
Delft University of Technology

Faculty of Electrical Engineering, Mathematics and Computer Science

Developing a Domain Decomposition-inspired

Convolutional Neural Network Architecture for

Image Segmentation

A thesis submitted to the

Delft Institute of Applied Mathematics

in partial fulfillment of the requirements

for the degree of

Master of Science

in

Applied Mathematics

by

Corné Verburg

Delft, Nederland

November 30, 2023

MSc thesis Applied Mathematics

Developing a Domain Decomposition-inspired

Convolutional Neural Network Architecture
for Image Segmentation

Corné Verburg

Delft University of Technology

Daily supervisor

dr. A. Heinlein (Numerical Analysis)

Thesis committee

prof. dr. ir. C. Vuik (Numerical Analysis)

dr. D. J. P. Lahaye (Mathematical Physics)

dr. E. C. Cyr (Sandia National Laboraties, USA)

November 30, 2023 Delft

Abstract

iv

Contents

1 Introduction 1

2 Convolutional Neural Networks 3

2.1 Fundamentals of Neural Networks . 3

2.2 Training and Optimization . 6

2.3 Architecture of CNNs . 8

2.4 The U-Net model . 10

3 Domain Decomposition 12

3.1 Basic Idea of DDMs and Model Problem . 12

3.2 Overlapping Domain Decomposition Methods 13

3.3 Non-Overlapping Domain Decomposition Methods 16

3.4 Multi-level methods in general . 19

4 Domain Decomposition and Neural Networks 20

4.1 Classifying DDM-inspired ML approaches 20

4.2 Research on DDM-inspired classification- and segmentation CNNs 22

4.3 Challenges and opportunities . 25

5 Research Proposal 27

5.1 Research choices for this project . 27

5.2 Proposed network architecture . 27

5.3 Preliminary Results . 30

5.4 Research purpose and sub-questions . 33

v

1 Introduction

In clinical settings, the interpretation of medical images, such as CT scans, echocardio-

grams, and MRI scans, has traditionally been carried out by medical experts, including

radiologists and physicians. However, recent advancements in technology, particularly

deep learning techniques using Convolutional Neural Networks (CNNs), have strongly in-

fluenced the field of medical image analysis. The CNN has emerged as a particularly

powerful tool for image processing tasks. A systematic literature review by Fourcade and

Khonsari [10] emphasized that, while CNNs are not meant to replace medical profession-

als, they do hold the potential to optimize routine tasks and positively impact medical

practice.

Nonetheless, the use of CNNs comes with significant challenges that demand atten-

tion to enhance their effectiveness. As medical images continue to increase in resolution,

CNNs must scale in size and necessitate longer training times to achieve accurate results.

Researchers have responded to this challenge by proposing various advanced data com-

pression techniques and training acceleration methods in recent years, see for an overview

for example [14]. Nevertheless, further research in this domain remains necessary to fully

harness the potential of CNNs and improve their practical application, as underscored in

several literature reviews on CNN acceleration and compression, [6, 12].

Figure 1: Schematic representation of the U-Net Architecture. The left part of the architecture is known as
the contraction path, whereas the right part is denoted as the expansive path. Each blue box corresponds
to a multi-channel feature map. The number of channels is denoted on top of the box. White boxes
represent copied feature maps. Arrows denote the different operations. The gray arrows symbolize the
skip connections in the U-Net, where a feature map from the contraction path is concatenated to feature
maps in the expansive path. This image is obtained from the paper introducing the U-Net architecture
[26]

In this literature study and research proposal, our primary focus is on a specific type

of neural network introduced for medical image analysis, known as the U-Net. The U-

Net architecture was first introduced by Ronneberger et al. in 2015 [26] and has since

gained widespread popularity. It is designed specifically for automatic medical image

segmentation and has proven successful across various medical image modalities due to

its flexibility, optimized modular design, and overall effectiveness [1]. The architecture of

1

the U-Net network is depicted in Figure 1. The U-Net’s design resembles that of an auto-

encoder network but distinguishes itself with the presence of skip connections connecting

outputs in the encoding stage (the left part of the network, that contracts global features

from the data) with corresponding inputs in the decoding stage (the right part, that

expanses the found global features to the output dimensions). These connections enable

the propagation of high-level contextual information through the network, allowing deeper

layers to focus on more global image features.

A topic, seemingly unrelated to a convolutional neural network, is the field of domain

decomposition. Traditionally, domain decomposition methods [29] are numerical meth-

ods employed to solve partial differential equations. These methods decompose a global

problem on a large domain into smaller sub-problems on sub-domains, where the local sub-

problems are addressed and solved for a large part independently. Domain decomposition

methods provide ways to decompose the problem and couple the different sub-problems

using different strategies, such as overlapping subdomains, transmission conditions, or in-

troducing a coarse problem. Domain decomposition is known as a convenient paradigm

for solving PDEs on parallel computers; the common factor in all domain decomposition

methods is that they rely on the fact that each processor can do the major part of the

work independently of the other processors.

This parallel nature inherent to many domain decomposition methods (DDMs) is rele-

vant for other problems that demand extensive computational resources, such as training

(large) neural networks, where parallelization of the problem can help to speed up compu-

tations. Consequently, combining insights, strategies, and approaches from domain decom-

position with the design and training procedure of neural networks appears a promising

direction. The literature study aims to provide an overview of existing research and pa-

pers exploring this combination. Additionally, we propose a novel network architecture

inspired by DDM strategies for further investigation in this master thesis project.

This literature study has the following structure. Chapter 2 will provide theoretical

background on the topics of convolutional neural networks and the U-Net. Chapter 3 gives

a general introduction to domain decomposition methods. Existing research that describes

(convolutional) neural networks incorporating domain decomposition strategies will be

reviewed in Chapter 4. Finally, Chapter 5 outlines our research proposal, including a new

DDM-inspired CNN architecture for image segmentation and discusses future research

directions.

2

2 Convolutional Neural Networks

In this chapter, we introduce neural networks, and more specifically CNNs. This type of

network is one of the major achievements in image vision techniques in the field of deep

learning. Computer vision using CNNs can be applied in a broad range of fields, such

as face recognition, image enhancement, content generation, autonomous vehicles, and

intelligent medical treatment. To better understand state-of-the-art techniques applied

in CNNs, in this chapter, we first present some fundamentals of (convolutional) neural

networks, then we introduce the standard architectural components of CNNs an discuss

training and optimization procedures. Furthermore, we discuss some classical CNN archi-

tectures.

2.1 Fundamentals of Neural Networks

Before we introduce CNNs, we first briefly introduce the more general concept of (feed-

forward) neural networks. Neural networks are inspired by the human brain and initially

started as an attempt trying to model the neurons in the human brain [21]. Intuitively,

a neural network can be thought of as a collection of neurons, organized in layers, where

the neurons of different subsequent layers are interconnected in some way. Each connec-

tion has a certain weight, indicating how important the information flowing through that

connection is. Only if a neuron receives enough stimulating information from neurons in

previous layers, it will activate and send out information itself.

To define neural networks more formally, we consider a supervised learning task, i.e.,

the approximation of a function F : Rn → Rm mapping given input I = {x1, . . . , xN} to

corresponding output data O = {y1, . . . , yN}, with xi ∈ Rn and yi ∈ Rm, for i = 1, . . . , N .

In other words: we want the function F to satisfy the relation

F (xi) = yi, i = 1, . . . , N, (1)

or at least a function that is very close to this function, concerning some error norm, for

example the L2-norm: √√√√ 1

N

N∑
i=1

(F (xi)− yi)2) < ϵ (2)

where ϵ ∈ R denotes the chosen upper bound for the error. Neural Networks are designed

to perform this task of function approximation. They do so by taking advantage of some

useful linear algebra properties. To understand this, we first consider the equation

P (x) = Aα(Bx+ c). (3)

In this equation, x, c, and P (x) are vectors and A and B are matrices. The activation

function α : R → R is a scalar function applied component-wise to the vector Bx + c.

Furthermore, we have that x ∈ Rn, c ∈ Rk, P (x) ∈ Rm, A ∈ Rm×k, B ∈ Rk×n, with k a

freely chosen parameter and m and n the output and input dimensions, respectively. Note

that the function α is essential for the model to be nonlinear since all other operations

in this equation are linear ones. A model that only includes linear function is only able

3

to make linear transformations, making it incapable of handling more complex, nonlinear

real-world data. Nonlinear activation functions allow the model to approximate these

more complex mappings as well.

If we want to approximate the function F , the most general assumption that we can

make is that this function is nonlinear. Therefore, to obtain non-linearity in our model,

it is mostly the most suitable option to choose for α a nonlinear function such as, for

example, the hyperbolic tangent function, or the ReLU function.

It has been proven that neural networks that have the form of Equation 3 are universal

function approximators. For example, for the sigmoid activation function, the following

theorem can be proven [16]:

Theorem 2.1. Universal Approximation Theorem (Sigmoid). Let In denote the n-

dimensional unit cube [0, 1]n, and let α be the sigmoid activation function. Then, finite

sums of the form

P (x) =
M∑
i=1

aiα(Bx+ c) (4)

are dense in the space of continuous functions C(In). In other words, given any f ∈ C(In)
and ϵ > 0, there is a sum P (x) of the above form for which holds that

|P (x)− f(x)| < ϵ, ∀x ∈ In. (5)

This theorem has been extended and proven for a more general class of activation

functions in the paper with the name Multilayer feedforward networks are universal ap-

proximators [16]. This shows us that it is worthwhile to look for approximations of this

form and brings us to the definition of general Neural Networks. We define x ∈ Rn as the

input of our neural network. The number of hidden layers, intermediate layers between

the input and output layers of our network, is denoted by L. Note that x can represent

many different data points, varying from images to voxel images or time series. Then, the

neural network is described by the set of equations

h1 = α1(W1x+ b1),

hi+1 = αi+1(Wi+1hi + bi+1), for i = 1, . . . , L− 1,

y = WL+1hL

(6)

The vector y ∈ Rm is the output of the neural network, while the other vectors hi+1 ∈ Rni

with i = 0, . . . , L− 1 are the states of the neurons in the L hidden layers of the network.

Each layer is definded by a weight matrix Wi ∈ Rni×ni−1 that contains the weights of the

particular layer, and a bias vector bi ∈ Rni . Also, note that the activation function αi can

be chosen to be different functions for different layers.

If the weight matrices Wi, i = 1, . . . , L+1 are dense, the neural network defined above

is a dense network. However, in many architectures, to limit the number of computations,

these matrices are sparse matrices. The number of layers in a neural network is also

denoted as its depth, and the number of neurons ni in a layer is often referred to as the

width of a specific layer. The term deep learning is derived from networks with many

layers (generally 4 or more layers). An example of a very simple dense neural network is

shown in Figure 2.

4

Figure 2: Visualization of a very simplistic neural network. The green circles denote the input vector x.
The network consists of two hidden layers (the red and blue circles) and gives as output a 1D number,
denoted by the purple circle. Note that the arrows between the different neurons represent the weights
stored in the weight matrices Wi: each arrow represents another weight w ∈ Wi.

2.1.1 Activation functions

In this subsection, we explore some important activation functions, based on the survey

on activation functions of Dubey et al. [8]. Note that all activation functions operate

element-wise on their argument: therefore, all activation functions are defined as scalar

functions. The following activation functions are often encountered in machine-learning

tasks.

• The linear activation function α(x) = x is one of the simplest activation func-

tions. However, this activation function is normally not used since it does not intro-

duce non-linearity in the model, leading to a network that only can estimate simple

linear problems. However, this activation function can be used in combination with

nonlinear activation functions.

• The sigmoid activation function, defined as α(x) = 1
1+exp(−x) is one of the

classical activation functions. This function results in a value in the interval (0, 1).

A disadvantage of this activation function is that the function is saturated for higher

and lower inputs, leading to a low gradient, which results in very slow learning. This

problem is also known as the vanishing gradient problem.

• The tanh activation function shares a lot of properties with the sigmoid function,

but it shows the zero-centric property, i.e. the mean activation value is zero. This

function is defined as α(x) = exp(x)−exp(−x)
exp(x)+exp(−x) and has the output range [−1, 1].

• The Rectified Linear Unit Activation Functions (ReLU), defined as α(x) =

max(0, x) is the most widely used loss function, providing a solution for the vanishing

gradient problem of the sigmoid function. Its simplicity also makes it fast and easy to

implement. The disadvantages of this loss function are that negative values are not

utilized, which can lead to deactivated neurons, and that the output is unbounded,

which may lead to exploding gradients. Furthermore, the gradient is zero for negative

inputs.

5

• The leaky ReLU activation function was proposed to use the advantages of

the ReLU function, but also use the negative values by giving them a small linear

weight. This function is defined as α(x) = βmin(0, x)+max(0, x), where β is either

set by the user or included in the model as a learnable parameter.

• The Exponential Linear Unit (ELU) α(x) = x, x > 0 and α(x) = β(exp(x) −
1), x ≤ 0 can be seen as a shifted ReLU function with a smoother, such that it is

everywhere continuously differentiable.

• The Swish activation function is defined as α(x) = xf(βx), where f(x) denotes

the sigmoid activation function and β ∈ R is a learnable parameter. This activation

function can help in solving the vanishing gradient problem since it returns larger

gradients during back-propagation compared to other activation functions like the

Sigmoid or Tanh functions.

• The Softmax activation function is often used in the output layer of classifica-

tion problems: it is designed to convert a vector x ∈ Rn to a certain probabilistic

distribution with n classes. Therefore, its output is a vector of n probabilities, where

the components are defined as (α(x))i =
exp(xi)∑n

j=1 exp(xj)
. Note that all components in

the vector α(x) will be in the range (0, 1) and their sum is equal to 1. Larger input

values will lead to a larger probability.

Figure 3 shows some of the discussed activation functions.

Figure 3: Some important activation functions. Note the similarities and differences between the ReLU,
Leaky ReLU, and ELU activation functions: for x > 0 they are the same, but they are different for
negative x. The first row shows the sigmoid, tanh, and yReLU respectively, whereas the second row shows
the LeakyReLU, ELU, and Swish activation function respectively. The Softmax activation function is not
shown since this functi

2.2 Training and Optimization

Given a neural network with the right parameters, this network will be able to be a good

estimator of many non-linear functions. However, therefore it is crucial to find those

parameters. In this section, we explore the training and optimization of neural networks.

6

Suppose we have a neural network NNα
W,b that uses the same activation function α in

each layer and is parameterized by weights W = {Wi}L+1
i=1 and bias vectors b = {bi}Li=1.

Then, we compute the output of the i-th layer with layer input x, denoted by Fi(x) with

the following formula:

Fi(x) = α(Wix+ bi). (7)

where Wi is the weight matrix and bi the bias vector. But then, the output of the neural

network is simply defined as

NNα
W,b = WL+1FL ◦ . . . ◦ F1(x). (8)

i.e. a composition of functions. Now, suppose we have a training data-set with input data

I = {x1, . . . , xN} and corresponding output data O = {y1, . . . , yN}. We want to train the

neural network to solve the optimization problem:

min
W,b

N∑
i=1

L(NNα
W,b(xi), yi). (9)

In this equation, the loss function L should penalize for deviations of the model output

NNα
W,b(xi) from the correct label yi. Several options are possible and will be presented in

the next subsection. For now, let the loss function be the mean squared error, defined as:

LMSE((NNα
W,b(xi), yi) =

1

N
||(NNα

W,b(xi)− yi||22 (10)

To solve this minimization problem, several approaches can be used, mostly variants of

the stochastic gradient descent (SGD) method or quasi-Newton methods or combinations

of both. In this literature study, we limit ourselves to a discussion of the most common

form of optimization: mini-batch optimization for SGD.

Mini-batch optimization is a variant of the stochastic gradient descent method

(SGD). The SGD method selects at each gradient step one random term from the sum

N∑
i=1

L(NNα
W,b(xi), yi) (11)

to compute the gradient with respect to the weights W and the bias b in all the layers of

the neural network,

∇W,bL(NNα
W,b(xi), yi), (12)

and then updates the weights matrices W and bias vectors b using this gradient:

Wk+1 = Wk − ϵ∇WL(NNα
W,b(xi), yi), (13)

bk+1 = bk − ϵ∇bL(NNα
W,b(xi), yi), (14)

where ϵ > 0 is the learning rate, a parameter determining how fast the weights and bias

are updated.

In the next iteration, one of the remaining data points is chosen to perform the next

7

gradient step. The number of iterations needed to go through all data points is denoted

as one epoch. The advantage of this approach is that the computation of the gradients

is much cheaper in a gradient step compared to the case where the gradient is computed

for all samples, and furthermore, this approach is robust against getting stuck in local

minima.

To combine the advantages of the classical gradient descent method and the SGD

method, the mini-batch optimization approach partitions the data index set {0, . . . , N}
into K disjoint subsets with size k. Then, in the j-th step of the mini-batch SGD, we use

the gradient ∑
i∈Bj

∇W,bL(NNα
W,b(xi), yi), j = 1, . . . ,K (15)

to update the weights and bias vectors. Since the sets are disjoint and form a partition of

the set of data indices, K iterations of mini-batch SGD correspond to one epoch. Note that

a partition of only one set K = 1 corresponds to the classical gradient descent method,

whereas a partition into sets with only one elements K = N corresponds to the SGD

method.

Forward and backward propagation are the crucial steps in machine learning.

Forward propagation is the propagation of the input data through the neural network to

compute the predicted output. This predicted output is used to compute the loss with

respect to some loss metric. Backward propagation, on the other hand, is the process

of calculating gradients by propagating the computed loss backward from the output

layer through the network to update the model’s parameters (the weights W and biases

b during training. Since the functions used in neural networks are mostly elementary

compositions of linear and nonlinear functions, the gradients can be computed efficiently

using the chain rule, product rule, and the property of linearity of derivatives - it is

only an administratively challenging task to do so. Using automatic differentiation, the

backpropagation can be done very efficiently and accurately.

Data and batch normalization. For many datasets, it is beneficial to normalize the

input data, since this helps to ensure that different input features contribute equally to

the model’s results. Note that normalization is an invertible operation so that the outputs

can be transformed back to their original range.

For the output of the different layers, it can also be beneficial to apply normalization.

However, this can only happen during training, since the outputs of different layers are

dependent on each other. Therefore, the batch-normalization approach is often used: the

normalization takes place during the forward propagation. To compute the mean and

value of a certain layer output, only the values of the batch itself are used.

2.3 Architecture of CNNs

Having defined a general (feedforward) neural network, we now focus on a more specific

kind of neural network that has become very popular in the field of image vision: the

convolutional neural network. As the term already says, this type of network uses con-

volutional operations which turn out to be very suitable for imaging tasks. To gain a

better understanding of this type of network, we introduce in the following subsections

the convolutional layer, pooling layers, and downsampling layers.

8

2.3.1 Convolutional layers

The idea of CNNs is inspired by visual perception: the human eye contains several recep-

tors that respond to different features. The convolutional layer plays a vital role here. A

convolution is a mathematical operation that involves the element-wise multiplication and

summation of a filter (kernel) with local regions of the input data, formally defined as

G[i, j] =
k∑

u=−k

k∑
v=−k

H[u, v] · F [i− u, j − v]. (16)

for a 2D image (an image with only one channel, for example gray-scale). Here, G denotes

the feature map obtained by convolution, H and F ∈ R(2k+1)×(2k+1) denote respectively

the input image or feature map and the filter/kernel. 2k+1 is the size of the convolutional

filter/kernel.

This operation has proven to be successful in producing mappings of input data that

capture relevant patterns, such as line segments, circles or other shapes. Each convolu-

tional layer in a CNN consists of a number of learnable kernels. Typically, the kernels

are small in spatial dimension - 3 × 3 and 5 × 5 kernels are often used - but they spread

along the full depth of the input. When the data input reaches a convolutional layer, the

kernels ’slide’ over the data input and perform a convolutional operation for each slide.

The result of this convolution is stored in a feature map. This convolutional operation is

visualized in Figure 4.

Figure 4: Visualization of the operations performed in the convolutional layer. The asterisk ∗ in this figure
denotes a component-wise multiplication and summation operation. The values for the input and kernel
are chosen arbitrarily - note that these are not fixed but will be updated during training. Note that the
kernel weights are updated during the training phase of the neural network. Furthermore, note that there
can be several kernels operating on the same input. Different resulting outputs are typically concatenated,
resulting in an output with more feature maps. The stride parameter in this example is 1, the padding
parameter is set to 0. Note that this leads to an output that has a smaller size than the original input.

Note that this setup drastically reduces the number of learnable parameters in the

network. For example, if we have a 64 × 64 × 3 image as input and ignore the bias, one

kernel of spatial size 3x3 pixels would only contain 3 pixels × 3 pixels × 3 channels = 27

learnable parameters. However, if we flatten the image and use it as input to a fully

connected neural network layer with only one layer of one neuron, this would already

contain 64× 64× 3 = 12, 288 learnable parameters.

The depth of the output of each layer (i.e., the number of feature maps) can be chosen

9

by modifying the number of kernels in a layer: each kernel produces one feature map.

Furthermore, we can also change the following parameters:

• The stride is the parameter that determines how the kernel moves over the input

data. If the stride is 1, the kernel moves 1 pixel for each convolution operation. If

we set it to a higher number s ∈ N, then s−1 pixels are skipped, resulting in a lower

dimension feature map.

• The padding is the parameter that determines the behavior of the kernel at the

boundaries of the data. The padding denotes the number of pixels added to the

sides of an image when being processed by a CNN. The values for these pixels are

often chosen to be zero, but there are also studies that use non-zero pixels, for

example, obtained by interpolation of neighboring pixels. Note that a padding of 0

will lead to a smaller size of the feature maps compared to the original image.

2.3.2 Pooling layers

Pooling layers are designed to reduce the dimension of the data. This is done by combining

groups of neurons in a feature map into a single neuron in the next layer. The most

common forms of pooling are max pooling, which uses the maximum value of the cluster,

and average pooling, which uses the average value of the cluster of neurons to generate the

value of the new single neuron. This pooling operation is defined as

MaxPooling(x, p, q) = max
(i,j)∈Rp,q

x[i, j] (17)

where x respresents the input feature map, Rp,q denotes the pooling region of size p× q.

Pooling layers are helpful in extracting features that are invariant to translation shifts

and small distortions [18]. They can also play a role in preventing over fitting and reducing

the computational complexity of the network.

2.3.3 Upsampling layers

To reduce the spatial dimension of an image, pooling layers, striding and padding can be

used. However, besides downsampling, for many use cases, it is necessary to increase the

spatial dimensions of the feature maps. To do so, upsampling layers can be used. The

simplest type of upsampling layers is the so-called unpooling layer, the reverse of pooling:

generating a new feature map in which one neuron is replaced by a cluster of neurons.

Often, this operation is followed by a convolutional layer. Another option is transposed

convolution, in which the feature map is expanded by adding rows and columns of zeros

in between the original feature map and performing a (learnable) convolution operation

on this newly generated feature map.

2.4 The U-Net model

In this subsection, we discuss one of the most successful and famous [1] CNN architec-

tures for medical image segmentation: the U-Net [26] architecture and its most important

properties. The U-Net performs a pixel-wise segmentation task: for each pixel in the

10

input image, it predicts a class label. The model uses two paths: a usual contracting path

where features are extracted from the input image and stored in lower-dimension feature

maps in several successive layers. Then, the low-dimensional feature maps are expanded

again in the expansive path, consisting of up-sampling layers followed by convolutional

layers and activation functions. Typical for the U-Net is furthermore that the number

of feature maps in the up-sampling part is very large, allowing the network to propagate

context information to higher resolution layers. In the expansive path, feature maps from

the corresponding spatial resolution in the contraction path are concatenated to the ex-

panded feature maps to include fine-grained information from the contraction path in the

segmentation.

Figure 5: Schematic representation of the U-Net Architecture. Each blue box corresponds to a multi-
channel feature map. The number of channels is denoted on top of the box. White boxes represent copied
feature maps. Arrows denote the different operations. Image is obtained from the paper introducing the
U-Net architecture [26]

The architecture of the U-net proposed by Ronneberger [26] is shown in Figure 5.

Ronneberger concludes that the U-Net achieves very good performance on very different

biomedical segmentation tasks. Also, it is noted that the model can work satisfyingly with

only a few annotated images if data augmentation techniques are used. This last property

is especially useful in the medical landscape since properly annotated images are often

limited available [28].

In [1], an overview is given of different models based on the original U-Net architecture.

Challenges and opportunities are addressed for the U-Net family. As the paper states, ”the

primary purpose of almost all the approaches mentioned in this paper was to identify the

limitation of the original U-Net model and design add-on modules to enhance feature re-

usability and enrich feature representation to bring more performance boost. However,

including more parameters in the model usually results in large memory requirements,

which makes the model unsuitable for clinical applications with limited computational

devices”. This shows the relevance of further research to this successful neural network, as

strategically dividing the segmentation problem based on domain decomposition methods

could pave the way for a more memory-efficient and practically deployable neural network

architecture.

11

3 Domain Decomposition

This study tries to apply intuitions from the field of domain decomposition to the construc-

tion of CNNs. In order to do so, in this chapter the basic ideas of domain decomposition

are introduced. The presentation of these methods is mainly based on the textbook of

Toselli and Widlund [30]. This chapter is structured as follows. First, we describe the mo-

tivation and general idea behind domain decomposition methods and introduce a model

problem that will be further used throughout this chapter. Then, we discuss subsequently

(1) some traditional overlapping domain decomposition methods and (2) some traditional

non-overlapping methods. Lastly, we discuss what fundamental differences exist between

non-overlapping and overlapping methods and give some thoughts on how the principles

of DDM can be applied to the creation and training of convolutional neural networks.

3.1 Basic Idea of DDMs and Model Problem

The basic idea of domain decomposition is natural and simple: it refers to the splitting of

a (discretized) partial differential equation into coupled problems on smaller subdomains

that form a partition of the original domain [30, p. V]. By splitting the domain into

smaller subdomains, the problem size is reduced and as such the time necessary to come

to a solution. Furthermore, the convenience of partitioning the domain into subdomains

corresponding to various physical conditions arises from the fact that different sets of

differential equations govern each subdomain.

Also, since the emergence of (parallel) computing power, domain decomposition meth-

ods have become a matter of interest to be combined with discretization methods for PDEs

(FEM, FV, FD), to solve differential equations more efficient on parallel computer plat-

forms. Now, we introduce the model problem that will be further used in this chapter. In

Figure 6: Overlapping subdomains (left) and non-overlapping subdomains (right) of the domain Ω (center).
Figure reprinted from [25]

Figure 6, two ways are shown to subdivide the computational domain: either with disjoint

subdomains or with overlapping subdomains. These two ways to partition the domain

lead to the two main classes of domain decomposition methods (DDMs): (1) overlapping

DDMs and (2) non-overlapping DDMs.

As a model problem, we define the following problem: find u : Ω → R s.t.:{
Lu = f in Ω,

u = 0 on ∂Ω,
(18)

12

where ∂Ω denotes the boundary of the domain Ω, and L denotes a generic second-order

elliptic differential operator, for example, the negative Laplacian −∇2.

3.2 Overlapping Domain Decomposition Methods

The first domain decomposition method was introduced by Schwarz in 1870 [11]. Those

methods are referred to as Schwarz (decomposition) methods. In this introduction to do-

main decomposition methods, we discuss some of the most fundamental methods, namely

(1) the classical alternating Schwarz method, (2) the multiplicative Schwarz method (which

is the multi-domain extension of the alternating Schwarz Method), and (3) the parallel

Schwarz method introduced by Lions [20].

3.2.1 The Classical Alternating Schwarz Method

We will introduce the classical alternating Schwarz method by means of an example.

The overlapping domain decomposition we will use in this example is shown in Figure

7. The two overlapping sub-regions are here denoted by Ω′
1 and Ω′

2 respectively, so that

Ω = Ω′
1∪Ω′

2. Suppose that we want to solve the 2D Poisson problem (i.e. L = −∇2 in our

model problem, see Eq. 18) with zero Dirichlet boundary conditions on the domain given

in Figure 7. Now, suppose we have an initial guess, denoted by u0, which vanishes on ∂Ω

Figure 7: Domain Ω partitioned in two overlapping subdomains. Reprinted from the textbook of Toselli
and Widlund [30].

(as the Dirichlet boundary conditions require). Then, we determine the iterate un+1 from

the previous iterate un in the following sequential steps presented in Equations 19 and 20:

(I)

Lun+1/2 = f in Ω′

1

un+1/2 = un on ∂Ω′
1

un+1/2 = un in Ω2 = Ω′
2 \ Ω′

1

(19)

(II)

Lun+1 = f in Ω′

2

un+1 = un+1/2 on ∂Ω′
2

un+1 = un+1/2 in Ω1 = Ω′
1 \ Ω′

2

(20)

These equations describe the alternating Schwarz method. In this method, first, we solve

the Poisson equation restricted to the domain of the circle Ω′
1. As boundary conditions

13

on the artificial boundary Γ1, we use the result un from the previous iteration. Then, we

repeat this process for the square domain Ω′
2, but now we use the approximate solution

computed in iteration (I) to construct a Dirichlet boundary condition for the artificial

boundary Γ2.

So, the two local Poisson equations in the overlapping subdomains Ω′
1 and Ω′

2 are

coupled together as follows: the boundary conditions on the artificial boundaries Γ1 and

Γ2 are constructed using the information provided by respectively Ω′
2 and Ω′

1. Toselli and

Widlund note that this algorithm therefore also can be viewed as a mapping of values of

Γ1 (or Γ2) onto values of the same set [30, p. 22].

Finally, we note here that the example problem described here is not discretized yet.

Later in this chapter, we will consider discretized versions of this algorithm.

3.2.2 The Multiplicative Schwarz Method

The Alternating Schwarz Method is a special case of the Multiplicative Schwarz Method

for the case of two overlapping sub-domains. The Multiplicative Schwarz Method, on the

other hand, can be applied to an arbitrary number of (overlapping) subdomains. Using

the notations introduced in [4], assume we want to solve the following linear elliptic PDE:

Lu = f in Ω,

u = g, on ∂Ω
(21)

with L a linear operator. Note that this is not the same as our model problem, since

we have a Dirichlet boundary condition that can be non-equal to zero in this case. We

decompose the domain Ω into P different subdomains. The set of subdomains is denoted by

{Ωi}Pi=1 and we construct the subdomains such that they satisfy the relation
⋃P

i=1Ωi = Ω.

Equivalent to the previous example, we denote by Γi the internal boundary of subdomain

i: the part of the boundary of ∂Ωi that is not a part of the original global boundary ∂Ω.

Also, we denote by Ni the set of indices of neighboring subdomains of the i-th subdomain

Ωi. In mathematical symbols, this means that j ∈ Ni ⇐⇒ Ωi ∩ Ωj ̸= ∅: if j is in the set

of indices Ni of subdomain Ωi, then we know that the intersection of Ωi and Ωj is non-

empty. Since we are dealing with an overlapping domain decomposition method, we also

require that there is an overlap of at least one point between neighboring subdomains:

every point on the artificial boundary Γi must also lie in the interior of at least one

neighboring subdomain Ωj , for j ∈ Ni. We note there are many different ways to define

the sub-domains, all yielding different partitions with different results. However, suppose

we found a way to construct the set of P overlapping subdomains. Then, we define a set

of initial guesses on each subdomain, denoted by {u0i }Pi=1. Now, we need to perform the

following iteration for all indices i = 1, . . . , P , exactly in this order :

LiU
n
i = fi in Ωi,

uni = g on ∂Ωi \ Γi,

uni = g∗ on Γi.

(22)

In these equations, Li is the restriction of the linear operator L to subdomain Ωi, fi
denotes the restriction of f to Ωi and g∗ denotes the artificial Dirichlet condition on the

14

artificial boundary Γi. This boundary condition is constructed using the latest solution

on Γi from a neighboring subdomain. Also, different parts on Γi can use information from

different neighboring subdomains.

As well as for the alternating Schwarz Mmthod, we note that this method is sequential:

since it requires the previous iterate in the construction of the artificial boundary condition,

solving the Poisson equation on different subdomains cannot be done simultaneously.

3.2.3 The Parallel Schwarz Method

Lions was the first researcher to realize the potential of the Schwarz method on parallel

computers [20]. To make the Schwarz multiplative Method more suitable for parallel com-

puting, he proposed one minor change to the classical approach. The difference between

the parallel Schwarz Method of Lions and the multiplicative Schwarz method lies in the

way of updating the boundary conditions Γi. Recall that for the multiplicative Schwarz

Method, we used

uni = g∗ on Γi (23)

where the boundary condition g∗ was obtained using the most recent solution in the neigh-

boring cells. For the parallel Schwarz method, the following artificial boundary condition

is used:

uni = gn−1 on Γi, (24)

instead of Equation 23. So, to construct the boundary condition here, we use the re-

sults of the previous iteration. Therefore, the boundary conditions for all subdomains are

known independently and therefore the PDEs on the different subdomains can be solved

simultaneously.

This method is inherently parallel. Only after each iteration, communication of the

boundary values needs to be done in order to update the boundary conditions for the

next iteration. However, its convergence is inferior to that of the multiplicative Schwarz

Method [4].

3.2.4 Extending continuous algorithms to discrete domain algorithms

The Additive, Multiplicative and Parallel Schwarz Methods defined previously hold for

continuous domains. In numerical analysis, we often have to deal with discretized problems

that only use a finite set of points, intervals or elements. As we will show in this subsection,

the discretization of the continuous methods to a discrete one is rather straightforward.

Recall that we considered the continuous equation Lu = f on the domain Ω in the

continuous case. Now, suppose we have discretized this domain Ωn into a grid of n points.

Furthermore, suppose we have found some way to discretize the system Lu = f on this

grid, for example by finite difference methods, finite volume methods, or finite element

methods. Then, we have a discretized system that we can denote by:

Au = f (25)

where A ∈ Rn×n, u, f ∈ Rn. If we want to discretize the Domain Decomposition Methods

we saw before, we need to determine how to subdivide this discretized problem into sub-

15

problems on the subdomains. To show how we can do so, we give an example of the basic

Alternating Schwarz Method, using the example given in [5]. We choose a discretization

of n points of the given domain Ω that is partitioned into two overlapping subdomains Ω1

and Ω2, and we let {Î1Î2} denote the sets of indices of the nodes in the interiors of domain

Ω̂1 and Ω̂2, respectively. Note that these sets of indices are overlapping. We denote the

number of indices in set Îi by n̂i for i = 1, 2. Since some indices overlap (because of our

overlapping subdomains), we have that n̂1 + n̂2 > n.

For each region Ω̂i, we define a rectangular extension matrix RT
i which extends a vector

of nodal values in Ω̂i by zeros at the positions that are not in the indices set Îi. I.e.: given

a sub-vector xi of length n̂i with nodal values at the interior nodes on Ω̂i, we define:

(RT
i xi)k =

{
(xi)k for k ∈ Îi

0 else.
(26)

The transpose Ri of the extension map RT
i is a restriction matrix that takes a full vector

u of length n on the whole (discretized) domain Ω and restricts it to a vector of size n̂i by

choosing the entries of u that have indices Îi. Using these matrices, we can find the local

subdomain matrices:

A1 = R1AR
T
1 , A2 = R2AR

T
2 (27)

Now, we can derive the discrete version of the Schwarz alternating method. This method

starts with a suitable initial guess u0 and generates the iterates as follows:

uk+1/2 = uk +RT
1 A

−1
1 R1(f −Auk)

uk+1 = uk+1/2 +RT
2 A

−1
2 R2(f −Auk+1/2)

(28)

Note that the structure of these equations is very similar to the structure of the continuous

case equations.

3.3 Non-Overlapping Domain Decomposition Methods

In the previous subsection, we discussed overlapping domain decomposition methods, the

first class of DDMs. The other class of DDMs is the class of non-overlapping or sub-

structuring domain decomposition methods. These methods use partitions of the global

domain that are completely disjoint.

To introduce this class of DDMs, we use a concrete example: the Poisson equation

on a region Ω, with zero Dirichlet boundary conditions on the boundary of Ω that is

denoted by ∂Ω. Now, suppose that we can partition the region Ω into two non-overlapping

subdomains, which we denote by Ωi, with i = 1, 2. These subdomains satisfy the following

properties:

Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅, Γ = ∂Ω1 ∪ ∂Ω2.

We also assume that the boundaries of the subdomains Ω1 and Ω2 overlap part of the

whole domain boundary, i.e.:

measure(∂Ω1 ∩ ∂Ω) > 0, measure(∂Ω2 ∩ ∂Ω) > 0

16

with ∂Ω1 ∪ ∂Ω2 = ∂Ωand that the boundaries of the subdomains of Ω are Lipschitz

continuous (meaning that the boundaries are sufficiently regular). A visualization of the

partitioned domain Ω can be found in Figure 8.

Then, we consider the model problem Equation 18 on the region Ω. Under suitable

regularity assumptions on f and on the boundaries, which typically are that f is square-

summable and that the boundaries are Lipschitz continuous, problem ?? can be rewritten

to the following coupled problem:

−∇2u1 = f in Ω1,

u1 = 0 on Ω1 \ Γ,
u1 = u2 on Γ,

∂u1
∂n1

= −∂u2
∂n2

on Γ,

−∇2u2 = f in Ω2,

u2 = 0 on Ω2 \ Γ.

(29)

In this system, u1 and u2 are the restrictions of u to Ω1 and Ω2 respectively. The n1 and

n2 denote the outward normal vectors to the boundaries ∂Ω1 and ∂Ω2.

Figure 8: Domain Ω partitioned in two non-overlapping subdomains. Reprinted from the textbook of
Toselli and Widlund [30].

This coupled problem shows that the problem on the global domain Ω is equivalent to

two problems on both sub-domains, with Dirichlet and Neumann boundaries on the inter-

connecting boundary. Note that the boundary condition depends on both restrictions of

the solution, u1 and u2. Therefore, the problem cannot be solved independently for both

subdomains. The question that remains is: how can we use this equivalence result to define

an iterative algorithm that approximates the solution u? In the following subsections, we

will describe two of the most traditional non-overlapping algorithms that provide an an-

swer to this question, namely (1) the Dirichlet-Neumann and (2) the Neumann-Neumann

Algorithm

3.3.1 The Dirichlet-Neumann Algorithm

The basic Dirichlet-Neumann algorithm consists of two steps that both correspond to

subdomain Ωi, with i = 1, 2. Suppose we have an initial guess for the solution on the

boundary Γ, denoted by u0Γ. In the first subdomain, Ω1 we solve a Dirichlet problem with

17

the Dirichlet data u0Γ on the boundary Γ. Then, on the second subdomain Ω2, we solve

a Neumann-problem with a Neumann condition determined by the approximation on Ω1

obtained in the previous step. Then, the new iterate at the boundary is chosen as a linear

combination of the trace of the solution on Ω2 and u0Γ, with weights of respectively theta

and (1− θ). In equations, this can be written as follows:

(D)

−∇2u

n+1/2
1 = f in Ω1,

u
n+1/2
1 = 0 on ∂Ω1 \ Γ,

u
n+1/2
1 = unΓ on Γ,

(30)

(N)

−∇2un+1

2 = f in Ω2,

un+1
2 = 0 on ∂Ω1 \ Γ,

∂un+1
2

∂n2
= −∂u

n+1/2
1
∂n1

on Γ,

(31)

un+1
Γ = θun+1

2 + (1− θ)unΓ on Γ. (32)

Here, θ ∈ R is the parameter that determines the relaxation, with θ ∈ (0, θmax), with

θmax ∈ R dependent on the problem. Note that this method uses as well the Dirichlet

condition as the Neumann condition described in the system (29). Although this algorithm

is consistent (i.e. it approaches an exact solution to the equations when the step size goes

to zero), its convergence is not always guaranteed [25].

3.3.2 The Neumann-Neumann Algorithm

The Neumann-Neumann Algorithm also starts from an initial guess of the boundary so-

lution u0Γ. First, Dirichlet problems on each of the subdomains Ωi, with boundary data

u0Γ are defined. Then, on each subdomain, a Neumann problem is solved, with Neumann

data on Γ that is chosen to be the difference of the normal derivatives of the solutions of

the two Dirichlet problems. Using the computed value, the initial guess is corrected to

find the new iterate u1Γ. For i = 1, 2, we can write this in the following equations

(Di)

−∇2u

n+1/2
i = f in Ωi,

u
n+1/2
i = 0 on ∂Ωi \ Γ,

u
n+1/2
i = unΓ on Γ,

(33)

(Ni)

−∇2ϕn+1

i = 0 in Ωi,

ϕn+1
i = 0 on ∂Ωi \ Γ,

∂ϕn+1
i

∂ni
=

∂u
n+1/2
1
∂n1

+
∂u

n+1/2
2
∂n2

on Γ,

(34)

un+1
Γ = unΓ − θ(ϕn+1

1 + ϕn+1
2) on Γ. (35)

In this equation, θ > 0 is called the acceleration parameter.

18

3.4 Multi-level methods in general

Unfortunately, numerical results show that most domain decomposition methods that are

based only on the use of local subdomains do not scale with the number of subdomains.

This is since the communication between subdomains only happens at the boundaries of

two neighboring subdomains, meaning that information can travel at most one subdomain

further per iteration [25]. Therefore, global information travels slowly through the system,

which can lead to slow convergence. This can be fixed by using a two- or multi-level

method. This means that we introduce a ”coarse” global problem over the whole domain to

facilitate a mechanism of global communication, not only between neighboring subdomains

but among all subdomains.

19

4 Domain Decomposition and Neural Networks

This chapter further explores the relationship between domain decomposition and neu-

ral networks from a literature perspective. In previous years, several papers have been

published on how to combine neural network architecture and training with ideas from

domain decomposition. We give a concise overview of the ideas presented in these papers

and try to sketch how these are relevant to this project.

In the past years, much work has been done to include domain knowledge into machine

learning algorithms, helping them to accelerate training and prediction, improving accu-

racy and explainability [2]. Domain knowledge can be interpreted as including physical

information, domain constraints, expert knowledge, or other relevant information in the

machine learning algorithm. Furthermore, ML models have been used to replace parts of

numerical methods where the domain knowledge is not sufficient to choose a sufficiently

working numerical model.

The most recent published literature study on combining Domain Decomposition and

Machine Learning can be found in [15]. In their study, the authors provide a brief overview

of the combination of machine learning and DDMs. They divide the approaches combining

ML and DDM into three classes. Note that these classes are not necessarily disjoint.

1. The first class consists of approaches where ML techniques are used within a classical

DDM to improve the convergence properties or the computational efficiency.

2. The second class consists of approaches where deep neural networks (DNNs) are used

as discretization methods and solvers for differential equations, replacing classical

finite difference or finite element approaches. These DNNs are used as subdomain

solvers then in classical DDMs.

3. The third class consists of approaches where ideas from DDMs are used to improve

ML algorithms. Especially, the parallelization properties and convergence speed of

the training speed of a neural network are mentioned here.

In this study, we focus on neural networks that perform segmentation tasks and not on

a classical DDM problem, involving a domain and a boundary value problem that needs

to be solved on this domain. Therefore, we believe that the third category is the most

relevant for this study. Whereas in [15], the literature study is focused on the first two

classes, in this work we will focus on the third class. We refer to [15] for more background

information on the other two classes.

In the remainder of this chapter, we will start by giving an overview of approaches that

can be distinguished in this third class of approaches where DDMs are used as a source of

inspiration source for ML algorithms and we discuss some relevant papers for this thesis

project and identify challenges and opportunities.

4.1 Classifying DDM-inspired ML approaches

As discussed in Chapter 3, the power of domain decomposition methods is their ability

to partition a global problem into smaller subproblems that can be processed in parallel,

which helps us to gain both computational and memory efficiency. This parallel property

is desirable for many machine-learning tasks too. Therefore, in this chapter, we give a

20

short overview of the three most important classes of parallelism in machine learning.

Then, we identify to which class of parallelism most DDM-inspired ML algorithms belong.

4.1.1 Parallelism in Machine Learning

Parallelism (or distributed learning) in neural networks refers to the approach that splits

the computational workload into smaller parts and distributes those among several worker

nodes. Three of the most prevalent partitioning strategies are data parallelism, model

parallelism and pipelining [3]. In this section, we focus on parallelism for neural net-

works.

Data parallelism is the form of workload partitioning that involves a partitioning

of the data set, for example when working with the mini-batch SGD method, where data

is processed in increments of k ∈ N samples. Data parallelism distributes the work on

the dataset among multiple computational devices. This approach can also be used to

parallelize the work in one computational device such as a GPU. This approach can be

applied successfully when the work on samples can be done independently from each other.

However, many tasks involve some global communication tasks (for example the backward

propagation weights update in NN training). The balance between interdependent com-

munication and independent communications determines how much time can be gained

by data parallelism.

Figure 9: Visualization of model parallelism, data parallelism, and a combination of both classes of paral-
lelism for neural networks. For data parallelism, the same model weights are sent to all cores, whereas the
data is distributed over the different cores (non-overlapping). For model parallelism on the other hand,
the weights of the neural network are distributed over different cores, whereas the same dataset is sent to
all cores. Model and Data parallelism combines both approaches.

21

Model parallelism (network parallelism for NNs) on the other hand divides the

workload corresponding to the neurons in each layer. This means the sample mini-batch

is copied to all worker nodes and each node computes a different part of the neural net-

work. Therefore, this also includes a partition of the network itself, which can be beneficial

when the network is very large [3]. Note that this approach might need much more com-

munication than data parallelism approaches between different processors since successive

layers can be on different worker nodes.

Pipelining refers to either overlapping computations (if a sample is processed by a

layer, it can start processing the next sample) or to partitioning the layers of a model

over different worker nodes. Note that in a strict sense, pipelining can be viewed as data

parallelism (samples are processed by the network in parallel), but also as a form of model

parallelism (the length of the pipeline determines the DNN structure).

In Figure 9, the different forms of parallelism are visualized. We note that this visu-

alization shows the similarity between DDMs and data or model parallelism: in domain

decomposition, the domain on which the solution is computed is split into two or more

subdomains, whereas in parallelism either the model domain or the data domain is split

into smaller parts.

Much research has been done on data parallelism, model parallelism, and pipelining in

neural networks. As a starting point for exploring existing literature and a more extended

overview of these classes of parallelism, we refer to [14, 31].

4.2 Research on DDM-inspired classification- and segmentation CNNs

Machine learning has been employed for solving PDE problems, also combined with ap-

proaches from Domain Decomposition. Physics-Informed Neural Networks (PINNs) have

been used to replace a discretization and solver for the classical Schwarz method, for ex-

ample in [17, 27]. However, in this literature study, we will focus on neural networks that

are designed for image- and voxel tasks such as (pixel-wise) classification and segmenta-

tion. In the continuation of this chapter, we will consider some models that are designed

to perform these tasks. We note here that, to the best of our knowledge, the number of

papers published on this particular topic is very limited.

4.2.1 Multi-layer segmentation of retina OCT images via advanced U-Net

architecture

One of the most intuitive DDM-inspired convolutional neural networks is introduced in

[22]. In this research, the purpose is to generate a segmentation mask for retinal layers

in the human eye, a computationally heavy task because of the high-resolution input

images. The authors use the fact that the retinal layers in the left half of the training

samples behave differently than the retinal layers on the right side of the training images.

Therefore, they decompose the training data images into two sub-images and they train

two separate U-Nets on both sub-images. This approach allows both U-Nets to specialize in

their part of the data and also reduces the overall complexity of the model. Furthermore, it

allows for completely parallel training due to the independency between the two networks.

The authors conclude that the domain decomposition approach reduces the complexity of

22

the network architectures and the training time, while the testing errors are comparable

[22, p. 198].

4.2.2 Extensive Deep NNs for transferring small scale learning to large scale

system

In [23], the authors propose a physically-motivated topology of a deep neural network that

is designed to estimate extensive parameters such as energy or entropy. An overlapping

domain decomposition approach is used for training and inference. Each sub-domain

consists of a focus region surrounded by an overlapping context region. The network

Figure 10: Schematic visualization of the EDNN. An input example is decomposed into four tiles, with
each tile consisting of a focus and a context region (see bottom right. The focus region is denoted as
a yellow part here, the context as green). For this case both the focus and the context are unit width,
resulting in 3 × 3 tiles. The tiles are simultaneously passed through the same neural network (i.e. the
same weights). The individual outputs are summed, producing an estimate of ϵ, an extensive quantity.
When training, the cost function is assessed after this summation, forcing the weight updates to consider
all input tiles simultaneously. Different colors denote different subdomains. The figure is reprinted from
[23].

proposed in [23] is shown in Figure 10. The authors of this paper introduce the term

locality : the spatial extent over which features in the configuration influence the value of

an operator. Based on the locality of a certain application, an overlapping (context) size

is chosen: the higher the locality is, the smaller the overlap size needs to be to obtain

accurate results. The ML algorithm developed by the authors uses the same network to

operate on the different data sub-samples. This is allowed since for extensive physical

quantities there is no absolute spatial scale upon which the label of interest depends.

The authors conclude that their model can learn extensive operators and can be used to

make predictions for systems much larger than the system it was trained for due to the

extensivity of the prediction. Compared to a network on the full image, evaluation times

are much - up to a factor of one million - shorter.

4.2.3 A DD-based CNN-DNN Architecture for Model Parallel Training

Klawonn et al. [19] present a CNN-DNN architecture that naturally supports a model

parallel training strategy. Their method is ”loosely inspired by two-level domain de-

composition methods” [19, p. 1]. The network they propose is shown in Figure 11. In

their approach, first, the image is split into multiple sub-images. For each of the (either

23

Figure 11: Two-level decomposition of a CNN used for an exemplary image recognition problem. Left: The
original image is decomposed into p× p, p = 2 non-over-lapping sub-images. Middle: The p× p sub-images
are used as input data for p×p independent, local CNNs. Each of these local CNNs has a proportionally
smaller size than a global CNN for the same problem and is exclusively trained on local parts of the original
image. Right: The probability values of the local CNNs are used as input data for a DNN which we refer
to as a global coarse net. The global coarse net is trained to make a final classification for the decomposed
image by weighting the local probability distributions. Image reprinted from [19].

overlapping or non-overlapping) sub-images, a corresponding convolutional classification

sub-network is trained purely on the local input data, making the training of these sub-

networks completely parallelizable. The training target is a class label, which is for the

sub-images the same as for the global image. Secondly, a global deep fully connected

neural network is trained, combining the outputs of the sub-networks, generating a final

global prediction. The study interprets this DNN as a coarse problem, that combines the

finer-grained information from the local networks. The results of the study show that this

approach can lead to a significant acceleration of the training procedure and additionally,

it can help to improve the accuracy of the classification problem.

4.2.4 Decomposition and composition of DCNNs and training acceleration

via sub-network transfer learning

Gu et al. [13] propose another method to parallelize the training of CNNs, visualized

in Figure 12. They divide a global classification network into several sub-networks by

partitioning the width of the network (the channel dimension) while keeping the depth

(the number of layers) constant, i.e. they keep the architecture of a baseline U-Net model

that can be used for the global image, but they split the channel dimension over different

U-Nets. They train the subnetworks individually, without inter-processor communication

on the different sub-data samples. After this first training, the weights of the subnet-

works are used to initialize a global network, which is then further trained to fine-tune the

parameters. This approach is based on the assumption that there is an information re-

dundancy when using global networks to deal with sub-samples. Fine-tuning is necessary

to couple the different sub-samples into a global classification. Note that this approach is

24

Figure 12: 1. Illustration of the decomposition of DCNN by the method proposed in [13] The global
network (VGG16) is uniformly decomposed into 4 sub-networks by partitioning the “width” of the global
network while keeping the depth constant. The input is also decomposed into 4 partitions. (top) The
architecture of VGG16. (bottom) The architecture of one of the sub-networks. Image is reprinted from
[13].

fundamentally different from the method in [19]: the method of Gu aims to find a global

network initialization using a DDM approach, whereas the approach of Klawonn does not

further train the subnetworks for a global problem.

4.2.5 Other papers

In [24], a DDM-inspired segmentation algorithm is inspired that uses several overlapping

sub-images for training only one segmentation network. Experimental results show that

this approach leads to better segmentation accuracy and accurately segments small ob-

jects in real-time. Duan et al. [7] use a non-overlapping image partitioning to generate

a Chan-Vese model for variational image segmentation, which can cause inaccurate seg-

mentation results around boundaries of decomposed sub-domains. Firsov et al. [9] use

an embarrassingly parallel domain decomposition method to denoise digital images. The

authors do not incorporate communication between subdomains in this network since the

noise is a local feature because the noise is local. Their model shows linear time complexity

in the number of pixels.

4.3 Challenges and opportunities

In this subsection, we identify opportunities and open challenges for DDM-inspired CNNs

in the field of image segmentation. As was discussed, many of the DDM-inspired ap-

proaches for machine learning show large potential for speeding up training and or evalu-

ating large data sets with images of high quality. Especially, the following opportunities

for DDM-inspired CNNs were identified:

25

1. Potential for parallel training. As research shows, DDM-inspired image process-

ing offers the opportunity to process sub-images in parallel during training and/or

evaluation. This can be advantageous when working with large or complex data to

avoid memory issues and to speed up computations.

2. Improved specialization. By decomposing images and letting different sub-networks

operate on different parts of the data set, overall performance can be improved. This

can especially be advantageous for problems where different sub-domains have dif-

ferent physical properties.

3. Reduced Computational Complexity. For certain types of problems, such as

the extensive parameter prediction problem in [23], the size-unaware property of

CNNs (convolutional layers can operate on inputs of arbitrary size) is fully exploited,

leading to a much smaller model with lower computational complexity.

4. Scalability. For complex data, DDM-inspired approaches appear to have the po-

tential to be scalable to larger numbers of processors, allowing the segmentation of

larger and more complex images.

Some of the most important challenges identified in this literature are listed below.

1. Limited global communication. The DDM-inspired algorithms described in the

previous subsections mostly perform global communication by introducing overlap-

ping sub-domains. However, this only gives all the necessary information for prob-

lems with a high locality. If a problem has more global features, this approach may

not be sufficient, leading to lower accuracy.

2. Model complexity. The introduction of sub-networks can easily increase the over-

all complexity of the CNN architecture since more weights need to be stored.

3. Communication overhead. For many non-local applications of CNNs, global com-

munication is necessary between different sub-networks or sub-domains. However,

this easily leads to a communication overhead.

4. Generalization. While DDM-inspired methods can lead to improved accuracy or

training speed, it is a challenge to ensure that the approach generalizes to diverse

data sets and real-world scenarios.

These challenges need to be addressed when working on new DDM-inspired ML approaches

for image segmentation and classification.

26

5 Research Proposal

In this section, we propose new network architectures inspired by domain decomposition

methods. First, we describe some choices that were made in this research to limit the

amount of work. Then, we propose a new DDM-inspired network architecture and we

discuss the components of this network in more detail. Furthermore, we present the

results of some preliminary experiments performed with this network to show that it his

able to facilitate global communication. Finally, we conclude by formulating a research

purpose and additional questions that will be investigated in the remaining time for this

project.

5.1 Research choices for this project

In order to limit the amount of work for this project, we made some explicit choices for

which type of network we want to investigate. In the following list, we clarify and explain

these choices.

• We only consider neural pixel-wise segmentation tasks. This means that, for each

pixel in the input image, a probability prediction should be made for each pixel

telling us what the probability is that it belongs to class 1, . . . , n with n the number

of classes.

• The classical U-Net architecture is used as baseline mdoel. Throughout the years,

many variations of U-Net have been proposed, trying to reduce computational efforts

or improve segmentation accuracy, for example by modifying the skip connections.

For the sake of clarity, we chose not to consider those models, but use the classical

U-Net architecture as a baseline model and as an important inspiration for the

proposed network.

• The focus of this study is on the algorithmic/methodic side of the implementation.

The design of a new, efficient architecture requires good programming, especially

when implementing the architecture on a multiple GPU platform. In this thesis, we

will focus on understanding the architecture and not too much on a high-standing

implementation - however, opportunities and challenges for efficient implementation

will qualitatively be discussed.

5.2 Proposed network architecture

We propose a DDM-inspired network architecture that first partitions the data into non-

overlapping sub-images, equivalent to partitioning the domain in non-overlapping DDMs.

All sub-images are processed separately and in the end they are concatenated back together

to obtain a segmentation mask with the same dimensions as the input image.

Before we discuss the proposed network further, note that Figure 13 shows a schematic

representation of the proposed network (in Figure 13a) with a schematic representation of

a non-overlapping domain decomposition (in Figure (13b each other.

Now, we discuss how the proposed model relates to domain decomposition methods.

In the first place, by the decomposition of the image into two or more sub-images. In

27

(a) Non-overlapping domain decomposition
(b) Simplified visualization of the proposed network archi-
tecture.

Figure 13: Relation between domain decomposition methods and the proposed network. Note that, just
as in a non-overlapping domain decomposition method, the input data to the network is decomposed into
two non-overlapping parts that are processed independently. Whereas the communication between both
non-overlapping domains takes place through the boundary, this is represented in the proposed architecture
by a small communication network (purple) that combines latent space vectors from both subnetworks.

the second place, it was noted in Chapter 3 that communication between subdomains

in a non-overlapping DDM only happens through the boundary. By enforcing certain

boundary conditions, consistency between the solution on both subdomains is obtained,

only using boundary data (which is only a small part of the whole domain). This idea

was used to construct a network that only uses a small part of the information of the sub-

images for data exchange between both sub-domains: the last m feature maps in the latent

space are selected and sent to a communication network that combines the information

from both sub-networks and returns modified feature maps. Those are sent back to the

sub-networks and either replace part of the latent space vector or are concatenated to

the latent space there (this is a design choice). Important is that this information is not

necessarily boundary information.

Note that the visualization in Figure 13b is heavily simplified. The number of layers

does not correspond to the number of layers that will be used. In the following two

subsections, the subnetwork and communication network will be presented in more detail.

5.2.1 Sub-network architecture

In Figure 14, one of the subnetworks in the proposed architecture is shown in more detail

for input sub-images of dimension 32 × 32 × 1 (gray-scale images). This sub-network

is similar to a classical U-Net architecture; the only difference is the modified latent

space vector. Instead of directly passing the feature maps of the deepest layer to the

expansive path, the communication network modifies the last k feature maps. Note that

all subnetworks have the same architecture, so it is sufficient to show only one of them.

Concerning the architecture of the sub-network, different choices need to be made,

dependent on the size and complexity of the data set. For example, the input dimension,

the number of channels in each layer, and the number of layers are variables that can be

adjusted. Furthermore, if the input sub-images are similar in what they depict, it can

be worth considering using only one sub-network for both sub-images. This is something

which can be different for different datasets.

Comparing the proposed network to domain decomposition methods, parallels can be

28

Figure 14: The proposed sub-network architecture. Note that the architecture of the sub-network is almost
the same as the architecture of U-Net [26]. The only difference is located in the latent space vector, where
a number of the feature maps are modified by the communication network. This is indicated in purple
in this visualization. The input of this network consists of 32 × 32 × 1 gray-scale images and it returns
segmentation maps for a 3-class pixel-wise classification problem. Note that the input and output number
of channels can be easily modified without changing the structure of the model. This subnetwork represents
one of the two subnets shown in 13

seen between the coarse problem used in multi-grid methods and the bottleneck in the

U-Net architecture. Recall that the coarse problem in DDMs is introduced to enhance

the scalability of domain decomposition methods. Typically, the coarse problem has much

fewer variables than the problem on the ’fine’ grid. This smaller problem size allows us to

apply a direct solver.

Similarly, the U-Net architecture returns a much smaller representation the further

we go down the contraction path. For example, note that in the subnetwork in Figure

14, the first stack of feature maps contains 32 × 32 × 16 = 16, 384 whereas the deepest

stack of feature maps contains 2 × 2 × 256 = 1024 variables. Thus, if we can use the

feature maps in this deepest layer as a representation of the input image, this guarantees

that we can deal with a smaller problem that is computationally easier to solve. How

we process these feature maps is explained in the following subsection, introducing the

proposed communication network.

5.2.2 Communication network architecture

Figure 15 shows the proposed communication network. We discuss the network as shown

in this Figure, and some of the network parameters that can be adjusted are identified.

As inputs, the communication network receives the feature maps from two subnetworks.

29

In this example, the last 16 feature maps of both subnetworks are selected and flattened

into 1D vectors. The feature maps in this example have spatial dimensions 2× 2, leading

to a flattened vector of size 128, which is a fraction of 128/322 = 12, 5%. The flattened

vector is put through a fully connected network of three layers, all with 128 neurons. The

output of the network is reshaped into two feature maps of dimensions 2 × 2, the same

spatial dimension as the input feature maps. Then, the output is used to replace the input

feature maps. The modified feature maps are sent back to the subnetworks and are used

in the expansion path.

Figure 15: The proposed communication network for two subdomains. The shown network modifies two
pairs of 16 feature maps with dimension 2 × 2 in three fully connected layers of 128 neurons. As input,
the network needs 16 feature maps from both subnetworks, and it returns 32 feature maps, 16 for both
subnetworks. The returned feature maps replace part of the latent space representation before this goes
back through the expansion path in the subnetwork.

The proposed communication network uses only a small amount of data from both

subdomains to communicate. What we investigate in this master’s project is if we can

make this amount of data so small that it does not lead to large communication latencies

in the training and evaluation of the network. Furthermore, we consider how much this

communication network affects the training procedure, as the different sub-networks need

to ’wait’ until the communication network has modified the latent space feature maps

before they can proceed with the expansion path.

5.3 Preliminary Results

To find out if the proposed network can facilitate global communication, we performed

some preliminary experiments. We constructed an artificial data set of 64× 32× 1 gray-

scale images showing two circles, both randomly located on a different half of the image.

For each image, we constructed a corresponding segmentation mask. Not only the circle

pixels were segmented in these masks, but also a straight line, connecting the centers of

the two circles. An example image and corresponding mask are shown in Figure 16.

Then, the images were split in half horizontally and three networks were trained to

perform the segmentation task. Note that for a correct segmentation, the network needs

to be aware of the location of both circles, otherwise it is not able to segment the line

between both circles. The following three networks were trained to perform this task:

1. A traditional U-Net, taking as inputs the complete 64× 32 images. We will use this

30

Figure 16: Example mask and image from the generated synthetic data set. The left image shows the
input to the neural network, whereas the right image shows the corresponding mask, that the network
should predict. Both networks receive one-half of the left image. Note that communication is necessary to
draw the gray line correctly.

model as the baseline model.

2. The proposed network architecture as shown in the Figures 13 ,14, 15, consisting

of two subnetworks and a communication network. Both subnetworks share their

weights (i.e.: we only train one sub-network).

3. The proposed network architecture, but without a communication network. Note

that in this architecture, no communication happens between both subnetworks.

For this network, we expect that the line segments will be drawn randomly since

the different subnets have no information on the position of the circle in the other

subdomain(s).

All models were training using the Adam gradient descent algorithm with parameters

β1 = 0.9, β2 = 0.999, learning rate 0.0005, mini-batch sizes of 16 data samples on the same

data set of 2,000 images and corresponding masks for 250 epochs. The loss function used

is the cross-entropy Loss. The networks were implemented using PyTorch 2.0.1. The

resulting loss and accuracy (TP
TP+FN) curves are shown in Figure 17.

Figure 17: Left: (Cross-Entropy) training loss for the baseline model, the proposed model including
communication, and the proposed model without communication between sub-networks. Right: accuracy
of the line segment predictions for the three models.

This figure shows that, although the baseline model converges slightly faster, the pro-

posed network with communication between the two sub-networks can transfer data be-

31

tween the two sub-networks effectively, whereas the case without no communication shows

(as expected) no further convergence after some epochs. It can correctly predict the circle

and background pixels, but the two sub-networks cannot communicate the location of the

circles, leading to inaccurate line predictions. The maximum accuracies over the last 200

epochs from the baseline U-Net, the proposed network including communication, and the

proposed network without communication are 0.995, 0.978, and 0.0014 respectively.

As we noted before, the number of communicated feature maps can be varied to see how

much information is necessary for accurate predictions. To investigate this, we variy the

number of feature maps passed to the communication network by each sub-network and

the number of output feature maps returned by this network to each of the sub-networks.

We measured the accuracy obtained by the trained network for the line segmentation.

We repeated this experiment for each combination of input and output feature maps six

times, to be able to measure the effect of the random weight initialization of the network.

The mean accuracy for these six networks and the measured variance in these accuracies

is shown in Figure 18. We note that the average accuracy for all of these models is 0.91 or

Figure 18: Left: Average accuracy of the line segment prediction after 100 epochs of training for six
separately initialized and trained models. Right: variance of the accuracies. Note that the accuracy is
small for most models. The outlier for 1 input feature map and 2 output feature maps is caused by one
network that did not converge (but the other five converged). All models were trained using the Adam
gradient descent algorithm with parameters β1 = 0.9, β2 = 0.999, learning rate 0.0005, mini-batch sizes of
16 data samples on the same data set of 2000 images.

higher, except for the case with 1 input feature map and 2 output feature maps for both

sub-networks. However, it turned out that this lower accuracy was only caused by one of

the models, the other five converged to values of 0.89 or higher. Furthermore, it turned

out that the models with a higher number of input and output feature maps converged

in a smaller number of epochs than the models with lower numbers of input and output

feature maps.

These results show us that, although convergence might take more epochs of train-

ing, communicating only a few variables for each sub-network can lead to quite accurate

predictions. The question for the remainder of this project will be how we can use this

knowledge for the design of an optimal if possible parallel, training procedure using this

network.

32

5.4 Research purpose and sub-questions

Although the first results show that the proposed architecture can successfully facilitate

global communication between sub-networks that operate on a local part of the data,

it needs to be further investigated if this architecture can be used for parallel training

and/or evaluation. For example, one approach could be to train the subnetworks first

only locally, and then at some point add the communication network to the training

procedure for global fine-tuning.

Furthermore, it is interesting to see how the communication network functions for

several types of segmentation tasks and data. The examples shown before were strongly

dependent on the global information for correct line segmentation. The question is what

will happen for problems where only communication around the segmentation task is more

local, and where only information around the boundaries is necessary for highly accurate

segmentation.

In this subsection, we identify some open questions that need further investigation to

be able to conclude the effectiveness and performance of this network. Below, we give

the research purpose and corresponding sub-questions for this master project. For each

sub-question, we also briefly discuss how we plan to approach this.

Research purpose: To develop and investigate a domain decomposition-inspired multi-

CNN-sub-network architecture interconnected by a feature map communication network.

Research sub-questions:

1. How many feature maps does the communication network need for accurate global

communication? To answer this question, we will follow a systematic approach: the

accuracy will be measured for different numbers of input and output feature maps

to compare the performance of communication networks of different sizes. This

question is very correlated with the following one.

2. How does the amount of necessary communication change for different types of data

sets and segmentation tasks? Initially, we will use an artificially constructed dataset.

The circle images as used in the first experiments can easily be made more complex

by adding more circles, overlapping circles, several colors and types of lines, and/or

modifying the distance between the circles. If we have a good understanding of

the relation between input data and the complexity of the communication, real-life

datasets can be investigated.

3. How can we extend the proposed network architecture to more subdomains and more

dimensions? How does this scale with problem size and complexity? By adding more

subdomains, the communication network will need to be adjusted. The two options

we see now are (1) making the communication network larger to include feature

maps from all sub-domains (leading to a higher communication network complexity)

or (2) defining a subnetwork that operates on two sets of feature maps but with

extra knowledge on the position of the sub-image feature maps it is processing.

Both options can be tested on the artificial data set.

4. How do the accuracy, computational performance, and memory requirements of this

33

model compare to baseline methods such as the U-Net model? For all experiments,

the results will need to be compared to the results obtained by using a traditional U-

Net model, to see how well the proposed network performs compared to this baseline

model.

5. How can the proposed architecture be used to speed up parallel training and evalua-

tion and/or improve accuracy for segmentation tasks? To answer this question, all

previous sub-questions need to be answered. Furthermore, it can be interesting to

see how well the model performs without a communication network - and to add the

communication network after local training to ensure global consistency. However,

for this approach, it is necessary to investigate how we can ensure that the different

sub-networks are properly scaled compared to each other and how the newly added

global information can be processed by the sub-networks.

It is important to note that the sub-questions provided here are not exhaustive, and

as the project progresses and more results become available, other questions could come

up. Therefore, the approach followed in this thesis project needs to be adapted to the new

insights and findings.

34

References

[1] Reza Azad, Ehsan Khodapanah Aghdam, Amelie Rauland, Yiwei Jia, Atlas Haddadi

Avval, Afshin Bozorgpour, Sanaz Karimijafarbigloo, Joseph Paul Cohen, Ehsan Adeli,

and Dorit Merhof. Medical image segmentation review: The success of u-net. arXiv

preprint arXiv:2211.14830, 2022.

[2] Nathan Baker, Frank Alexander, Timo Bremer, Aric Hagberg, Yannis Kevrekidis,

Habib Najm, Manish Parashar, Abani Patra, James Sethian, Stefan Wild, et al.

Brochure on basic research needs for scientific machine learning: Core technologies

for artificial intelligence. Technical report, USDOE Office of Science (SC)(United

States), 2018.

[3] Tal Ben-Nun and Torsten Hoefler. Demystifying parallel and distributed deep learn-

ing: An in-depth concurrency analysis. ACM Computing Surveys (CSUR), 52(4):1–

43, 2019.

[4] X Cai. Overlapping domain decomposition methods. In Advanced Topics in Computa-

tional Partial Differential Equations: Numerical Methods and Diffpack Programming,

pages 57–95. Springer, 2003.

[5] Tony F Chan and Tarek P Mathew. Domain decomposition algorithms. Acta numer-

ica, 3:61–143, 1994.

[6] Tejalal Choudhary, Vipul Mishra, Anurag Goswami, and Jagannathan Sarangapani.

A comprehensive survey on model compression and acceleration. Artificial Intelligence

Review, 53:5113–5155, 2020.

[7] Yuping Duan, Huibin Chang, and Xue-Cheng Tai. Convergent non-overlapping do-

main decomposition methods for variational image segmentation. Journal of Scientific

Computing, 69:532–555, 2016.

[8] Shiv Ram Dubey, Satish Kumar Singh, and Bidyut Baran Chaudhuri. Activation

functions in deep learning: A comprehensive survey and benchmark. Neurocomputing,

2022.

[9] D Firsov and SH Lui. Domain decomposition methods in image denoising using

gaussian curvature. Journal of Computational and Applied Mathematics, 193(2):460–

473, 2006.

[10] Arthur Fourcade and Roman Hossein Khonsari. Deep learning in medical image

analysis: A third eye for doctors. Journal of stomatology, oral and maxillofacial

surgery, 120(4):279–288, 2019.

[11] Martin J Gander et al. Schwarz methods over the course of time. Electron. Trans.

Numer. Anal, 31(5):228–255, 2008.

[12] Deepak Ghimire, Dayoung Kil, and Seong-heum Kim. A survey on efficient convolu-

tional neural networks and hardware acceleration. Electronics, 11(6):945, 2022.

35

[13] LINYAN GU, WEI ZHANG, JIA LIU, and XIAO-CHUAN CAI. Decomposition and

composition of deep convolutional neural networks and training acceleration via sub-

network transfer learning. Electronic Transactions on Numerical Analysis, 56:157–

186, 2022.

[14] Gousia Habib and Shaima Qureshi. Optimization and acceleration of convolutional

neural networks: A survey. Journal of King Saud University-Computer and Informa-

tion Sciences, 34(7):4244–4268, 2022.

[15] Alexander Heinlein, Axel Klawonn, Martin Lanser, and Janine Weber. Combining

machine learning and domain decomposition methods for the solution of partial dif-

ferential equations—a review. GAMM-Mitteilungen, 44(1):e202100001, 2021.

[16] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward net-

works are universal approximators. Neural networks, 2(5):359–366, 1989.

[17] Ameya D Jagtap, Ehsan Kharazmi, and George Em Karniadakis. Conservative

physics-informed neural networks on discrete domains for conservation laws: Ap-

plications to forward and inverse problems. Computer Methods in Applied Mechanics

and Engineering, 365:113028, 2020.

[18] Asifullah Khan, Anabia Sohail, Umme Zahoora, and Aqsa Saeed Qureshi. A survey of

the recent architectures of deep convolutional neural networks. Artificial intelligence

review, 53:5455–5516, 2020.

[19] Axel Klawonn, Martin Lanser, and Janine Weber. A domain decomposition-based

cnn-dnn architecture for model parallel training applied to image recognition prob-

lems. arXiv preprint arXiv:2302.06564, 2023.

[20] Pierre-Louis Lions et al. On the schwarz alternating method. i. In First interna-

tional symposium on domain decomposition methods for partial differential equations,

volume 1, page 42. Paris, France, 1988.

[21] Bohdan Macukow. Neural networks–state of art, brief history, basic models and

architecture. In Computer Information Systems and Industrial Management: 15th

IFIP TC8 International Conference, CISIM 2016, Vilnius, Lithuania, September 14-

16, 2016, Proceedings 15, pages 3–14. Springer, 2016.

[22] N Man, S Guo, KFC Yiu, and CKS Leung. Multi-layer segmentation of retina oct

images via advanced u-net architecture. Neurocomputing, 515:185–200, 2023.

[23] Kyle Mills, Kevin Ryczko, Iryna Luchak, Adam Domurad, Chris Beeler, and Isaac

Tamblyn. Extensive deep neural networks for transferring small scale learning to large

scale systems. Chemical science, 10(15):4129–4140, 2019.

[24] Jinhee Park, Dokyeong Kwon, Bo Won Choi, Ga Young Kim, Kwang Yong Kim, and

Junseok Kwon. Small object segmentation with fully convolutional network based on

overlapping domain decomposition. Machine Vision and Applications, 30:707–716,

2019.

36

[25] Alfio Quarteroni. Introduction to domain decomposition methods. Lecture-notes, 6th

Summer School in Analysis and Applied Mathematics Rome, pages 20–24, 2011.

[26] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks

for biomedical image segmentation. In Medical Image Computing and Computer-

Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Ger-

many, October 5-9, 2015, Proceedings, Part III 18, pages 234–241. Springer, 2015.

[27] Khemraj Shukla, Ameya D Jagtap, and George Em Karniadakis. Parallel physics-

informed neural networks via domain decomposition. Journal of Computational

Physics, 447:110683, 2021.

[28] Nahian Siddique, Sidike Paheding, Colin P. Elkin, and Vijay Devabhaktuni. U-net

and its variants for medical image segmentation: A review of theory and applications.

IEEE Access, 9:82031–82057, 2021.

[29] Azzeddine Soulaimani, Tony Wong, Y. Azami, and Amine Ben Haj Ali. An object-

oriented approach for building pc clusters. International journal on information,

6:251–260, 01 2003.

[30] Andrea Toselli and Olof Widlund. Domain decomposition methods-algorithms and

theory, volume 34. Springer Science & Business Media, 2004.

[31] Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim Ver-

belen, and Jan S Rellermeyer. A survey on distributed machine learning. Acm

computing surveys (csur), 53(2):1–33, 2020.

37

	Introduction
	Convolutional Neural Networks
	Fundamentals of Neural Networks
	Training and Optimization
	Architecture of CNNs
	The U-Net model

	Domain Decomposition
	Basic Idea of DDMs and Model Problem
	Overlapping Domain Decomposition Methods
	Non-Overlapping Domain Decomposition Methods
	Multi-level methods in general

	Domain Decomposition and Neural Networks
	Classifying DDM-inspired ML approaches
	Research on DDM-inspired classification- and segmentation CNNs
	Challenges and opportunities

	Research Proposal
	Research choices for this project
	Proposed network architecture
	Preliminary Results
	Research purpose and sub-questions

