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1
Introduction

1.1. Background
Turbulent flows are ubiquitous in nature and technology, and the simulation of it is an active research
topic. Flows around moving objects, such as vehicles and airplanes, are turbulent, and accurate pre-
dictions of the turbulent flows are important for the design of that perfect car or airplane having as less
drag as possible for example. Also in the design of turbo machines or full wind farms, insight in the
turbulent flows is important [24]. Computational Fluid Dynamics (CFD) appears to be an important ap-
proach in obtaining this insight on the physical characteristics of turbulence [28]. It relies on governing
equations and mathematical models that capture the complexity of turbulent flows, which are solved
numerically using computational powers. CFD is favoured compared to experiments as an alternative
analysis tool. The practical advantage of CFD over experiments is that it is cheaper, generates more
data and can include data that is not measurable. Furthermore, CFD has the ability to modify the vir-
tual environment to investigate physical behavior that is otherwise impossible to gauge. As example,
consider a safety analysis of a turbo engine or nuclear reactor to investigate the behavior under sever
conditions. Without damaging the environment, this can not be tested experimentally. Hence, CFD is
and stays an important analysing and modeling technique.

Modeling turbulent flow starts with describing the motion of the flow, which can be done by the
use of the Navier-Stokes equation. Solving this equation directly can be done with direct numerical
simulation (DNS). However, in many cases, this is excessively expensive because of the large range of
turbulent scales [31]. It can take several months to compute one direct numerical simulation. Therefore,
turbulence models are used to perform computationally affordable simulations.These models have the
aim to accurately describing the effect of the chaotic behaviour of turbulence on the mean flow. Two
strategies for turbulence modeling exists, namely large eddy simulation (LES) and Reynolds averaged
Navier-Stokes models (RANS). In LES the large scales of a turbulent flow are solved while influence of
the smallest scales are incorporated through a model. Although LES has been shown to be a powerful
and successful method in simulating a variety of complex turbulent flows, its application is limited since
it still requires a high grid resolution or small time steps and hence large computational cost. RANS
models on the other hand are currently the most widely used models in industry and are expected to
remain the norm for simulating turbulent flows, because of their lower computational cost. However,
they suffer from poor accuracy and predictive power.

RANS models are based on the RANS equations, which are obtained by decomposing the flow
quantities into their time-averaged and fluctuating components and averaging the Navier-Stokes equa-
tions. This yields a nonlinear Reynolds stress term that requires additional modeling to fully resolve
the system. Such models, referred to as turbulent closure modes, generally involve a relation that
connects the Reynolds stresses to the mean-flow field with one or two additional equations. The most
common used RANS models rely on the Linear Eddy Viscosity Model (LEVM) for the Reynolds stress
closure, which postulates a linear relationship between the Reynolds stresses and the mean strain rate
(the symmetric part of the mean-velocity gradient tensor). Although this type of model works well on
simple flows, it does not provide satisfactory accuracy in more general configurations, such as those
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with curvature, impingement and separation. In those cases, more advanced nonlinear modeling of the
Reynolds stress is required, for example, with the explicit algebraic Reynolds stress model of Walling
and Johansson [35], or with the complex Reynolds stress models [10]. However, these nonlinear mod-
els are not used often for industrial problems, since they do not give consistent improvement over the
LEVM and often have convergence problems [13]. Furthermore, many undetermined parameters need
to be tuned based on datasets from particular classes of problems. This limits the usage of CFD in
industry, which desires an affordable turbulence model applicable for a wide range of geometries [21].

Recently, there has been an increased interest in using Machine Learning (ML) to improve, aug-
ment or develop RANS turbulence models. Over the past decades the computational power has been
majorly improved, which contributed to an increase of available high-fidelity data from DNS and fast
developments in machine learning techniques. This has led to the introduction of data-driven RANS
turbulence modeling. With high-fidelity data correction terms can be trained to compensate for the er-
ror introduced by the used model, which results in a data-augmented RANS model. Previous research
showed that ML-augmented turbulence modeling is promising and can offer improved predictions over
classical models.

Many challenges remain in the current state-of-the-art of data-driven RANS models. To begin with
the generalizability of data-driven modeling. Ideally, an established data-driven approach can be ap-
plied to different or unseen scenario’s. However, almost all previous work demonstrated the predictive
ability of the model to limited flow cases that are similar to the training flow. Ling et al. for instance,
showed that their ML model works adequately for similar flows, but fails for the cases which deviate
significantly from the training flows [18]. Furthermore, previous research revealed that an interpretable
model is preferred and can enhance the generalization capabilities. Another challenge is to create a
robust model. When a data-driven RANS model is obtained, it often has to be implemented in a CFD
solver to obtain the velocity profiles. However, Wu et al. showed that small errors in the Reynolds
stress can lead to significant errors in the velocity because of the ill-conditioning of the RANS equa-
tions with its closure model [39].

Recently, the relatively new sparse symbolic regression technique [6], has been introduced in data-
driven turbulence modeling and the initial results are promising [30], [4]. Sparse symbolic regression
generates an algebraic equation to describe the quantity of interest. In terms of intertpretability this
is favourable compared to other machine learning techniques, such as Neural Networks (NN) since
NNs are black box models. Furthermore, the derived algebraic equation is lighter and more efficient to
integrate in an existing CFD solver, which can make it easier to assess the robustness of the model.
At last, it has been shown that integration of physical knowledge is possible, which can contribute to
more general models. These early successes motivate to continue exploring the possibilities of sparse
symbolic regression in turbulence modeling.

In this research, we will apply sparse symbolic regression to find an algebraic closure model for
the RANS equations. This will be tested on different geometries and ultimately on a complex industrial
problem. One of the goals is to insert more physical knowledge while building the algebraic mod-
els to improve generalizability. Furthermore, we aspire to extract physical knowledge while building
data-driven models by experimenting with input features and verify if the sparse symbolic regression
technique is able to identify the most important features. On numerical level, we analyse the influence
of different regression techniques which can be used in the sparse symbolic regression. At last, we
would like to get more insight in the performance in terms of generalizability and robustness.

1.2. Research objectives
The main objective of this research project is to develop data-driven turbulence models using sparse
symbolic regression to improve the (k-omega) RANS turbulence model, which contains physical knowl-
edge and should be interpretable, generalizable and robust. To achieve this, several sub-goals have
been set up:

• Create a modeling framework to learn algebraic models for the anisotropic Reynolds stress (us-
ing sparse symbolic regression), while embedding physical knowledge. The framework should
consist of a model discovery part and a model assessment part.
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• Generate different test cases of increasing complexity to train and test the models on, including
a complex industrial problem.

• Implement the models in an existing CFD solver (OpenFoam) and assess the improvements in
mean-flow over the standard RANS model.

• Assess the generalizability and robustness of the models.

Relevant questions and sub-questions based on the objectives are:

Q1 Which features are the most relevant when deriving the algebraic equation?

– Is the sparse symbolic regression technique able to select the most relevant features and
how do we verify that those features are the most relevant?

– If not, how can we do a pre-selection of the features?

Q2 Which sparse symbolic regression technique finds the best performing algebraic model?

– Which sparse symbolic regression techniques exist and how does each regression function
and optimiser influence the model?

– Can we apply constraints to embed physical knowledge and how does such constraints
influence the performance of the model?

Q3 How does the resulting turbulence model perform in terms of robustness, generalizability and
interpretability?

– Can we a priori predict the performance of the regressed model in terms of robustness?

1.3. Structure
In chapter 2, the basics of turbulence and turbulence modeling are explained. Different machine learn-
ing techniques, and how they can be applied in turbulencemodeling are discussed in chapter 3. chapter
4 contains the methodology of the research project followed by the results in chapter 5. For now, we
conclude the report with some intermediate conclusions and a description of the rest of the research in
chapter 6.



2
Turbulence and turbulence modeling

This chapter should serve as introduction to turbulence and the two common used simulation strategies,
namely RANS and LES. The governing equations will be explained, including the closure problem.

2.1. Turbulent Flows
Turbulence is everywhere around us and it is omnipresent in nature and technology [24]. Examples
of turbulent flows in technology are the flows in nozzles and pipes, and flows in devices such as turbo
machinery’s and heat exchangers. Furthermore, turbulent flows occur almost always around moving
objects, such as cars and airplanes. If you once have flied with an airplane you probably experienced
turbulence yourself as the powerful shaking of the aircraft. In nature, turbulence can be found on a
geophysical scale, for example in our atmosphere or in the oceans. The distribution of air pollution in
our atmosphere is mainly controlled by turbulence. Also our weather and even our climate could be
seen as a turbulent phenomenon. For many technology problems and applications it is import to deter-
mine the effect of turbulence on the performance of that engineering device [9]. In the design of wind
turbines, knowledge about the turbulent flow around the blades is essential for an optimal efficiency of
the turbine. But also in car and airplane designs, it is demanded to delay the occurrence of turbulence
around the boundary surfaces, to decrease the drag and reduce the fuel consumption.

But what is turbulence exactly? Turbulence is a state of fluid motion which is characterised by a
chaotic behavior of the flow velocity and the pressure of the flow. This is the opposite of a so called
laminar flow, see figure 2.1. In that case the fluid flows smoothly, in parallel layers with no or little
mixing. The shift between these two states depends on the ratio between viscous and inertial forces.
This ratio is expressed by the Reynolds number. In turbulent flows, the viscous forces are small with
respect to the inertial forces resulting in a high Reynolds number.

Figure 2.1: Schematic drawing of a laminar and turbulent flow, taken from [28, p. 35]
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Turbulence is also often described in terms of ”eddying” motions. When a flow becomes unstable
due to a high Reynolds number, energetic local swirls of the flow arise, which are the turbulent eddies.
It starts with large eddies, which transform into smaller and smaller eddies. Therefore, turbulent flows
consist of the superposition of a continuous scale of small to large eddies.

The motion of a fluid can be described by a complete set of equations, called the Navier-Stokes
equations. The NS equations are a system of nonlinear partial differential equations and describe the
relation between flow variables, such as the velocity and pressure, as a function of position and time
[24]. The NS equations emanate from the laws of conservation of mass, momentum and energy. When
mass is conserved, it means that the mass quantity of system remains unchanged over time. This can
be expressed as

dρ

dt
+ ∇ · (ρu) = 0, (2.1)

where ρ, t and u are the density, time and velocity respectively and ∇ · (ρu) represents the overall rate
of mass additions per unit volume. [28]. When the divergence of the velocity is zero, the fluid is called
incompressible. In that case, the conservation of mass can be reduced to the continuity equation

∇ · u = ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (2.2)

where u, v and w are the velocity components in the x, y and z direction, respectively.

The conservation of momentum is nothing more than Newton’s second law, F = ma, applied to
fluid elements. For an incompressible flow, the conservation of momentum can be described as

ρ
Du

Dt
= ρ(∂u

∂t
+ (u · ∇)u) = ρg − ∇p + µ∇2u. (2.3)

This equation is known as the Navier-Stokes equations [24], where µ is known as the dynamic viscosity,
which is a material property. When no free surface is present in the flow, equation 2.3 can be further
simplified to

ρ
Du

Dt
= ρ(∂u

∂t
+ (u · ∇)u) = −∇p + µ∇2u. (2.4)

In that case the gravity term is absorbed in the pressure term. The NS-equation 2.4 and the continuity
equation 2.2 are the basis for describing the motion of an incompressible flow of a homogeneous fluid.

As mentioned earlier, turbulent flows involve a very wide range of active spatial and temporal scales.
In combination with the chaotic behavior of a turbulent flow, solving theNS equation is very complex. It is
possible to solve the NS equation directly with direct numerical simulation (DNS). However, this requires
a lot of computational time, despite the growth of computer power in the last decades. Therefore, to
deal with the complexity of the problem, several theoretical and computational approaches have been
introduced to characterize turbulence. Among these ”simplified engineering approximations”, Reynolds-
averaged Navier-Stokes (RANS) and large-eddy simulation (LES) approached are most common [9].
In the following sections, RANS and LES are discussed in more detail.

2.2. RANS
Since it is very expensive and time consuming to resolve all the scales of the Navier Stokes equations,
simple models have been developed to approximate the turbulent motion. The first type of model
we will discuss are based on the RANS equations and therefore are called RANS models. The RANS
equations are obtained by splitting the instantaneous flow, u, into a mean quantity, u, and its associated
fluctuations, u′. This is called Reynolds decomposition, named after its originator Osborne Reynolds
and can be written as

u = u + u′. (2.5)

The time-averaged velocity can be simply obtained by

u(x) = lim
T →∞

1
T

∫ t+T

t

u(x, t)dt. (2.6)
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Substituting the decomposition into the NS-equations and continuity equation and performing an addi-
tional time-averaging operation, results in the RANS equations. In tensor notation, the RANS equations
read

Dui

Dt
= −1

ρ

p

xj
+ ∂

∂xj
(ν ∂ui

∂xj
− u′

iu
′
j), (2.7)

∂ui

∂xi
= 0. (2.8)

Note that the RANS equations include a new term u′
iu

′
j , called the Reynolds stresses. These Reynolds

stresses cause that we have six additional unknownsmaking it impossible to solve the equations, which
is referred to as the turbulence closure problem. Hence, additional models for the Reynolds stresses
are required.

2.2.1. Linear Eddy-Viscosity Models
A majority of the turbulence models, which models the Reynolds stresses in the RANS equations, are
the linear eddy viscosity models. These models rely on a linear constitutive relationship, also known
as the Boussinesq approximation, yielding

u′
iu

′
j = 2νtSij − 2

3
kδij . (2.9)

Here, δij is the Kronecker delta, Sij is the instantaneous strain rate tensor defined by

Sij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
, (2.10)

k is the mean turbulent kinetic energy
k = 1

2
(u′

iu
′
i), (2.11)

and νt is called turbulent viscosity or eddy viscosity. With the Boussinesq approximation, the unknown
Reynolds stress components are resolved, but again a new variable, the eddy viscosity νt, is introduced.
Over time, a wide variety of possible expression for the eddy viscosity have been derived. These eddy
viscosity models can be classified in the amount of additional equations used. Zero-equation models
or algebraic models require no additional equations and are calculated directly from the flow variables.
Consequently, these models are not able to account for history effects of the turbulence and hence,
their application is limited to very simple flow geometries. An example of such a model is the Prandtl
mixing-length model for shear flows given by the equation:

νt =
∣∣∣∣∂u

∂y

∣∣∣∣ l2
m, (2.12)

where lm is the mixing length and ∂u
∂y the partial derivative of the streamwise velocity with respect to

the wall normal direction.
In one-equationmodels, one is typically solving a transport equation for the turbulence kinetic energy

k or eddy viscosity. A good example for such models is Prandtl’s one-equation model that solves the
eddy viscosity by

νt = lm
√

k, (2.13)

where k is described by the PDE

∂k

∂t
+ uj

∂k

∂xj
= Rij

∂ui

∂xj
− ϵ + ∂

∂xj

[(
ν + νt

σk

)
∂k

∂xj

]
(2.14)

Prandtl’s equation provides closure by defining the dissipation ϵ, the turbulent kinematic viscosity, the
eddy length scale and additional closure coefficients.

Two-equation models include two additional transport equations. Usually a transport equation for
the kinematic energy is chosen as well as one additional transport variable, which could be the turbu-
lence dissipation, ϵ or the turbulence dissipation rate, ω. The first developed two-equation transport
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model is a k − ω model, in which the transport equations of the eddy frequency ω and the turbulent
kinetic energy are considered as

∂k

∂t
+ uj

∂k

∂xi
= Rij

∂ui

∂xj
− β∗kω + ∂

∂xj

[
(ν + νtσ

∗) ∂k

∂xi

]
, (2.15)

∂ω

∂t
+ ui

∂ω

∂xi
= γ

ω

k
Rij

∂ui

∂xj
− βω2 + ∂

∂xi

[
(ν + νtσ) ∂ω

∂xi

]
, (2.16)

which contains the five closure coefficients β, β∗, γ, σ and σ∗. The closure relationship for this model
is

νt = k

ω
. (2.17)

An other widespread two-equation model is the k − ϵ model, which solves a transport equation for
both the turbulent kinetic energy and the dissipation, which are modeled as:

∂k

∂t
+ uj

∂k

∂xj
= Rij

∂ui

∂xj
− ϵ + ∂

∂xj

[(
ν + νt

σk

)
∂k

∂xj

]
, (2.18)

∂ϵ

∂t
+ uj

∂ϵ

∂xj
= C1

ϵ

k
Rij

∂ui

∂xj
− C2

ϵ2

k
+ ∂

∂xj

[(
ν + νt

σϵ

)
∂ϵ

∂xj

]
, (2.19)

where C1, C2, σk and σϵ are constant. The eddy viscosity is calculated as

νt = Cµ
k2

ϵ
. (2.20)

2.3. LES
Although the focus in this project is on RANS models, for completeness a brief explanation of LES
models is given as well. The larger eddies in turbulent flows obtain their kinetic energy from the bulk
fluid energy, containing most of the turbulent kinetic energy and transfer this energy to the smaller
eddies by stretching and breaking them up [28]. So the larger eddies are responsible for the majority
of the diffusive processes. The smaller eddies on the other hand, take the the kinetic energy from the
larger eddies and transfer it back to the fluid. The smaller eddies are statistically isotropic and therefore,
more universal and more independent of the boundary conditions and the mean flow velocity than the
larger eddies. Bases on this theory, large eddy simulation have been developed to resolve the large
eddies and approximate the behaviour of the small eddies. This is done by separating the velocity
field into a field of resolved large eddies and a sub-grid part representing the small scales, which are
modeled resulting in

u = u + u′. (2.21)

The larger eddy velocity is obtained by employing a filtering operation

u(x, t) ≡
∫

u(x′, t)G(x − x′)dx′, (2.22)

where G(x − x′) is a filter function. The equation of motion for the resolved field are derived by substi-
tuting the decomposition into the NS-equations, and subsequently filtering the resulting equation. LES
is able to capture a significant number of velocity fluctuations and therefore provides more accurate
simulations than RANS models do. However, LES is, in general, an order or two of magnitude more
time intensive than RANS.

2.4. Anisotropy Tensor
The Reynolds stresses, τij = u′

iu
′
j can be divided into an isotropic and anisotropic part:

τij = 2
3

kδij + aij . (2.23)
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Here, aij is the Reynolds stress anisotropy tensor and k = 1
2 trace(τij) is the turbulent kinetic energy.

The anisotropic part of the Reynolds stress is the most important part, since only this part is effective
in transporting momentum. Equation 2.23 can be rewritten to define the non-dimensional anisotropic
Reynolds stress tensor, bij , as

bij = τij

2k
− 1

3
δij . (2.24)

As wementioned previously, eddy-viscosity models typically rely on the assumption that bij is a function
of local mean-flow quantities. Linear eddy-viscosity models, such as the k − ω and k − ϵ models, use
the Boussinesq assumption that bij = νt

k Sij . However, these assumption introduce modelling errors.
We aim to reduce the error by finding a (non-linear) model for the anisotropy Reynolds stress using
DNS databases and machine learning.

2.4.1. Realisability
From the properties of the Reynolds stresses τij and its anisotropy bij , physical constraints can be
derived [15]. Starting with the definition that a square matrix A is positive semi-definite if and only if
xT Ax ≥ 0, ∀x ∈ RN . The Reynolds stress is constructed by taking the outer product of turbulent
fluctuation u′ with itself and therefore satisfies positive semi-definiteness, since

xT u′u′T x = (xT u′)2 ≥ 0

and is still positive semi-definite after taking the temporal average τij = u′
iu

′
j = 1

n

∑
n u′

iu
′
j , since all

the time-samples adhere this property. Since the Reynolds stress are positive semi-definite, all its
eigenvalues are non-negative and therefore also its determinant and trace. Furthermore the Reynolds
stress will have non-negative diagonal components and the Cauchy-Schwarz inequality must hold. In
summary:

ταα ≥ 0 ∀α ∈ {1, 2, 3}, det(τ) ≥ 0, τ2
αβ ≤ ταατββ ∀α ̸= β (2.25)

These properties of τij have implications for the anisotropic stress bij . When ϕi are the eigenvalues
of τij , then the eigenvalues of bij , λi, can then be written as

λi = ϕi

2k
− 1

3
. (2.26)

This has as consequence that the eigenvalues and the diagonal components of bij are in the interval
[− 1

3 , 2
3 ]. Furthermore, we know by the Cauchy-Schwarz inequality in equation 2.25, that the off-diagonal

components of bij are in [− 1
2 , 1

2 ].
With anisotropy-invariant maps, the anisotropy can visualised. There exist two independent invari-

ants of the anisotropy tensor, which can quantify the level of anisotropy of turbulent quantities:

II = bijbji, III = bijbinbjn. (2.27)

These invariants, representing the realizable states of turbulence anisotropy, can be plotted in the II-III
plane, which was introduced by Lumley and Newman [19], [20]. The invariants fall within a triangular
domain, corresponding to the constraints mentioned previously. Rewriting the domains of the of the
anisotropy tensor, the following nonlinear relationships can be constructed:

II ≥ 3
2

(
4
3

|III|
)2/3

II ≤ 2
9

+ 2III (2.28)

Lumley [7] also suggested another representation of the anisotropy which is denoted by η − ζ:

ζ3 = III/2, η2 = −II/2. (2.29)

These constraints can maybe in someway be applied during the sparse symbolic regression, to obtain
realisable models.
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(a) Anisotropy-invariant map based on (III, II), taken from [1, p. 6] (b) Anisotropy-invariant map based on (η, ζ), taken from [1, p. 2]



3
Machine Learning in Turbulence

Modeling
Simultaneously with the tremendous increase in the amount and availability of data across scientific
disciplines, the interest and progress in the field of machine learning advanced. Also the use of ML
in the field of fluid mechanics has grown and especially in turbulence modeling. There are multiple
reasons why ML is suitable for modeling turbulence. Steven Brunton argued that “both ML and fluid
mechanics tend to rely on the same assumption that there are patterns that can be exploited, even
in high-dimensional systems” [5]. Andrea Beck et al. pointed out that simulating and measuring tur-
bulence requires large amounts of high dimensional data, from which ML can extract low-dimensional
information to gain knowledge [3]. The flexible modeling framework of ML can be applied to many
different challenges in fluid mechanics, including governing equation discovery, flow decomposition,
producing reduced-order models and flow control. In this chapter, a rough overview of the state-of-the-
art of ML in turbulence modeling is given and we explicitly focus on the augmentation of RANS models
with ML.

3.1. Machine Learning
Machine Learning is an umbrella term for a wide range of techniques within artificial intelligence. ML
can be generally defined as ”the field of study that gives computers the ability to learn without being
explicitly programmed” [29]. The main task of ML is to develop learning algorithms that build models
from data. The learning algorithm receives training data to obtain a model that can make prediction on
new data [45].

ML is able to incorporate high-dimensional data and nonlinear modeling assumption. Therefore,
ML-based methods are attractive tools that can help to extract more, hidden knowledge from data and
thus are a great flexible modeling technique. ML can be applied to different RANS problems, dependent
on what specific part of the RANS problem is modeled. A first approach for the use of ML is to replace
the unclosed Reynolds stresses by an a priori determined function g with parameters θ and use ML to
fit those parameters [3]. Alternatively, we can directly predict the closure term. So no priori determined
function g is assumed, but is obtained by the MLmethod. A third approach is to model the full governing
PDEs and thus directly approximate the solution u. In the next sections, selected ML algorithms are
introduced and some successful application of that ML method to turbulence modeling is discussed.
This should represent a small collection of the current state of the art, showing the diversity of the ideas
andmethods current under investigation. However, no converged state of the art has been reached yet.

ML algorithms can be categorized into supervised learning, unsupervised learning and semi-supervised
learning. In supervised learning, the objective is to construct a function, which maps the inputs to given
outputs. Common supervised machine learning methods are linear regression, random forests, SVMs
and artificial neural networks. These methods are also used in turbulence modeling, and will be ex-
plained in more details in upcoming sections.

10
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Figure 3.1: PINN used for solving the RANS equations for a general two-dimensional set-up, taken from [11, p. 2]

Unsupervised learning does not require labeled data and does generally not require any information
on the exact solution of the problem. A common area of unsupervised learning is clustering, which is the
task of grouping data such that objects in one group are more similar to each other than to the objects
in other groups. This technique often is used to find unknown correlations and patterns in datasets.
K-means clustering is an example of such a technique, which minimizes the average variance of k
clusters.

3.1.1. Neural Networks
Artificial neural networks consist of simple elements which are parallel interconnected in a hierarchical,
layered organization [16]. Those simple elements are called neurons, and are intended to work similarly
as neurons in the biological nervous systems. Artificial neural networks are characterised by their
flexibility and hence many variations of neural networks exist. The classic ’feed forward’ neural network
connects several layers, in which each layer is comprised of a number of neurons. The first layer of
the network is the input layer, which receives a data vector X. This data vector is passed through
the neurons in the hidden layers and eventually reach the output layer. A schematic overview of such
neural network can be seen in Figure ?? (a). In each neuron of the hidden layers a simple mathematical
model is created. The neuron receives the outputs of previous layers as input Xi, which are multiplied
by weights ωi and summed up with a bias b. Subsequently, a nonlinear activation function is applied
on the outcome resulting in the output Yi. Commonly used activation functions are the ReLU function,
g(x) = max{x, 0}, the sigmoid function, g(x) = 1/(1 + exp−x), or the hyperbolic tangent function,
g(x) = tanh(x). The output of a neuron is eventually calculated by

Y = g(
N∑

i=1
ωiXi + b), (3.1)

and is passed as input for the neuron in the next layers. The NN is trained to determine the optimal
weights and biases to accurately predict the output of the network. When multiple hidden layers are
used, the NN is called a multilayer perceptron (MLP). Deep learning is the branch of ML where many
layers are used such that the network can learn more complex relationships.

Neural networks are generally one of the most widespread ML algorithm. Hence also in modeling
turbulence it is a widely researched method. Tracey et al. were one of the pioneers in modeling
turbulence with ANNs [33]. They used Neural Networks to reconstruct the closure term of the RANS
equation. More specifically, they discover formulation of the terms that have been explicitly modeled
in the Spalart-Allmaras turbulence model. More researchers followed in the use of neural networks
for modeling closure terms in RANS or LES models [12], [22], [34], [41] and [2]. A study of particular
interests is the one of Ling et al. [18]. They used deep neural networks to learn a model for the
Reynolds stress anisotropy tensor, but embed physical knowledge by preserving Galilean invariance
of the neural network predictions.

Another, currently new and hot approach, are Physics Informed Neural Networks (PINN’s) [26],
which Eivazi et al. introduced in turbulence modeling [11]. This black box algorithm completely by-
passes the closure problem by directly solving the RANS equations with a neural network. As can be
seen in Figure 3.1, spacial coordinates are taken as input and the full flow field variables are the output
of the neural network, taking the residual of the Navier Stokes equations as the loss function.

Despite the flexibility of neural networks and their ability to represent complex interaction of different
variables, several disadvantage impede the application in engineering problems. These include the lack
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Figure 3.2: Visualisation of linear SVM Figure 3.3: Example of an decision tree, taken from [36,
p. 16]

of generelizability [32], and the often large required data-set imposing still high computation times.

3.1.2. Support Vector Machine
The basic idea of a support vector machine (SVM) algorithm is to find a hyperplane that separates the
data into two distinct classes. This hyperplane is given by

wT x + b = 0, (3.2)

where x is the vector with the different input features. With this hyperplane, new unseen data can be
classified based on which side of the hyperplane the respective data point is located. The separating
hyperplane is optimal if the distance between the data points of both sets to the hyperplane is max-
imised, as shown by figure 3.2. Obviously, many datasets are not linearly separable. In that case the
dataset can be transformed by a nonlinear mapping of the input space to a high-dimensional feature
space, in which the data will be linearly separable.

SVMs are mainly used for supervised classification tasks. Ling et al. used an SVM to classify
regions in a flow where RANS will have a higher uncertainty because of specific modeling assumptions
[17]. For the regions indicated with a higher uncertainty, the error could be mitigated by applying
relevant corrections or models.

3.1.3. Decision Trees
A decision tree is a very intuitive ML method, since it makes decision based on a tree structure. It
typically consists of one root node, multiple internal nodes and multiple leaf nodes. Each node corre-
sponds to a decision rule, leading to an additional decision rule or the final decision outcomes, the leaf
nodes, see Figure 3.3 for an example. The ML algorithm aims to produce a tree with decision rules that
divides the training data most efficiently. New unseen data can then be classified according the same
decision rules. Those standard decision trees are prone to overfitting and therefore more elaborate
variants are proposed, with random forests as one of the most common representatives. Instead of
one, an ensemble of decision trees is trained, each on a randomly selected subset of the training data,
to improve the generalizability [14]. Wang et al. used such random forests to reconstruct discrepancies
in RANS modeled Reynolds stresses [36]. Random forests are able to regress high dimensionality of
the feature space and provides physical insights of the predictions and the importance of features as
well as quantified uncertainties. However, Wang et al. did not implement their model in an RANS solver,
hence the improvement of the propagated velocities from the corrected Reynolds stress field could not
be guaranteed.

3.1.4. Gene Expression Programming
Gene Expression Programming (GEP) is an Evolutionary Algorithm (EA), that mimic nature’s survival
of the fittest, to end up with an algebraic equation that reproduce the data the best. GEP is encoded in
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Figure 3.4: Example of Gene Expression Programming

simple linear structures, the chromosomes, containing one or more genes, which represent mathemat-
ical operators and constants. In the training process, these chromosomes are randomly mutated and
the best ones are selected. The algorithm returns a mathematical equation, which is tangible and can
be implemented into a CFD code. Weatheritt and Sandberg used this algorithm to model the anisotropy
of the turbulent stress tensor [37]. Their results showed that the framework is a viable methodology
for RANS closure development and provided inspiration and handles for other researches, like Zhao et
al. [43] and Reissmann et al. [27]. Zhao applied GEP to LES model development and Reissmann ex-
tended the GEP method of Weatheritt and Sandberg but integrated, trained and evaluated the models
directly in RANS solvers.

3.1.5. Sparse Symbolic Regression
Symbolic regression is a type of regression analysis that tries to find a mathematical expression that fits
a given dataset best. GEP is a form of symbolic regression and is an attractive method for turbulence
modeling, because of its open-box approach. However, GEP can be expensive, may be prone to
overfitting and it discovers for each run another model with different mathematical expressions because
of its non-deterministic behavior. A deterministic variant is sparse symbolic regression based upon the
data-driven technique presented by Brunton et al. [6]. They use data to discover governing equations
of nonlinear, dynamical systems and considers dynamical systems of the form

d

dt
x(t) = f(x(t)). (3.3)

they assume that most physical systems only have a few relevant terms that define the dynamics. To
determine the function f from data x(t) a library Θ(x) is constructed, consisting of nonlinear candidate
functions dependent on state x. This library may consist of constant, polynomial, trigonometric or any
other terms:

Θ(x) =
[
1 x x2 . . . sin x cos x

]
. (3.4)

Thereafter, a sparse regression problem, such as the Lasso regression problem, is set up to determine
the sparse vector of coefficients Ξ = [ξ2, ξ2, ..ξn] that discovers which nonlinear functions are active:

ẋ = Θ(x)Ξ. (3.5)

This way of finding governing equations has inspired Schmelzer et al. [30] and Beetham et al. [4], who
both adopted the technique to find a mathematical expression for the anisotropic Reynolds stress.

3.2. Challenges and Opportunities
ML found its way into turbulence modeling just recently, but major progress already has been made.
However, there are still challenges left as Andrea Beck et al. noted the following [3]:

• The need for data.
• Consistent data and model.
• Inclusive optimization
• Algorithmic and hardware considerations.
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• Physical constraints
• Generlizability, interpretability, and convergence
• Efficiency and ease to use

From these challenges, we want the focus on the last three points. These challenges were taken into
account when we selected the machine learning technique.

Beck also summed up the following opportunities for ML-augmented turbulence modeling:

• A new paradigm
• feature extraction
• Flexibility
• Incorporating discretization effects
• Exploiting existing turbulence data
• Arbitrary input features

From these opportunities we hope to take advantage of ML’s flexibility and its opportunity to extract
features.

3.3. Method Selection
Taking into account the end goal of this project, developing an interpretable data-driven RANS turbu-
lence model, which contains physical knowledge and is generalizable and robust, in combination with
the challenges and opportunities of ML, sparse symbolic regression was chosen as machine learning
method to obtain a data-driven RANS turbulence model. In the rest of this section I want to elaborate
the arguments for selecting this approach over other Machine Learning techniques.

To start with the argument that sparse symbolic regression outputs an interpretable model. With
sparse symbolic regression, candidate functions are selected and fitted, such that an algebraic equa-
tion is formed with a limited number of terms. Physical knowledge can be extracted from the algebraic
equation, which can give insight into turbulence. This is in contrast with models based upon NNs, which
acts as a ”black box” and cannot be expressed in a compact algebraic form [4]. For this reason, other
approaches as gene expression programming and random forest regression increased in popularity.
Gene expression programming also produces an algebraic equation. Random forest regression how-
ever does not have an algebraic equation as result but it has an intuitive way of selecting features and
creating models.

Secondly, sparse symbolic regression provides the possibility to inform physical knowledge. For
instance, Galilean invariance can be ensured by carefully constructing the library of candidate function
and structuring of the optimization cost functional.

At last, the sparse symbolic regression method is efficient, since a subset of the initial physics based
candidate functions are used. Consequently, fewer forward computations are necessarily compared to
other methods such as NNs. The simple algebraic equation obtained by sparse symbolic regression is
also easier and more efficient to integrate into existing CFD solvers. NNs and RFs on the other hand
are much more complicated to integrate into a solver and therefore, the velocity cannot be computed.
Wang et al. faced this problem in their study on turbulence modeling with a random forest method [36].

These arguments motivated to use sparse symbolic regression as method to obtain data-driven
turbulence models. In the next chapter we will explain how sparse symbolic regression is applied in
this research project.



4
Methodology

In this chapter the methodologies used and developed are discusses. We start in section 4.1 by provid-
ing the overall frame-work of the modeling procedure. Thereafter a detailed description of the employed
input features is given in section 4.2, followed with explanation of sparse symbolic regression. At last
we expand the sparse symbolic regression method by adding physical constraints.

4.1. Modeling Framework
We aim to develop an improved algebraic closure model for the Reynolds stresses that appear in the
RANS equations (2.7). For this, we start by decomposing the Reynolds stress tensor into its isotropic
part, 2

3 kδij , and anisotropic part, aij = 2kbij , yielding:

τij = 2k(bij + 1
3

δij). (4.1)

As outlined previously, a linear eddy viscosity model, based on the Boussinesq equation is frequently
used to model this anisotropic part as bij = νt

k Sij .
Pope recognized that a more general nonlinear representation of the anisotropic stress tensor is

a finite tensor polynomial, dependent on both the normalised strain and the rotation rate tensor, Sij

and Rij respectively [25]. With the use of the Cayley-Hamilton theorem, Pope derived a linear combi-
nation of ten independent tensors T

(n)
ij , which are symmetric and have zero trace, that describes the

anisotropic stress tensor as

bij(SijRij) =
10∑

n=1
G(n)(I1, ..., I5)T (n)

ij . (4.2)

Here, the coefficients G(n) may be functions of the five invariants I1, ..., I5 listed in table 4.2. The ten
tensor bases that are used in this equation are listed in table 4.1. For these tensors, the normalised
strain and rotation tensors, Sij and Rij , are used. Using equation 4.2 has as advantage that Galilean
invariance can be ensured, which means that when the coordinate frame is rotated the anisotropy ten-
sor is also rotated by the same angles. In this way physical knowledge is implicitly used.

Table 4.1: Tensor bases T
(n)
ij used in equation (4.2) to describe the anisotropic Reynolds stress.

T
(1)
ij = Sij T

(6)
ij = RikRklSlj + SikRklRlj − 2

3 SpkRklRlpδij

T
(2)
ij = SikRkj − RikSkj T

(7)
ij = RikSklRlpRpj − RikRklSlpRpj

T
(3)
ij = SikSkj − 1

3 SlkSklδij T
(8)
ij = SikRklSlpSpj − SikSklRlpSpj

T
(4)
ij = RikRkj − 1

3 RlkRklδij T
(9)
ij = RikRklSlpSpj + SikSklRlpRpj − 2

3 SqkSklRlpRpq

T
(5)
ij = RikSklSlj − SikSklRlj T

(10)
ij = RikSklSlpRpqRqj − RikRklSlpSpqRqj

15
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Table 4.2: Invariants on which the coefficients G(n) in equation (4.2) depend.

I1 = trace(S2) I2 = trace(Ω2) I3 = trace(S3) I4 = trace(Ω2S) I5 = trace(Ω2S2)

Instead of modeling bij directly, several works recommend to split the anisotropic stress tensor into
a linear part, bo, and a nonlinear part, b∗, and take the nonlinear part as subject of modeling. The linear
part of the anisotropic stress can be taken as a standard LEVM, such that

bij = b∗
ij + bo

ij

= b∗
ij − νt

k
Sij .

(4.3)

Splitting the anisotropic stress tensor this way should improve stability when the model is integrated in
a CFD solver. Wu et al. have pointed out that the reason for this is the ill-conditioning of the RANS
equations [39]. Substituting Reynolds stresses with low errors from DNS databases explicitly into the
RANS equations can lead to velocities with very large errors. However, partial implicit treatment of
the Reynolds stresses should stabilize the RANS simulation and prevent the error amplification of the
velocities.

In this research the nonlinear part of the anisotropic stress tenor is the subject of modeling. This
tensor is calculated with equation 4.3 in which the linear part bo

ij is derived from the output of the k − ω

model. The k − ω model computes the turbulent viscosity as νt = k
ω , where k and ω are obtained by

solving the transport equations 2.16. For the complete anisotropic stress tensor bij , DNS data is used
and hence our target of modeling is derived by

b∗
ij = bDNS

ij + νRANS
t

kRANS
SRANS

ij , (4.4)

in which DNS and RANS indicates that data from a DNS database or a RANS simulation is used. This
way of calculating the nonlinear part of the anisotropic stress, is inspired by the research of Beetham et
al. [4] and Wu et al. [38]. A slightly different approach is done by Schmelzer et al. [30] and Weatheritt
et al. [37]. Instead of calculating the linear part with RANS data, k, νt and Sij are derived from DNS
data. However, this derivation is more complicated to implement and hence will not be used in the
research.

With sparse symbolic regression we aim to find an algebraic expression for the nonlinear anisotropic
stress tensor b∗ using equation 4.2. The model discovery consists of different steps. First, a library of
input features needs to be created based on data from a RANS simulation. Thereafter, sparse symbolic
regression can be conducted which again consists of two steps. First, the functions are selected with
a sparse regression function. Secondly, the coefficients of the selected functions are calibrated with a
ridge regression functions. At last the mean velocities have to be derived by solving the ’new’ RANS
equations with the discovered model for the anisotropic stress, which is referred to as the ’propagation’
of the new Reynolds stress field to mean velocities. A complete modeling overview can be seen in
Figure 4.1

The next sections, will explain which input features we will use and how sparse symbolic regression
will find an algebraic expression for the anisotropic stress tensor.

Figure 4.1: Framework of data-drive turbulence model discovery.
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4.2. Input Features
Using the right input features can have significant influence on the performance of the learned model.
Already quite some effort has been made in choosing proper mean flow features in previous research.
Yin et al. noted that there are three basic principles during the construction of input features [42].

1 Completeness: the set of input features should include all possible information that is relevant for
modeling the Reynolds stresses

2 Compactness: invalid or redundant information should be excluded as much as possible
3 Realizability: selected features should be consistently effective under various circumstances,
such as different flow directions.

We start by considering feature selection based on tensor analysis. Since we rely on the nonlinear
eddy viscosity concept of Pope and aim to find the coefficients in equation 4.2, we start by including the
invariants of table 4.2 as input features. However, it is possible to include additional features to predict
the coefficients of the basis tensor. Instead of G(n)(I1, ..., I5), the tensor basis coefficients can be a
function of m different input features, G(n)(q1, ..., qm). Wang et al. [36] expanded the dependency of the
Reynolds stress by adding pressure gradients and turbulent kinetic energy gradients and transforming
those into corresponding anti-symmetric tenors Ap and Ak:

Ap = −I × ∇p

Ak = −I × ∇k
(4.5)

The tensors Ap and Ak can form an integrity basis with 41 components. To use these tensors as input
features they took the first invariant, the trace of each tensor.
However, in our opinion these invariants are exotic and hard to interpreted. Furthermore, the cross
product is rather complex to implement in OpenFOAM. Therefore we decided to not use these invariants
in the rest of this project, but only use the invariants I1 up till I5 from table 4.2.

Besides the set of invariants, extra scalar features which are more physically interpretable can be
used, which were obtained as well fromWu et al.. All the features are normalized to fall within the range
[−1, 1] as done by Ling and Templeton [17] according the formula:

qβ = qβ

|qβ | + |q∗
β |

. (4.6)

Here qβ are the raw values of the features and q∗
β are the corresponding normalisation factors. All

the physical features and their corresponding normalization factors are stated in table 4.3, including a
short description of the features.

Table 4.3: Features used as input

index Features Normalization Comment

q1
1
2 (||R||2 − ||S||2) ||S||2 ratio of rotation rate to strain rate

q2 k 1
2 uiui ratio of the turbulent kinetic energy to

the mean kinetic energy
q3 ui

∂p
∂xk

√
∂p

∂xj

∂p
∂xj

uiui pressure gradient along streamline

q4 k/ϵ 1
||S|| ratio of the turbulent time scale to the

mean flow time scale
q5 ui

∂k
∂xi

|u′
ju′

kSjk| ratio of convection to production of TKE

q6

√
∂p
∂xi

∂p
∂xi

1
2 ρ

∂u2
k

∂xk
ratio of pressure normal stresses to
shear stresses

q7 |uiuj
∂ui

∂xj
|

√
uiuiui

∂ui

∂xj
uk

∂uk

∂xj
non-orthogonality between velocity and
its gradient
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4.3. Sparse Symbolic Regression
Sparse symbolic regression requires a library of candidate function. From this library, the relevant
candidate functions explaining the data, are selected by using a sparse promoting regression technique.
Hence, constructing the library is essential and can be done through the following steps

1. We start by combining the pre-defined features with pre-defined exponents or trigonometric terms,
resulting in library B1.

2. Thereafter we can expand the library, by making the features interactive. This is done by multi-
plying the features from B1 with other features from B1, resulting in B2 and once again multiply
the features from B1 with the features in B2, giving B3.

3. The library of features is given by B = B1 + B2 + B3.
4. The library of candidate functions C is obtained by multiplying B with each base tensor T

(n)
ij from

table 4.1.

Given the constructed library C, we aim to form a linear model to regress the target data, the nonlinear
part of the anisotropic stress b∗ by finding the coefficient vector Θ, such that

b∗ = CΘ.

Following the methodology of Schmelzer et al., the model-discovery procedure to find the coefficient
vector Θ, consists of two parts [30]. First, a model selection step is performed, followed with a model
inference step. In the model selection step, the goal is to end up with a smaller subset of candidate
functions, such that a simple model can be formed. For this, sparsity-promoting regularisation of a
least-squares optimisation problem is used. A common used regression method that incorporates this
regularisation is LASSO regression. The objective of LASSO is to solve the minimization problem

Θ = arg min
Θ̂

||CΘ̂ − b∗||22 + λ||Θ̂||1, (4.7)

where the penalty term λ||Θ̂||1 represents the l1-norm of the coefficient vector, weighted with regulari-
sation parameter λ. This l1-norm allows only a few nonzero coefficients while shrinking the rest to zero.
Larger values for λ results in more zero valued coefficients in Θ, while smaller values for λ increases
the amount of nonzero coefficients. Note that when λ is set to zero, the function 4.7 becomes the
least-squares objective function.

Another sparsity-promoting regularisation of the least-squares optimisation problem is the elastic
net. The elastic net is an extension of the Lasso by adding an addition l2-norm regularisation term
resulting in the minimization problem

Θ = arg min
Θ̂

||CΘ̂ − b||22 + λρ||Θ̂||1 + 0.5λ(1 − ρ)||Θ̂||22. (4.8)

Here, the l2-norm, known as Ridge-regression, enforces the coefficients to be small without setting
them to zero. This introduces the ability to identify also correlated candidate functions instead of pick-
ing a single one. In equation (4.8), ρ ∈ [0, 1] is a mixing parameter between the l1 and l2-norm.

Given the Lasso regression method, we need to specify suitable values for λ. A vector λ =
[λmin, ..., λmax] is created that defines the entire search space for which a vector Θ(i) as a solution
of equations 4.7 with λi is found. However, different values of λi can produce a coefficient vector Θ(i)

with the same entries equal to zero. Therefore, the final step of the model selection is to filter out the
unique models with different nonzero entries of coefficient vector Θ. We aim to try the two different
regularisation functions, LASSO and elasticnet, and compare the selected models.

After selecting a set of unique abstract models, an additional regression is performed for eachmodel
and its selected candidate functions, which is called the model inference step. The main reason for this
step, is that in the model selection step, the candidate functions are standardised. This is done since
the relevance of each candidate should not depend on is magnitude. To create a model with the correct
units, the additional regression is done using the unstandardised candidate functions. The additional
regression is done by using the Ridge regression

Θ = arg min
Θ̂

||CΘ̂ − b∗||22 + λr||Θ̂||22. (4.9)
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Here, the elements of Θ associated with the inactive candidates, as found in previous step, are zero
and are not modified during this regression step. The l2-norm regularisation term λr||Θ̂||22, causes the
magnitude of the nonzero coefficients to shrink. In general, high values for the weighting parameter
λr lead to a lower magnitude of the coefficients. This is beneficial since previous research reported
that a CFD solver, in which the models will be implemented, have difficulties in producing a converged
solution for models with large coefficients. A value of 0.1 for λr seemed to produce reasonable models.

In the end we have created a coefficient vector Θ to retrieve the symbolic expression for the
anisotropic stress tensor b∗.

4.4. Propagation of the anisotropic stress tensor
To assess the performance of the learned model over the standard LEVM, the learned models have
to be implemented into a CFD solver, which solves the RANS equations in combination with a specific
turbulence model such as the k −ω model. Besides improving the accuracy in describing the Reynolds
stresses, the ultimate goal is that the learned models improve the prediction in the velocity field. In
this project the open source software OpenFOAM is used. The integration of the learned model in
OpenFOAM should also expose the model shortcomings, such as sensitivity or stability issues.

To obtain a solver, which is able to compute the mean velocities using the correction of the Reynolds
stress anisotropy tensor by the obtained model, the turbulence models in OpenFoam and the simple-
Foam solver have to be modified.

The simpleFoam solver, solves the steady-state incompressible Reynolds Averaged Navier-Stokes
equation. This equation, without any body forces, can be written as

Uj
∂Ui

∂xj
= ∂

∂xj

[
−P + ν

(
∂Ui

∂xj
+ ∂Uj

∂xi

)
− Rij

]
. (4.10)

In the simple algorithm, this equation is iteratively solved by separating the part containing the pressure
gradient term from the part containing the velocity. The pressure equation is solved in a separate file
called pEqn.H, while the file UEqn.H contains the remaining terms of the momentum equation, i.e.
Uj

∂Ui

∂xj
= ∂

∂xj

[
ν

(
∂Ui

∂xj
+ ∂Uj

∂xi

)
− Rij

]
. This equation is denoted in the UEqn file as

1 tmp<fvVectorMatrix> tUEqn
2 (
3 fvm::div(phi, U)
4 + MRF.DDt(U)
5 + turbulence->divDevReff(U)
6 ==
7 fvOptions(U)
8 );

Here, the term turbulence->divDevReff(U) references to another file, which depends on the used
turbulence model. In our case, a linear eddy viscosity model is used, which dependents on the Boussi-
nesq hypothesis. Since the Boussinesq assumption models the Reynolds stress, Rij , as

Rij = 2k(bij + 1
3

δij) = −νt

(
∂Ui

∂xj
+ ∂Uj

∂xi

)
+ 2

3
kδij ,

the function turbulence->divDevReff(U) calculates:

∂

∂xj

(
(ν + νt)

(
∂Ui

∂xj
+ ∂Uj

∂xi

))
. (4.11)

Note that the term 2
3 kδij , is not there, but will be included in the pressure gradient term. To the equation

above, we want to add the corrective term for the anisotropic stress, such that the Reynolds stresses
are modeled as 2k(bij +b∆

ij + 1
3 δij). In the UEqn.H file the turbulence->divDevReff(U)will be removed

and replaced by the direct calculation of the Boussinesq hypothesis and b∆:
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1 tmp<fvVectorMatrix> tUEqn
2 (
3 fvm::div(phi, U)
4 + MRF.DDt(U)
5 - fvc::div((turbulence->nuEff())*dev(T(fvc::grad(U))))
6 - fvm::laplacian(turbulence->nuEff(), U)
7 + fvc::div(dev(2.0*turbulence->k()*bDelta_))
8 ==
9 fvOptions(U)
10 );

Here the term turbulence->nuEff() calculates (ν + νt). The terms nuEff() and k() are called from
another file dependent on the chosen turbulence model. Since the derivations of k and νt depend on
the Reynolds stress as well, the turbulence models in which they are calculated have to be adjusted
as well. When using the k − ω equations, the production term in those equation has to be modified to:

P = −(2kbij + 2kb∆
ij + 2

3
kδij)∂Ui

∂xj
. (4.12)

The k-omega equations in the turbulence model then looks like

1 tmp<volTensorField> gradU = fvc::grad(U);
2 bij_ = - nut/k_ * symm(fvc::grad(U));
3 #include "nonLinearModel.H"
4

5 volSymmTensorField R = (2.0/3.0)*k_*I - 2.0*nut*symm(fvc::grad(U)) + 2.0*k_*bDelta_;
6 volScalarField G(this->GName(), -(R && fvc::grad(U)));
7

8 // Update omega and G at the wall
9 omega_.boundaryFieldRef().updateCoeffs();
10

11 // Turbulence specific dissipation rate equation
12

13 tmp<fvScalarMatrix> omegaEqn
14 (
15 fvm::ddt(alpha, rho, omega_)
16 + fvm::div(alphaRhoPhi, omega_)
17 - fvm::laplacian(alpha*rho*DomegaEff(), omega_)
18 ==
19 gamma_*alpha()*rho()*G/(nut+nutSmall)
20 - fvm::SuSp(((2.0/3.0)*gamma_)*alpha()*rho()*divU, omega_)
21 - fvm::Sp(beta_*alpha()*rho()*omega_(), omega_)
22 + fvOptions(alpha, rho, omega_)
23 );
24

25 omegaEqn.ref().relax();
26 fvOptions.constrain(omegaEqn.ref());
27 omegaEqn.ref().boundaryManipulate(omega_.boundaryFieldRef());
28 solve(omegaEqn);
29 fvOptions.correct(omega_);
30 bound(omega_, this->omegaMin_);
31

32 // Turbulent kinetic energy equation
33

34 tmp<fvScalarMatrix> kEqn
35 (
36 fvm::ddt(alpha, rho, k_)
37 + fvm::div(alphaRhoPhi, k_)
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38 - fvm::laplacian(alpha*rho*DkEff(), k_)
39 ==
40 alpha()*rho()*G
41 - fvm::SuSp((2.0/3.0)*alpha()*rho()*divU, k_)
42 - fvm::Sp(Cmu_*alpha()*rho()*omega_(), k_)
43 + fvOptions(alpha, rho, k_)
44 );
45

46 kEqn.ref().relax();
47 fvOptions.constrain(kEqn.ref());
48 solve(kEqn);
49 fvOptions.correct(k_);
50 bound(k_, this->kMin_);



5
Results

This chapter contains some first results of sparse symbolic regression for different cases, a channel
flow and a flow through a channel with periodic hills.

5.1. Channel flow
As a starting case, a simple fully developed turbulent channel flow is considered. For this case the
data of the DNS of a fully developed plane turbulent channel flow with a Reτ of 392.24, conducted
by Moser, Kim and Mansour is used as ’true’ reference data [23]. The same flow case is simulated
with an k − ω RANS model in OpenFoam. To obtain a flow with the same Reτ , we used the physical
parameters stated in table 5.1. Table 5.2 contains the numerical boundary conditions as used in the
RANS simulation.

Table 5.1: Physical modelling

Uτ (1.0, 0.0, 0.0) [m · s−1]
ν 0.002532 [m2 · s−1]
Ub (17.55, 0.0, 0.0) [m · s−1]

Table 5.2: Boundary and Initial conditions

Inlet Outlet Walls Sides Internal field
U Cyclic Cyclic No Slip empty 17.55
p Cyclic Cyclic zeroGradient empty 0
k Cyclic Cyclic kqRWallFunction empty 6.68e-05
ω Cyclic Cyclic omegaWallFunction empty 1.49e-02
ντ Cyclic Cyclic nutUWallFunction empty 4.48e-3

The velocity profiles for a cross-section of the channel of the DNS data and the RANS simulation
are shown in figure 5.1. The Reynold stress profiles and the anisotropic parts of it are shown in figure
5.2 and 5.3. Here, the Reynolds stress of the k − ω model and its anisotropic part are obtained with
the expressions, Rij = 2ντ Sij + 2

3 k and bij = − ντ

k Sij respectively. The anisotropic stress part for the
DNS case is calculated with bij = Rij

2k − 1
3 δij .

22
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(a) U (b) mean V (c) ∂U
∂y (d) ∂V

∂y

Figure 5.1: Velocity profiles of the DNS and RANS simulation of a turbulent channel flow with Reτ = 395.

(a) Ruu (b) Ruv (c) Rvv (d) Rww

Figure 5.2: Reynolds stress profiles of the DNS and RANS simulation of a turbulent channel flow with Reτ = 395.

(a) buu (b) buv (c) bvv (d) bww

Figure 5.3: Anisotropic part of the Reynold stress profiles of the DNS and RANS simulations of turbulent channel flow with
Reτ = 395.
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Table 5.3: Reduced set of invariant tensors for statistically two-dimensional flows

T
(1)
ij Sij

T
(2)
ij SikRkj − RijSkj

T
(3)
ij SikSkj − 1

3 SlkSklδij

Sparse regression is applied to obtain an expression for the nonlinear anisotropic part of the Reynolds
stresses in the RANS simulation, such that it simulates the nonlinear anisotropic part of the Reynolds
stress of the DNS data. Since the channel flow is a two dimensional problem, there is no velocity com-
ponent in the z-direction and the set of ten invariant tensors from table 4.1 reduces to three tensors.
Hence, as an initial start, a library is created containing only the three invariant stress tensors shown
in table 5.3 and assembled to matrix C. So the library reads:

C =
[
T

(1)
ij , T

(2)
ij , T

(3)
ij

]
(5.1)

As described in section 4.3 a Lasso regression function with values of λ varying between 1 and 100 is
solved to select the candidate functions. The different models for each λ function are shown in figure
5.4a. To solve the Lasso regression function, for this case the python package ’cvxpy’ is used [8]. From
this figure we see three models with different nonzero coefficients. These three models are ’calibrated’
in the model inference step, in which an additional ridge regression is performed. The results of the
model inference step for which we used a λr of 0.1 are shown in figure 5.4b.

(a) Model selection

(b) Model inference

Figure 5.4: Sparse Symbolic Regression for the turbulent channel flow
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From the three found models, the one with the lowest test error has as symbolic equation

b∗
ij = 0.316T

(1)
ij − 5.421T

(2)
ij + 4.5167T

(3)
ij . (5.2)

The anisotropic stress of the RANS simulation are corrected with the obtained equation (5.2) for the
nonlinear part of the anisotropic stress tensor by

bij = −νt

k
Sij + b∗

ij

and can be seen in figure 5.5, in which again the anisotropic stresses of the DNS and baseline RANS
are shown. The Reynolds stresses of the RANS simulation are corrected with the obtained equation
for the nonlinear anisotropic stresses by:

R∗
ij = 2k(bij + b∗

ij + 1
3

δij) (5.3)

The corrected Reynolds stresses can be seen in figure 5.6, together with the Reynolds stresses of the
DNS and baseline RANS simulation.

In figure 5.5 we can see that the all the corrected anisotropic stress profiles bij are almost identical
to the anisotropic stress tensor buv of the RANS simulation, but than multiplied with some shrinking
factor. This makes sense, since as candidate functions only the invariant tensors are used and hence
only constants are found as coefficients. To improve the results, the library of candidate functions has
to be expanded, so functions are found for the coefficients G(n) instead of constants. These functions
could depend on the invariant I1 and I2, but also on other features as described in section 4.2.

(a) buu (b) buv (c) bvv (d) bww

Figure 5.5: Anisotropic part of Reynolds stress profiles of the DNS and RANS simulation and the found expression of a
turbulent channel flow with Reτ = 395.

(a) Ruu (b) Ruv (c) Rvv (d) Rww

Figure 5.6: Reynolds stress profiles of the DNS and RANS simulation and the corrected Reynolds stress profile of a turbulent
channel flow with Reτ = 395.
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To see how the found equation for the anisotropic stresses propagates into the velocity profiles, we
implement the anisotropic stress equations OpenFOAM as described in section 4.4. The velocity profile
of this implementation are shown in figure 5.7. Figure 5.9 shows the corrected anisotropic stress profiles
after the model of equations 5.2 is implemented in OpenFoam. For comparison, also the anisotropic
stress profiles of the DNS and RANS simulations are plotted as well as the stress profiles obtained
during the training. Figure 5.8 shows the corrected Reynolds stress profiles after the implementation in
OpenFoam. Again, the Reynolds stress profiles of the DNS and RANS simulations are plotted as well
as the stress profiles obtained during the training. Now the Reynolds stress of the implemented model
is calculated as in equation 5.3. We see that the stresses from the propagated model are similar to the
stresses obtained after training. This is ofcourse what we expect and suggest that the new model is
correctly implemented. However, we do not see much change in velocity profiles, but the mean velocity
profiles of the DNS and RANS simulation are already very similar. Hence, there is not much to improve
for the velocity profiles.

(a) U (b) mean V (c) ∂U
∂y (d) ∂V

∂y

Figure 5.7: Velocity profiles of the DNS, RANS and corrected RANS simulation of a turbulent channel flow with Reτ = 395.

(a) Ruu (b) Ruv (c) Rvv (d) Rww

Figure 5.8: Reynolds stress profiles of the DNS, RANS simulation, the corrected Reynolds stress profile after training and the
propagated stress profiles of a turbulent channel flow with Reτ = 395.

(a) buu (b) buv (c) bvv (d) bww

Figure 5.9: Anisotropic part of Reynolds stress profiles of the DNS, RANS simulation, the found expression of a turbulent after
training, and the propagated anisotropic stresses of a channel flow with Reτ = 395.
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Figure 5.10: Van Driest damping function

5.1.1. Including wall-damping function
It is possible that the region near the wall has a lot of influence on the model we found. For instance,
we see in figure 5.5 that the diagonal anisotropy stresses buu, bvv and bww have a high peak near the
wall. Wallin and Johansson suggested to weight the near-wall region by using a damping function,
which damps the values at the wall making them less dominant [35]. For this we can use the van Driest
function

f1 = 1 − exp −y+

A
, (5.4)

where y+ is the dimensionless wall distance which can be calculated with y+ = uτ y
ν and A is a constant

with a value of 26. The van Driest function against the normal wall distance is plotted in figure 5.10.
Wallin and Johansson aimed to develop an explicit algebraic Reynolds stress turbulence model. As

basis they use the theorem of Pope and Caley-Hamilton to describe the anisotropic stress tensor as a
combination of the ten invariant tensors in table 4.1. For a two-dimensional solution, they end up with
the following model for the anisotropy including the near-wall van Driest damping function:

b = f1β1T (1) +
(

f2
1 β2 − (1 − f2

2 ) B2

2 max(θ1, θeq
1 )

)
T (2) + (1 − f2

1 ) 3B2 − 4
max(θ1θeq

1 )
T (3), (5.5)

where B2 is a constant, which could be evaluated using data. In [35], the authors chose B2 = 1.8
since this choice yields a good fit to the DNS data. Equation 5.5 suggest to also include the candidate
functions f1, f2

1 , (1 − f1) and 1 − f2
1 in the library.

Until now, the shear and rotation stress tensors are scaled with the turbulence timescale τ = 1
ω .

However, this causes the scaled strain rate tensor to become zero near the wall. This could suggest
that ∂u

∂y or Sij is zero at the wall, but that is definitely not the case. A more appropriate expression for
the time scale reads

τ = max
(

1
ω

, Ct

√
ν

kω

)
. (5.6)

However, this timescale does not produce good results for Ŝij , which can be seen in Figure 5.11. A
possible explanation for this is the use of near-wall-function used in the k − ω RANS simulation.
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(a) Ŝij with τ = 1
ω

(b) Ŝij with τ = max
(

1
ω , Ct

√
ν

kω

)
Figure 5.11: Ŝij with two different scaling factors.

Thus, we continue with the timescale τ = 1
ω and use the library

C =[f1T
(1)
ij , f1T

(2)
ij , f1T

(3)
ij , f2

1 T
(1)
ij , f2

1 T
(2)
ij , f2

1 T
(3)
ij ,

(1 − f1)T (1)
ij , (1 − f1)T (2)

ij , (1 − f1)T (3)
ij , (1 − f2

1 )T (1)
ij , (1 − f2

1 )T (2)
ij , (1 − f2

1 )T (3)
ij ].

(5.7)

Model selection is done with the Lasso regression function, using values of λ between 1 and 100.
Figure 5.12a shows the models for each λ. The model inference step is done with ridge regression
using λr of 0.1 resulting in the models shown in figure 5.12b.
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/ (a) Model selection

(b) Model inference

Figure 5.12: Sparse Symbolic Regression for the turbulent channel flow

The model with the lowest test error is

b∗
ij = 0.980(1−f2

1 )T1−3.936f1T2−9.899(1−f1)T2+3.246f1T3+3.534(1−f1)T3+4.790(1−f2
1 )T3. (5.8)

The obtained model results in the corrected anisotropic stresses plotted in Figure 5.13. In this figure,
also the results of the anisotropic Reynolds stress after propagation in OpenFoam are shown. The
same results of the produced Reynolds stresses are shown in Figure 5.14. Figure 5.15 shows the
velocity profiles of the propagated model. In these figures we can see that in the region near the
wall the model better approximates the DNS data. So the near-wall damping function can have be
important in modeling the anisotropic stresses. However, we also see that the Reynolds stress Rvv

becomes negative, which is not realisable. Further research in the use of constraints in our optimisation
functions should indicate if this can be circumvented.
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(a) buu (b) buv (c) bvv (d) bww

Figure 5.13: Anisotropic part of Reynolds stress profiles of the DNS and RANS simulations and the obtained expression of a
turbulent channel flow with Reτ = 395 using an expanded library containing the van Driest damping function.

(a) Ruu (b) Ruv (c) Rvv (d) Rww

Figure 5.14: Reynold stress profiles of the DNS and RANS simulations and the corrected expression of a turbulent channel
flow with Reτ = 395 using an expanded library containing the van Driest damping function.

(a) U (b) mean V (c) ∂U
∂y (d) ∂V

∂y

Figure 5.15: Velocity profiles of the DNS, RANS and a with wall-damping function corrected RANS simulation of a turbulent
channel flow with Reτ = 395.
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Table 5.4: Boundary and initial conditions used in the k-omega RANS simulation of the periodic hill

Inlet Outlet Walls Sides Internal field
U Cyclic Cyclic No Slip empty 0.028
p Cyclic Cyclic zeroGradient empty 0
k Cyclic Cyclic kLowReWallFunction empty 6e−8

ω Cyclic Cyclic omegaWallFunction empty 1.5e−5

ντ Cyclic Cyclic nutLowReWallFunction empty 0.0

5.2. Periodic Hill
A more challenging case is the turbulent flow through a channel with periodic hills. The periodic hills
cause the flow to separate, which is challenging for RANS models to capture accurately. Highly ac-
curate data is provided by Xiao et al. [40], who performed DNS of flow over series of periodic hills at
Reynolds number Re = 5600. Cyclic boundary conditions are applied in the streamwise (x) direction,
and no-slip boundary conditions are applied at the top and bottom walls. The spanwise (z) direction is
homogeneous, which makes this case a two-dimensional problem.

The same geometry and boundary conditions are implemented in OpenFOAM to perform a RANS
simulation, where empty boundary conditions are used for x-y planes. Fig 5.16 shows a schematic of
the flow geometry and RANS-predicted velocity contour. The structured mesh consists of 100 and 150
cells in the x and y direction, respectively. As baseline RANS simulation we used the k − ω model with
the boundary and initial conditions as indicated in table 5.4.

(a) Model selection for the PH with (b) Model inference

Figure 5.16: Structured hexahedral mesh and velocity field obtained from RANS simulation of the periodic hill, Re = 5600

5.2.1. Model Discovery
To give a preview of how the results will look like for this case, we start simple with a library only
containing the single invariants I1, I2 and physical input features q1 up till q10,

Θ = [I1, I2, q1, ...q7]. (5.9)

So now, there are no interactions between the features or other transformations. Each candidate func-
tion will be multiplied with basis tensors T1, T2 and T3. The data will be divided into a training and test
data set contain 75% and 25 % of the data respectively.

For these initial results we select the candidate function by performing a Lasso regression with
values for the regularisation parameter λ = [10e−4, ..., 1] uniformly spaced using a log-scale. The
sklearn package for python is used for the implementation of the lasso regression which relies on a
coordinate descent method to solve the regression function. Since the values of the invariants I1 and
I2 are approximately ten times smaller then all the physical parameters, we first apply a normalisation
on the library to make the selection procedure independent of the magnitude of the candidates.

Figure 5.17 shows the result of the model selection using library 5.9. Each row in the graph shows
the outcome of the lasso regression using the regularisation parameter as indicated on the y-axis. The
colours indicate the value of the coefficients of the selected candidate functions, which are shown on
x-axis indicates. The candidate functions on the x-axis are sorted on the amount of times it has been
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selected. So the graph may suggest that the candidate functions T2, T1, T1q1 and T3I2 are important,
since they are selected most often.

With the unique combination of selected candidate functions an additional ridge regression is ap-
plied to inference the models. Now, the library is not normalised beforehand. As regularisation param-
eter λr = 0.1 is used. The results of the ridge regression are shown in figure 5.18. Similar as before,
each row in this graph indicates a different model. Also visible are the errors between the target b∆

and the outcome of the discovered model on the training and test data. These errors are better visible
in figure 5.19, where they are plotted against the models’ complexity, the amount of used candidate
functions. The challenge is to select a model, which optimally balance error and complexity and is not
over-fitting the data. We first select a model with the lowest error but a complexity of less than 10:

M1 =(−0.86q1 + 0.235)T1

+(3.145q2 + 1.022q5 − 5.115)T2

+(−1.829l2 + 1.586q1 − 0.514q2)T3

(5.10)

Figure 5.17: Model selection

Figure 5.18: Model inference
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Figure 5.19: Train and test errors of discovered models

The model predicts the anisotropic stresses as shown in figure 5.20. At different cross sections
through the channel, the stresses are plotted along the vertical distance. In this figure also the anisotropic
stresses as modeled by the DNS and k − ω RANS simulation are plotted. Figure 5.21 shows the
Reynolds stresses for each of the models. The model especially captures the anisotropic and Reynolds
stress in the uu-direction better than the k − ω model. In the other direction, the outcome of our model
and k − ω model are similar and in the vv-direction our models seems to perform even worse than
the k − ω model. Finally, the model is implemented in OpenFOAM to obtain the velocity profiles. The
results of these are shown in figure 5.22. Unfortunately, it looks like the velocity profiles are more off
than the profiles of the k−ω model. The same can be observed for the kinetic energy profiles as plotted
in figure 5.23. Hence the model does not perform as we wish for.

For comparison reasons we also select the most simple model:

M∈ = −4.311T2. (5.11)

The same results are generated as the more complex model. For both models the mean squared errors
of the anisotropic and Reynolds stresses are obtained, as well as the error of the streamwise velocity.
The errors are stated in table 5.5. We see that both models improve the modeling of the anisotropic and
Reynolds stresses compared to the baseline k − ω simulation. Model 1 has the lowest modeling error
for the anisotropic stresses while model 2 has the lowest error for the Reynolds stresses. However,
model 1 does not improve the streamwise velocity, since the MSE is higher than the k − ω model. The
simple model does slightly improve the velocity profile and therefore, in this case, the simple model is
more favourable than the more complex model.

Figure 5.20: Anisotropic stresses buu, buv , bvv and bww of the discovered model compared with DNS and k − ω RANS
simulation
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Figure 5.21: Reynolds stresses Ruu, Ruv , Rvv and Rww of the discovered model compared with DNS and k − ω RANS
simulation

Figure 5.22: Velocity profile in streamwise direction of the discovered model compared with DNS and k − ω RANS simulation

Figure 5.23: Kinetic energy profiles of the discovered model compared with DNS and k − ω RANS simulation
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Table 5.5: MSE errors of the Anisotropic and Reynolds stress and the streamwise velocity for the two discovered models and
the k − ω model.

RANS Model 1 Model 2
MSE (bij) 0.012343 0.006537966 0.007096307
MSE (Rij) 5.21e-11 4.80047e-11 4.31072E-11
MSE (U) 1.91e-06 3.92945e-06 1.80531E-06



6
Intermediate conclusions and further

research
So far, we have created a methodology to obtain models for the nonlinear anisotropic stresses using
sparse symbolic regression. We also managed to implement the obtained models into the CFD solver
OpenFoam to calculate the velocity profiles. Hence, a full model discovery pipeline is developed for
discovering and testing data-driven turbulencemodels. In the rest of this project we want to focus on the
following. First, we want to do more research in applying constraints to the optimisation functions. As
we saw for the channel flow when adding the damping function, the Reynolds stresses became negative
which should not be possible. Physical constraints could prevent this. Secondly, the influence of the
near-wall damping function will be more investigated to find out what the best method is to include this
function. One possibility is to include the function in the library of candidate function as we already did
for the channel flow. Or we can apply the function later during the propagation of themodel in Openfoam.
Thereafter, we also would get more insight in the different optimisation functions which can be used in
sparse symbolic regression. The optimisation problems we will consider are Lasso, Elasticnet, sr3 [44]
and sequential thresholding of the least squares problem. The question is if these different regression
methods result in different selections of the candidate function and different models. At last, we want to
test the methodology on different test cases including the square duct flow, the Taylor-Couette flow and
ultimately on a so called ’vortex gripper’, which serves as an industrial problem. In line with this, models
will be trained on multiple cases simultaneously, to see if this contribute to a more general model.

36
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