively.

There exist several metrics to gauge the performance of a neural network on the test set. Common
performance measures include accuracy, precision, recall, and F1 score. These metrics offer insights
into different aspects of the model’s behaviour. We will only define accuracy here: the proportion of
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samples for which the model produces the correct output. Hence, an accuracy of 1.00 represents a perfect
algorithm.

Optimal performance often requires fine-tuning of hyperparameters. Hyperparameters are configu-
ration settings that are not learned during training but significantly influence the model’s performance.
Examples are the learning rate, the number of hidden layers, and the batch size. Techniques such as grid
search or random search can be used to systematically explore the hyperparameter space and identify
the combination that maximises the model’s performance on the validation set [25].

6.2 Physics-Informed Neural Networks

Physics-Informed Neural Networks (PINNs) combine the power of neural networks with physical principles
to solve partial differential equations (PDEs). The first to introduce this paradigm were Raissi et al. [41],
who drew inspiration from the early contributions of Psichogios and Ungar [40], and Lagaris et al. [32].

Raissi et al. observe that when training a deep learning algorithm to accurately identify a nonlinear
function in the context of physics or biology, there is often prior information available in the form of
governing equations (system of PDEs) or some other empirically validated rules. This information can
act as a regularisation agent, such that it constrains the space of admissible solutions of the neural
network. When the information content of the data the neural network sees is in this way amplified, the
algorithm can steer itself quickly to the right solution and generalise well in cases when limited training
samples are available.

Let us describe the general form of a nonlinear partial differential equation:

ut +N [u;λ] = 0, x ∈ Ω, t ∈ [0, T ]. (44)

Here, u(t, x) denotes the latent solution, N [· ;λ] is a nonlinear operator parametrised by λ, and Ω ⊆ RD.
A wide variety of problems in mathematical physics and biology may be written in the form of Equation
(44), such as conservation laws, diffusion processes, advection-diffusion-reaction systems, and kinetic
equations. We note that the system of equations describing the post-burn evolution of the dermal layer
as given in section 5.7 can also be written in this form.

Given (noisy) data of the system (44), there are two distinct problems we can apply a PINN to. The
first one is what Raissi et al. call the data-driven solution of the PDE: given fixed model parameters λ,
we want to approximate the unknown solution u(t, x) of the system. To this end, we define f(t, x) to be
the left-hand side of Equation (44):

f := ut +N [u;λ]. (45)

Figure 12: The schematic of PINNs for solving PDEs. Taken from [23].

We then proceed by approximating u(t, x) by a deep neural network. Together with Equation (45),
this results into a physics informed neural network f(t, x). The network f(t, x) can be derived using
automatic differentiation [1], which applies the chain rule for differentiating compositions of functions.
The PINN has the same parameters as the network representing u(t, x), but with different activation
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functions due to the action of the differential operator N . The shared parameters between the neural
networks u(t, x) and f(t, x) can be learned by minimising the mean squared error loss

MSE =MSEu +MSEf ,

where

MSEu =
1

Nu

Nu∑
i=1

|u(tiu, xiu)− ui|2, (46)

and

MSEf =
1

Nf

Nf∑
i=1

|f(tif , xif )|2. (47)

Equation (46) corresponds to the initial and boundary data {tiu, xiu, ui}
Nu
i=1 on u(t, x). Equation (47)

enforces our PDE at a finite set of collocation points {tif , xif}
Nf

i=1. MSEf penalises the PDE not being
enforced in these collocation points and encourages the PINN to learn the structural information expressed
by the PDE during the training process. Figure 12 gives a schematic overview of the PINN architecture.

6.3 Operator Learning

In section 6.2 we have introduced neural networks as function approximators. Another and perhaps more
powerful result is that a neural network with a single layer can accurately approximate any nonlinear
operator (i.e., a mapping from a function space into another function space) [4]. This leads to a different
application named operator learning. The focus in this study will be on the recently introduced deep
operator network (DeepONet [33]) for learning operators accurately and efficiently from a relatively small
dataset.

The setup in the paper by Lu et al. [33] that introduces DeepONets is as general as possible. We
consider an operator G that takes an input function u and then G(u) is the corresponding output function.
For any point y in the domain of G(u), the output G(u)(y) ∈ R. The network takes two inputs: u and
y, and outputs G(u)(y). The function u is evaluated at finitely many locations {x1, . . . , xm}, which Lu
et al. call sensors. Part A of Figure 13 gives a visualisation of the general DeepONet architecture.

Figure 13: General DeepONet architecture (A). Sensor points are taken at fixed locations (B). The
stacked DeepONet has one trunk network and p stacked branch networks (C). The unstacked variant has
one trunk network and one branch network (D). Taken from [33].
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During training, the DeepONet takes many functions u, which are usually sampled from a chosen
function space. Possible examples include Gaussian random field and orthogonal (Chebyshev) polynomi-
als. The only condition required is that the sensor locations are the same for all input functions u, see
part B of Figure 13.

Lu et al. propose two versions of DeepONet. Both architectures consist of a trunk network that
takes y as the input and outputs a vector [t1, . . . , tp]

T ∈ Rp. The stacked DeepONet additionally has
p branch networks that take as input [u(x1), . . . , u(xm)]T and ouput a scalar bk ∈ R, for k = 1, . . . , p.
The unstacked DeepONet merges all branch networks into one single branch network (refer to part B of
Figure 13). The output of the network is in both cases the dot product

G(u)(y) ≈
p∑

k=1

bktk.

One way of conceptualising the branch and trunk network is by considering that the branch network
extracts latent representations of input functions and the trunk network extracts latent representations
of input coordinates at which the output functions are evaluated.

In the context of (a system of) partial differential equations, a DeepONet may be utilised to learn
the solution operator of the system. Consider a system of PDEs where the solution is denoted by s(x, t).
Furthermore, there is a parameter u(x) that the solution depends upon. Note that this notation differs
from the notation used in section 6.2, where u denoted the solution to the PDE. In our current context,
the PDE is parameterised by u, and s stands for the solution. There exist many possibilities for u.
Examples include but are not limited to u representing a forcing term, a source term, an initial condition,
some other variable parameter in the system, or the domain geometry. We can use a DeepONet to
approximate the solution operator to the PDE:

G : u(x) 7→ s(x, t).

That is: given any u(x), the DeepONet predicts the solution s(x, t) over the whole domain and for all
time. The training set is generated by randomly sampling u from a chosen function space. For each ui,
the solution s(x, t) is sampled at P random locations {(x1, t1)i, . . . , (xP , tP )i}. The training set for the
DeepONet is then a triplet [u,y, G(u)(y)], where

[u,y, G(u)(y)] =





...
ui(x̂1), . . . , u

i(x̂m)
ui(x̂1), . . . , u

i(x̂m)
...

ui(x̂1), . . . , u
i(x̂m)

...


,



...
(x1, t1)

i

(x2, t2)
i

...
(xP , tP )

i

...


,



...
si(x1, t1)
si(x2, t2)

...
si(xP , tP )

...




.

If we assume an unstacked DeepONet, the branch network takes inputs from the first vector u, the trunk
network takes inputs from the second vector y and the desired output to which we compare the network’s
output are elements from the third vector G(u)(y).

6.4 Physics Informed DeepONets

The PINN setup detailed in section 6.2 can be combined with DeepONets introduced in section 6.3, to
obtain physics-informed DeepONets. This can be viewed as an extension of the DeepONet framework
and was first proposed by Wang et al. [47].

The authors observe that although DeepONets have demonstrated great promise, their application
for solving parametric PDEs faces two fundamental challenges. Firstly, they require large amounts of
paired input-output observations for training, which can be very computationally expensive to acquire.
Ideally, one would wish to be able to train such models without any observed data at all (i.e., given only
knowledge of the PDE and its corresponding IBCs). Secondly, DeepONets predict the solution operator
of a PDE, but the solution thus obtain does not necessarily adhere to the underlying PDE. To address
these challenges, Wang et al. propose the simple, yet remarkably effective idea of combining DeepONets
with the PINN setup. The general architecture of a physics-informed DeepONet is depicted in Figure 14.
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Figure 14: Physics-informed DeepONet architecture. Taken from [47].

The motivation is that the outputs of a DeepONet are differentiable with respect to their input
coordinates. This allows for the use of automatic differentiation [1] to construct a mechanism for biasing
the target output function to satisfy the underlying PDE constraint, much in the same way as described
in section 6.2. This results into a procedure for training physics-informed DeepONet models in the case of
very little training data. It is even applicable in the absence of any training data for the output function,
except for the corresponding boundary and initial conditions of the system.

To illustrate the above points, we consider a simple example corresponding to an initial value problem
described by the following ordinary differential equation:

ds(x)

dx
= u(x), x ∈ [0, 1], (48)

s(0) = 0.

The goal is to learn the solution operator G, which in this case corresponds to the anti-derivative operator

G : u(x) 7→ s(x) = s(0) +

∫ x

0

u(t)dt,

for x ∈ [0, 1]. To this end, we randomly sample N functions {ui, . . . , uN} from a chosen function space.
For each ui, we sample the solution si at P = 1 random locations yi ∈ [0, 1]. This means that the
solution in these points, given the corresponding function u, should be known to us. We choose m
sensors {x1, . . . xm} to evaluate the functions ui in. Our training set now consists of the triplet

[u,y, G(u)(y)] =


 u1(x1), . . . , u

1(xm)
...

uN (x1), . . . , u
N (xm)

 ,
 y

1

...
yN

 ,
 s1(y1)

...
sN (yN )


 .

Assuming an unstacked DeepONet, the elements of the first vector are inputs to the branch network and
the elements of the second vector are corresponding inputs to the trunk network. We will denote the
output of the DeepONet by Gθθθ(u)(y). Choosing the MSE as loss function, the DeepONet needs to solve
the following optimisation problem:

min
θθθ

Loperator(θθθ) = min
θθθ

1

N

N∑
i=1

∣∣∣∣Gθθθ(u
i)(yi)− si(yi)

∣∣∣∣2
2
. (49)

Here ui = [ui(x1), . . . , u
i(xm)] represents the input function. We note that the output of the DeepONet

is a function of input coordinates x. We can utilise automatic differentiation to calculate the derivative
of the output with respect to the input and penalise deviations of the right-hand side of our differential
equation in (48). This gives the additional minimisation problem

min
θθθ

Lphysics(θθθ) = min
θθθ

1

Nm

N∑
i=1

m∑
j=1

∣∣∣∣∣∣dGθθθ(u
i)(yi)

dy

∣∣∣
y=xj

− ui(xj)
∣∣∣∣∣∣2
2
. (50)

This means that the physics-informed DeepONet needs to minimise the composite loss function given by
the sum of Equations (49) and (50):

L(θθθ) = Loperator(θθθ) + Lphysics(θθθ).
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The difference between a physics-informed DeepONet and a regular PINN is that the goal of the
latter is to learn the solution of a parametrised PDE, for the case where the parameters are given
and remain fixed during model training. This implies that a trained PINN cannot generalise to other
input parameters, unless it is re-trained. As a contrast, a physics-informed DeepONet aims to learn the
parametrised solution operator that maps different input parameters to the associated PDE solutions.
As a consequence, the physics-informed DeepONet can quickly infer PDE solutions corresponding to
different input parameters, simply by using model evaluation. Re-training the complete model is not
necessary.
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7 Literature on Machine Learning for Wound Healing

This chapter gives an overview of the existing landscape of neural network applications in wound healing
modelling. Section 7.1 considers the existing numerical models that approximate the solution to the
morphoelastic problem, used to obtain training and evaluation data. Sections 7.2 and 7.3 delve into
previous research that has applied neural networks to the 1D and 2D problem, respectively.

7.1 Numerical Models

All applications of neural networks to predicting the skin evolution after burn trauma utilise existing
numerical models for training data generation. The 1D numerical model [11] solves the system given in
(33) on a computational domain Ω = [−L1, L1] with appropriate boundary and initial conditions. The
initial wounded area is Ωw = [−L2, L2], where L2 < L1. The model makes use of the finite element
method with linear basis functions. For the time integration, the backward Euler method is applied,
using a monolithic approach with inner Picard iterations. The full derivation can be found in [11].

The numerical model computes the four constituents (N,M, ρ, c) and three mechanical values (u, v, ε).
Additionally, the model outputs the relative surface area of the wound (RSAW) and the total strain energy
(TSE). The former can be obtained from a post-processing step, using the displacement field over the
domain. The formula for the RSAW at time t is derived by adding the displacement of the wound edge
at time t to the initial wound size L2:

RSAW (t) =
L2 + u(t, xb)

L2
.

The TSE is defined by the integral over the strain energy density (per unit volume) and can be seen as
a measure for the post-burn discomfort a patient might experience.

In addition to the 1D model, Egberts et al. [9] have solved the 2D morphoelastic model for skin
evolution using finite uniform bilinear elements. Here, they let the xy-plane run parallel to the surface of
the skin and neglect the effects of the depth of the skin. The authors argue that such a configuration can
be used to approximate the kinetics of a wound on a non-curved body part, such as a patient’s chest or
back. The computational domain is Ω = [−L1, L1]× [−L1, L1] and the initial wounded area is the subset

Ωw =
{
(x, y) :

∣∣∣x
a

∣∣∣+ ∣∣∣y
a

∣∣∣ ≤ 1
}
.

Since the rhombus shape of the wound is symmetrical (see Figure 15), the code computes on one quarter
of the burn domain, using the vertical and horizontal symmetry axes. The output of the 2D numerical
model is the same as in the 1D case: it solves for the chemical and mechanical values, the RSAW, and
the TSE.

Figure 15: Initial mesh for the 2D finite element simulation. The initial wound boundary is white. Taken
from [12].
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7.2 One-Dimensional Problem

The first step of applying machine learning to the morphoelastic model describing post-burn skin evo-
lution was taken by Schaaphok [44]. In her thesis, Schaaphok investigated neural network surrogates to
accelerate the computations of finite element models. Here it was assumed that the simulations from the
numerical models are the true values and inaccuracies in these solutions are not taken into account.

Schaaphok trained a simple feedfoward, fully connected neural network with 2 hidden layers and 100
nodes in each layer. The input to the network were the 25 parameters of the mathematical model that
can vary over the domain or between patients. All other constant input values were ignored, as the neural
network is able to learn these implicitly. Schaaphok argued that the relative surface area and the strain
energy are the important outputs of the numerical model, as these values provide direct information on
skin contraction. That is why she chose the output of the neural network to be the RSAW and the TSE.
The dataset for training and evaluation is generated from the one-dimensional morphoelastic model [11].

Schaaphok showed that the network thus trained can achieve high accuracy. Furthermore, the neural
network needs only 0.008 seconds to compute the predictions for 480 samples in the validation set.
The computation of the original samples takes approximately 1.5 minutes per sample, which shows
the significant acceleration neural networks can achieve. Schaaphok argues that a disadvantage of the
surrogate method with respect to the morphoelastic model is that some of the flexibility and the physical
interpretation of the model are lost. Another disadvantage is that the output format is fixed in the sense
the network always predicts from day 0 to day 365.

Schaaphok published her results in a paper in collaboration with Egberts et al. [10].

7.3 Two-Dimensional Problem

Schaaphok considered the two-dimensional morphoelastic problem as well. For the generation of the
training and evaluation datasets, the same approach was used as for the one-dimensional case. As the
simulations of the two-dimensional model are computationally more expensive, fewer simulations were
run and each simulation was computed until 100 days instead of 365 days. This preliminary study of
the 2D model showed that a neural network can provide a significant acceleration as well, although the
results were less accurate than for the one-dimensional model.

A more in-depth study of the application of neural networks to the 2D model was done by Egberts
et al. [12]. Here, the authors consider a similar fully connected neural network with 2 hidden layers,
each containing 100 nodes, and the ReLU activation function. The training and validation data (50.000
samples) is generated using the 2D numerical model. The simulation time was fixed on 365 days and the
initial wound shape was the rotated square depicted in Figure 15. The inputs to the neural network were
again the 25 parameters that appear in the mathematical model that describes the skin evolution. The
output of the network was taken to be either RSA, the TSE, or the shape of the wound/scar boundary.

The results show high performances for all three networks considered. Furthermore, Egberts et al.
show that neural networks trained in the above manner give a tremendous speedup of 1815000X compared
to the numerical simulations. Since machine learning computations prove themselves to provide such a
speedup, the authors expect this to be the way to integrate simulations into medical practice. However,
they do acknowledge that there are still more extensions to explore. The most important ones include
adapting the mathematical model to better represent reality, consider different, more advanced, neural
network approaches and use real patient-specific data.
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8 Direction of New Research

We now shift our focus away from the existing landscape of machine learning applications in wound healing
modelling. This chapter outlines the direction of new research we want to take in order to contribute to
this field. Section 8.1 formulates our objective and main research question. The methodology we propose
to apply to answer our question is described in section 8.2. Lastly, section 8.3 will describe how the
research will commence with a more simplified problem as a proof of concept.

8.1 Objective

In chapter 7 we have found that the first steps towards the application of neural networks to reproduce
the finite element simulations of the wound healing model have already been taken. It was found that
a simple, feedforward neural network can serve as a surrogate for the one-dimensional morphoelastic
numerical model for the prediction of skin contraction. The same was found for the two-dimensional
problem, albeit with a slightly less performance. The researchers who have worked on these problems
acknowledge that there are still areas for improvement. The most important ones include improving
the mathematical model, using real patient-specific data and utilising more advanced neural network
architectures. Our area of interest is the latter.

We would like to investigate whether the application of a more sophisticated neural network archi-
tecture to the two-dimensional morphoelastic problem will prove to be fruitful. In particular, we would
like to apply the DeepONets framework introduced in chapter 6, as we feel that operator learning has
promising potentials. The central research question we would like to answer is the following:

Can a neural network be trained to predict the entire time evolution of skin contraction, given only the
initial geometry of the wound as input?

This inquiry stems from the practical scenario faced by clinicians dealing with burn trauma patients who
seek accurate predictions of wound progression for effective and timely intervention. Initially, only the
wound shape and size of a patient are known. Ideally, clinicians would like to get insight into the whole
spatio-temporal evolution of skin contraction. We believe operator learning to be a promising avenue, as
these networks can be trained to really learn the whole solution to the corresponding system of PDEs,
for all time.

8.2 Methodology

Our proposed methodology for answering the research question is to train a DeepONet to approximate
the whole wound displacement field for all time t, given different initial wound geometries. Since the
system (33) of PDEs that describes the evolution of wound contraction in 2D is known to us, we will
incorporate this in the loss function the network needs to minimise, to bias the network to satisfy the
underlying PDE. This means that we essentially aim to train a physics-informed DeepONet.

The two-dimensional finite element model will be used to create a training and test set. To this end,
the numerical model will be evaluated for many different initial wound geometries, while keeping the
values of the other parameters fixed. We will utilise an unstacked DeepONet, as they have fewer number
of parameters than stacked DeepONets and thus can be trained faster, using much less memory.

The input to the trunk net will be different spatio-temporal locations for which we want to know the
displacement of the dermal layer. The input to the branch net will be different realisations of the initial
wound geometry. We will experiment with two ways of feeding the input to the branch net: either as a
continuous function or as a discrete representation of the initial wound geometry. The latter could be a
pixel-valued image of the wound. The difference in terms of performance and speed shall be investigated.

We will experiment with different activation functions, optimizers and hyperparameters to find the
best-performing settings.

8.3 Progression of Complexity

We expect the proposed research approach to be challenging on the machine learning side. Therefore, the
research will commence by considering a single material parameter within the 2D morphoelastic model,
effectively reducing the problem to a more tractable form. This initial stage will serve as a proof of
concept, assessing the feasibility and efficacy of the proposed setup within the morphoelastic context.
Subsequently, as the model demonstrates proficiency in predicting wound displacement at fixed time t,
the complexity will be incrementally increased. The introduction of a second material parameter within
the framework will be a logical next step, with a gradual increase to more comprehensive models capturing
additional nuances of the wound healing process.
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