Master project Convolutional Neural Networks & Domain Decomposition

September 26th, 2023

Outline of this meeting

- 1. Introduction
- 2. Existing research on Domain Decomposition-inspired (C)NNs

3. Research proposal

- a. Proposed network architecture
- b. Some preliminary results
- C. Research purpose and sub-questions

4. Questions and discussion

Introduction

Convolutional Neural Networks & Domain Decomposition

Very brief recap on DDMs and CNNs (1)

Domain Decomposition Methods (DDMs)

- Suitable for parallel computing
- Two classes:
 - Overlapping DDMs: sharing global information by overlapping boundaries
 - *Non-overlapping DDMs* : continuity at boundary is enforced by boundary conditions
- Multi-level DDMs: coarse problem coordinates the global solution (ensures continuity between subdomain solutions)

Very brief recap on DDMs and CNNs (2)

Convolutional Neural Networks (CNNs)

- Feedforward Neural Network that uses filters (kernel) optimization
- Hierarchical architecture: multiple layers, contraction and expansive paths
- Known for their ability to recognize patterns and extract features \rightarrow classification, segmentation tasks

Example: U-Net, a network for biomedical segmentation

- Contraction path
 - Reduces amount of spatial information, increases feature information
- Expansive path
 - Combines feature and spatial information using information from *skip connections* and feature maps

Challenges and opportunities in combining DDMs and CNNs

Opportunities

- 1. **Parallel processing**. DDMs inherently encourage parallel processing, which is also a desired characteristic for CNNs. CNN data (images, voxel images) is intuitively easy to decompose into subdomains (sub-images)
- 2. **Scalability**. Certain DDMs support scalability, a valuable trait when dealing with large resolution image datasets.
- **3. Memory efficiency.** DDMs partition the domain and the computations among multiple devices, leading to efficient memory management. This can als be advantageous for distributing a CNN among multiple devices.

Challenges

- 1. **Communication between subdomains** can easily lead to a communication overhead during training/inference.
- 2. Fundamental application difference. DDMs are used to approximate PDE solutions, whereas CNNs are mostly used for ML tasks not directly related to PDEs.

Existing Research

Convolutional Neural Networks & Domain Decomposition

What is already done? (1)

A DD-based CNN-DNN Architecture (Klawonn et al., 2023)

- Image decomposed into sub-images
- Each sub-image processed by separate CNN sub-network that produces a local prediction
 - Allows for fully parallel training (!)
- Local predictions are combined in a Fully Connected Network (FCN) to obtain one global prediction.

Architecture proposed by Klawonn et al. (Klawonn et al., 2023)

What is already done? (2)

Decomposition and composition of DCNNs (Gu et al., 2022)

- Image is partitioned into N sub-images
- Large CNN is partitioned along the channel dimension into N sub-networks
 - Can be trained separately
- Sub-networks are combined into one large CNN, fine-tuning is applied then.

Research gap

Some unanswered questions:

- How to transfer information between different subdomains when the information is far apart (more than a few pixels)?
- How to construct a DDM-inspired convolutional network suitable for image **segmentation** tasks?
- Can we exchange information from latent space (intermediate feature maps) between subnetworks instead of spatial information?
 - Feature maps: lower spatial dimension, "high-level" information

Research Proposal

Convolutional Neural Networks & Domain Decomposition

Proposed network architecture (1)

- We propose a **segmentation network**, based on the U-Net architecture
- Each input image is partitioned into two (or more) sub-images
- How is this network based on DDMs?
 - Subdomains Ω_1 en Ω_2 \leftrightarrow image subdomains 1 and 2 (can be overlapping or non-overlapping)
 - Solvers on both subdomains ↔ network operating on both subimages (can be the same solver/network)
 - Communication of boundary conditions on Γ via coarse problem \leftrightarrow FC network connecting both domains

Proposed network architecture (2)

- Sub-network: based on the architecture of U-Net
 - Exactly the same architecture as U-Net, except for the latent space feature maps (modified by communication network)

Proposed network architecture (3)

- **Communication network:** exchanges information between two sub-domains by modifying a part of the latent feature maps

Proposed network architecture (4)

- **Communication network:** FCN that exchanges information between two sub-domains by modifying a part of the latent feature maps.
 - *Inputs*: latent feature maps for two sub-domains
 - Outputs: modified latent feature maps for two-subdomains

Preliminary results (1)

Central questions:

- Does the proposed network architecture succeed in transferring global information?
- How does it compare to a architecture with two subdomains without communication?
- How does it compare to a baseline U-Net model?

Proposed network architecture (with communication network)

Proposed network architecture (without communication subnetwork)

Baseline U-Net model

Preliminary results (2)

Toy problem:

- Designed to require: global communication for successful performance
- **Input**: Two randomly located circles (one on each subdomain).

(a) Input image

- **Task**: predict the line connecting the two circles
- **Metric**: accuracy of the prediction of the line segment (% correctly predicted pixels)

Image (a) and corresponding mask (b) pair example from the dataset used for training and evaluation

(b) Desired output

Preliminary results (3)

Training Loss and Line Segment Accuracy for the toy problem for three different segmentation networks.

Influence of the size of the communication network

Mean and variance of accuracy for different input + output sizes of the communication network

Mean accuracy for 6 experiments

Variance for 6 experiments

Research Proposal

Research purpose: To develop and investigate a Domain Decomposition-inspired CNN architecture, consisting of CNN sub-networks interconnected by a Feature Map Communication Network

Sub-questions

- What should the size of the communication network be for accurate predictions?
- How does the amount of necessary communication change for different types of data sets and segmentation tasks?
- How can we extend the proposed network to more subdomains? Do we need a larger communication network then? How does this scale with problem size and complexity?
- How do the accuracy, computational performance, and memory requirements of this model compare to baseline methods such as the U-Net model?
- How can the proposed architecture be used to speed up parallel training and evaluation and/or improve accuracy for segmentation tasks?

Questions and Discussion

Convolutional Neural Networks & Domain Decomposition

Mean and variance of accuracy for repeated experiments (1)

- Training hyperparameters:
 - Batch size: fixed at 16
 - Learning rate: fixed at 0.0005
 - Epochs: limited at **100**
- Model parameters:
 - Input and output sizes of the communication network are both in [1,2,4,8,16,32]
- Repeated the experiment 6 times
 - Weights initialized following the same procedure, however with another seed value
- In total: 216 networks are trained
- Metric: maximal validation accuracy of the line segments between epoch 1 and epoch 100

Mean and variance for repeated experiments (2)

Mean and variance of accuracy for repeated experiments (3)

- Outliers
 - 1 input, 2 outputs (high variance, until 100 epochs)
 - 1 input, 8 outputs (high variance, until 70 epochs)

Sub-domains for DDMs and CNNs

overlapping subdomains

Overlapping decomposition

non-overlapping subdomains

Non-overlapping decomposition

classical U-Net

Full domain

Sources

- Axel Klawonn, Martin Lanser, and Janine Weber. A domain decomposition-based CNN-DNN architecture for model parallel training applied to image recognition problems. *arXiv preprint arXiv:2302.06564, 2023.*
- Linyan Gu, Wei Zhang, Jia Liu, and Xiao-Chuan Cai. Decomposition and composition of deep convolutional neural networks and training acceleration via subnetwork transfer learning. *Electronic Transactions on Numerical Analysis*, 56:157–186, 2022

