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Nomenclature

Abbreviations
Abbreviation Definition Page
DTA Dynamic Traffic Assignment 2
DUE Dynamic User Equilibrium 3
FR Fundamental relation 4
LWR model The Lighthill-Whitham-Richards traffic model 1,3
ML Machine Learning 1
NDW Nationaal Dataportaal Wegverkeer, the Dutch data- 1
bank that handles traffic data
OD matrix Origin Destination matrix 2
TA Traffic Assignment 2
UE User Equilibrium 3
MSE Mean Square Error 19
Symbols
Symbol Definition Unit
f The flux of vehicles through a point [veh./s]
q The density of vehicles on a (piece of) road [veh./m)]
qe A threshold density from which all vehicles drive at [veh./m]
the same speed, and from which traffic flow will be-
have differently
q; The density at which traffic comes to a full stop [veh./m]
t Time [s]
u The speed of vehicles on a (piece of) road [m/s]
Ug The speed of vehicles on an empty (piece of) road [m/s]
x The distance along a one-dimensional road [m]
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Abstract

This study investigates the impact of road alterations on traffic. Traffic congestion poses a significant
challenge to transportation networks, encouraging the development of accurate traffic models to pin-
point and address these problems. Traffic flow dynamics can be researched through macroscopic
traffic models such as the Lighthill-Whitham-Richards (LWR) model. Estimating the fundamental rela-
tion within the LWR model has historically been a complex matter due to the unpredictable nature of
traffic. Recent progress in machine learning (ML) and big data analytics has opened new doors for
improving traffic modeling accuracy.

In this study, we propose a novel approach that integrates the LWR model with an artificial neural
network to estimate the parameters of Smulders’ fundamental relation based on lane configurations and
speed limits. Rewriting this fundamental relation allows us to use gradient descent on the parameters of
that neural network. Utilizing historical traffic data from the Nationaal Dataportaal Wegverkeer (NDW),
we develop a predictive traffic model that can predict the parameters of the fundamental relation.

The validity of our approach is demonstrated through the performance of the aforementioned artifi-
cial neural network, and through validation exercises. We achieve promising results, with our predictive
model exhibiting an R2 score of 0.7942 in predicting traffic flux. Additionally, we implement a numer-
ical approximation technique, the Godunov scheme, to simulate traffic flow under varying road situa-
tions. The full implementation in python can be found on github.com/vossemeijssen/macroscopic_
traffic_model. Ourfindings suggest that our integrated approach offers a viable solution for predicting
traffic congestion resulting from road alterations. However, the traffic model still needs a performance
measure to compare it against other implementations.

While this study contributes to the body of knowledge on traffic modeling, there remain opportunities
for future research, including an extension of the model to encompass network-wide traffic dynamics.
An other opportunity lies in conducting deeper analyses of the impacts of alterations on travel times and
congestion intensity. Still, this work represents a step forward in using machine learning techniques to
improve the predictive capabilities of macroscopic traffic models.
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Introduction

Traffic congestion is a big problem for transportation networks. It is one of the main incentives for mod-
elling traffic, because good traffic models can help with pinpointing problems in the network. Over the
past 70 years the understanding of traffic has steadily increased and traffic models have become better
in modelling traffic in a realistic way, even though traffic will always be unpredictable to a certain level.
Modelling traffic requires a deep understanding of the behaviour of traffic flow in certain circumstances.

The fundamental relation has been a big focus of traffic flow analysis since the 1955 paper of Lighthill
and Whitham, in [12]. Their traffic model approached traffic as a continuous flow through a network,
with a positive real-valued density and speed on every point. Such a model is called a macroscopic
traffic model, and the model developed in [12] is called the Lighthill-Whitham-Richards (LWR) model.
The LWR model consists of a few equations, one of which is the fundamental relation of traffic. This
relation has been a research topic for numerous decades [23].

Estimating the fundamental relation poses significant challenges due to the complex and random
nature of traffic. Modern research subjects like machine learning and big data have helped the de-
velopment of traffic model research [23]. The combination of historical data and different machine
learning (ML) algorithms have shown great results in predictive traffic models [10, 1]. With the correct
implementation, we can use ML algorithms to find patterns in historic data.

In this research, we propose a new approach that combines the LWR traffic flow model with ML
algorithms to estimate the fundamental relation. We will build this macroscopic traffic model by using a
part of an existing implementation of the LWR model. The fundamental relations are estimated using
open historical traffic data, available through the web portal of Nationaal Dataportaal Wegverkeer (NDW,
[25]). The end goal of this project is predicting the traffic congestion for certain road work projects. The
traffic flow model should be able to model traffic in realistic work road scenarios, e.g. where one lane
on a highway is closed down.

We have structured this report to systematically examine the application of machine learning in a
traffic model. We will discuss the relevant theoretical background in the next chapter. Chapter 3 and 4
describe the data sources and methodology respectively. The findings will be presented in chapter 5
and discussed in chapter 6. Finally, chapter 7 will show our conclusions.

This report is the result of a master thesis project for the Master Applied Mathematics on the Delft
University of Technology, in collaboration with the Infrastructure and Asset Management Lab (iAMLAB)
of CGI Netherlands. It contributes to the body of knowledge dedicated to traffic modeling, specifically
the prediction of traffic flow using machine learning and the LWR model.



Theoretical background

2.1. Basic concepts in traffic modeling

Everyone is used to a weather forecast on the evening news, where high-end weather models utilize
measurements to predict the weather up to a week in the future. Why is there not such a forecast on
traffic congestion? Traffic is difficult to model for a few reasons. Small perturbations in traffic speeds
can have big effects, like the butterfly effect. Furthermore, even the best models can’t model the
stochastic nature of traffic itself, which is a result of random human influence in routing, lane-switching
and accidents [2, 7, 13]. Still, traffic is definitely not fully random and traffic models have improved a
lot through research over the past decades.

In 1955, M. J. Lighthill and G. W. Whitham wrote the first groundbreaking paper about kinematic
waves and its application in traffic models [12]. Around the same time, P. I. Richards investigated this
mathematical traffic model as well [19], and the set of equations was named the LWR model (after
Lighthill, Whitham and Richards). The LWR model approaches traffic as a continuous flow using a
few differential equations. This approach is also known as macroscopic traffic model. The knowledge
about traffic models has steadily increased until we can now distinguish three different types of traffic
models;

1. Macroscopic traffic models, where traffic is approximated as a continuous flow through a network
of one-dimensional tubes. The flow is described by a system of equations.

2. Microscopic traffic models, where each vehicle is modelled independently.
3. Mesoscopic traffic models, which uses ideas from the first two types [2].

In this master thesis, we will only look at macroscopic traffic models, specifically at variations of the
LWR model.

Even if these types of traffic models are very different in their approach, they often share some
similarities. Usually, traffic models consist of a route choice algorithm and a simulation of traffic flow [2].
The route choice algorithm aims to solve the traffic assignment problem, defined as follows:

Definition 1 (Origin-Destination matrix) An Origin-Destination (OD) matrix shows the number of ve-
hicles that want to travel from one destination (represented by the row) to some other destination
(represented by the column). An example can be found in figure 2.1.

Definition 2 (Traffic Assignment) A Traffic Assignment (TA) problem is determining how demand traf-
fic, usually in the form of an OD matrix, is loaded onto the network. It provides a means for computing
traffic flows on the network links.

Definition 3 (Dynamic Traffic Assignment) A Dynamic Traffic Assignment (DTA) problem is the time-
dependent extension of the traffic assignment problem, able to determine the time variations in link or
path flows, and capable of describing how traffic flow patterns evolve in time and space in the network

12l
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Figure 2.1: An example of a network with 5 nodes, and a given demand in traffic between those nodes. The demand is
rewritten in the OD matrix on the right. This image was taken from [26].

Related to the Nash equilibruim in game theory, John Wardrop defined a state of equilibrium for
traffic models. This is known as Wardrop’s principle, Wardrop’s equilibrium or user equilibrium [2].
Furthermore, this equilibrium is a solution of the TA problem and also has a time-dependent version
called the dynamic user equilibrium. Other solutions to TA and DTA problems are other ways that the
vehicles complete their journey, but which are not in a user equilibrium.

Definition 4 (User Equilibrium) A User Equilibrium (UE) means that the journey times on all the used
routes are equal, and less than those which would be experienced by a single vehicle on an unused
route. It is a solution to the TA problem.

Definition 5 (Dynamic User Equilibrium) A DTA problem has a Dynamic User Equilibrium (DUE)
when the network has a UE at every moment. It is a solution to the DTA problem.

In conclusion, traffic models usually consist of two components: a DTA problem and a simulation
of the routes. Finding a DUE in a traffic model is a difficult task and is sometimes impossible. With
macroscopic traffic models it is often possible to find this DUE as it approaches flow continuously
instead of discreetly [5], but it falls out of the scope of this research. We will discuss this macroscopic
traffic model further in the next section, specifically the LWR model. Afterwards, we will discuss the
Godunov scheme which can approximate the LWR model numerically. This chapter is concluded with
a short background of machine learning in traffic modeling.

2.2. Macroscopic traffic models
2.2.1. Lighthill-Whitham-Richards model

An example of a macroscopic traffic model is the Lighthill-Whitham-Richards model, or LWR model.
This LWR model assumes a positive real-valued density of vehicles ¢ and vehicle velocity u at every
point in some network of roads. We can calculate the flux f using the definition:

f=qu. (2.1)

The second equation of the LWR model is the one-dimensional continuity equation, which describes
the transport of some conserved quantity. More precisely, it says that the change in vehicle density on
some part of a road only depends on the in- and outflux of vehicles:

dq Of

. T 2.2

ot " or (2:2)
also often notated as ¢, + f, = 0. This equation defines the behaviour of a conserved quantity ¢, where
in general ¢ : R x [0,00) — R" is the conserved quantity and f : R* — R" is the flux of this quantity [4].
In the case of a 1D traffic flow problem, n = 1. Integrating this equation on an interval [z, 23] gives

% 2 q(I,t)dx _ /HU2 W(ﬁx = f(q(xht)) — f(q(xg,t)). (2.3)



2.2. Macroscopic traffic models 4

Equation 2.3 shows that the temporal change in amount of ¢ inside the interval [x1, 23] is equal to the
flow entering or exiting the interval at z; and x,. Because this holds for any x; and x5, equation 2.2
means that the amount of ¢ (representing the amount of traffic) can only be created at the edges of the
network, and cannot be created or destroyed inside the network. This follows our intuition; traffic on a
highway can only move along the highway, but (in principle) it cannot be created or destroyed there.

The third equation of the LWR model describes the velocity « as some function of the density ¢. This
allows for a substitution into 2.2 which leads to a differential equation solely depending on the density
q [2, 18]. The relation between u and q is called the fundamental relation (FR).

The idea of a fundamental relation is an important one. It relies on the assumption that the speed of
traffic on some location is only dependent on the density of traffic on that location. In the real world this
is of course not true. Differences in driving style and human errors can create different traffic situations,
even when the conditions are identical. In traffic models, this uncertainty will always be present [7, 13].
The LWR model looks at traffic in an aggregated form and approaches it as a uniform flow, averaging
over these differences.

2.2.2. Fundamental relations

The simplest example of a FR is the linear FR, where the speed of traffic scales down linearly with the
density. When the density is 0, the vehicles will drive at the maximum speed uy. When the density
reaches ¢;, the velocity will be 0 and traffic will come to a stop. In an equation, this reads:

Uinear (@) = uo(1 — ). (2.4)
a;

Substituting this into 2.2 will lead to the differential equation

o, , Olali= )

ot o =0

which, given initial conditions and boundary conditions, can be solved numerically. Of course, this linear
FR is not the best representation of reality. At small densities, an increase in density will not decrease
the speed that much. And at high densities, the traffic speed will not immediately drop to zero, but it
will just stay very low. This has lead to a few different different FRs [2], for instance, Smulders’ and De
Romphs’ FRs, given by:

uo(1_§>7 for g < q.
) J 25
vom(a) {7(3 — &), forg>q -

(2.6)

7(% - L)ﬁ7 for q>4qc

uo(l — aq), forgq < gq.
upr(q) =
aj

In both of these cases, the v is chosen such that u(q) is continuous. It can be seen that both of these
models use the constant ¢., which is the congestion density. Densities lower than this threshold leave
enough space for cars to move around eachother, which means the average speed will stay relatively
constant in that density region. When the threshold has been reached, then the vehicles are stuck in a
traffic jam and the average speed will drop drastically [18].

These FRs can be shown in fundamental diagrams, which are usually plots showing the relation
between ¢ and « or f. Figure 2.2 shows these three FRs in three plots, with the relations between
density ¢, velocity u and flux f. There is not one FR applicable on every single piece of road, as the
relation between density and velocity is not globally the same. For example, this relation depends on
the surroundings, the behaviour of the average road user but also on the season and time of day.

It can be seen that Smulders’ FR is just De Romphs’ FR with o0 = % and 8 = 1, and linear FR is
just Smulders’ FR with ¢. = ¢;. These three fundamental relations are given in order of degrees of
freedom. These added degrees of freedom can give flexibility to the model, but also adds complexity.
We will focus on Smulders’ FR, as this has enough degrees of freedom to model traffic accurately [18].
However, further research is needed if we want to compare the usage of different FRs in the applied
implementation.
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Figure 2.2: Different fundamental diagrams for three relations: the linear relation, Smulders’ relation and De Romphs’ relation.
For simplicity in this example, ug = q; = 1, and following [18] the other parameters have been set at a realistic value: o = 0.3,
B = 0.8, g. = 0.3. In chapter 3, we can see that Smulders’ FR follows reality accurately. This can also be seen in the results,
chapter 5. Other FRs could have an impact on the performance of the traffic model, but this falls outside the scope of this
research.

2.2.3. Rewriting Smulders' fundamental relation

Macroscopic traffic models heavily rely on the idea of a fundamental relation, or a relation f(q) between
the traffic density ¢ and the flux f. Itis also possible to find this relation by expressing the vehicle speed
u in terms of ¢ and rewriting it into f(q) = u(q)q.

Smulders’ FR (given in 2.2) is dependent on three parameters: v, ¢; and ¢.. A main part of this
research consists of fitting these parameters to a dataset. Finding the values of these variables for
a certain piece of road is nothing more than fitting the function on historical road data, consisting of
individual density-speed combinations (see chapter 3). Figure 2.3 shows the fitting of a FR based on
historical data.

The fitting process is possible using an evolutionary algorithm, but convergence is slow and not
guaranteed. A better fitting method would use gradient descent to optimize the three FR parameters.
An easy way to use gradient descent is to see Smulders’ FR as a artificial neural network, with 3
parameters, an input (density) and an output (velocity). This allows us to directly learn the parameters
from historic data. The layout of the neural network and its implementation in the predictive model will
be further explained in chapter 4.
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Figure 2.3: An example of a FR, fitted onto historical data. This image was taken from [8], page 249, and the FR was here
derived from a model of traffic flows at intersections.

There is some difficulty fitting this speed-density function using gradient descent, coming from the
variable congestion density ¢.. ¢. is the critical density that defines the border between two different
traffic behaviours, which means the derivative BC;S‘ is not immediately computable by backpropogation.
We can conclude that we can’t directly use Smulders’ FR (eq 2.5) in gradient descent.

To make the rewriting easier, we will first remove the 1/q from our problem. That is why we will
not fit the speed-density function, but the flux-density function. We know from the definition of flux that
f = qu. Furthermore, continuity in ¢ = ¢. means that v = ugq.. This gives the following equation for
the flux, according to Smulders’ FR:

q2
upq —up-  forq <gqe,

fsm(q) = 4
Ugqe — —"“q‘i"’q for ¢ > q..

We will try to rewrite this into one equation using the ReL U function.

0 <0,
x x>0.

ReLU(z) = {

Now we will rewrite both parts of fsy(¢). The full elaboration can be found in appendix A. Eventually,
we get these expressions:

2 2
u (i u u
uoq — 2 — g, — 2oy (—up+ 22 B ReL U (g, — q) for g < g
j 9 GG
U U
Uoqe — O?cq = Upqc — Z?C ;qc ReLU(q — q.) for ¢ > q.
j J J

We can see that both parts of the flux-density relation of the Smulders FR consist of ugq. — “2?2 and

two ReLU terms which are zero in the opposite domain. This means that we can write the flux-density
relation of the Smulders FR in one equation as:

(i
fom(a) = q—‘?(chj — @+ (¢e + ¢ — q;)ReLU (g — q) — q.ReLU (q — q.)) 2.7)
J

Using this equation, it becomes a lot easier to fit the parameters. We can use a machine learning
framework like Pytorch to define fsm(¢) as a neural network with the density of traffic ¢ as an input, and
the flux of traffic f as an output. Then, it can use backpropogation and gradient descent to optimize
the parameters g, ¢. and uy. We will use this rewritten FR in the predictive part of our model.
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2.3. Numerical solutions of traffic flow

2.3.1. Riemann problems and the Godunov scheme
As we have seen in equation (2.2), the 1D traffic flow problem is a conservation problem. Conservation
problems are a type of Cauchy problems where f represents the flux of q.

Definition 6 (Cauchy problem) The problem

@+ @z =0, zeR, t>0,
q(z,0) = qo(z), xR,

for some function f : R — R is called a Cauchy problem [4]. In this context, Cauchy data represents
the initial conditions qo(z) from which a unique solution can be found.

According to [4, 20], it is possible to approximate the solution to this problem using a finite-difference
method. For example, set f(q) as the linear fundamental relation (2.4): f(q) = ¢(1 — ¢). This gives the
following problem:

@+ (@—¢)e=0, z€R, t>0, (2.8)
q(z,0) = qo(z), z € R, (2.9)

We will use the following discretization:

x; =1h i1 €Z,h>0
tn, = nk n € Ng, k>0
q(wi,tn) = qf

Using this discretization, [4] uses a few finite difference schemes to approximate the solutions of a few
benchmark problems. A central, upwind, and Lax-Friedrichs scheme are applied, and the results are
compared against the exact solution of these benchmark problems. The central scheme and upwind
scheme both deviate from the exact solution around the shock. The Lax-Friedrichs scheme stays
closest to the exact solution, using the numerical scheme:

= Sl ) — o (Flal) — F() (2.10)
= Sl i) — e (gl — (a)) — (@ — (@0)%) @11)

There are some problems with a finite difference approximation of conservation problems [20]. This
discretization method has difficulties around shockwaves, where the shock will diffuse over time or
where the shock speed is calculated wrong [4]. Furthermore, some finite difference schemes like the
upwind and central scheme don’t implicitly conserve ¢g. A better approach would be to use a finite
volume approach like the Godunov method, introduced by Sergei Godunov in 1959 [6].

In finite volume, the area is devided into "volumes” with interfaces between them [17]. For 1-
dimensional problems this means that the domain is devided into segments x;. The Godunov method
means keeping track of the amount of "conserved quantity” in each segment, and finding the flux at
the segment boundaries every time step. The difficulty lies in finding this flux at every cell boundary.
Setting the conserved value ¢; constant in each cell gives a shock at every cell boundary. Each shock
can be seen as a Riemann problem:

Definition 7 (Riemann problem) A Cauchy problem with initial values

q forx <O
x) = 2.12
0 () {qT for s = 0 (2.12)

where q;, q, € R is called a Riemann problem. [9]
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The discontinuity at = 0 is the main focus of research about Riemann problems. In [4] this problem
is solved by using the method of characteristics. They come to the conclusion that, if ¢(z, ¢) is a solution,
then g(ax, at) for some « > 0 is a solution as well. By expressing ¢(z,t) = (&), where { = £, a few
cases can be distinguished. In the light of the Godunov method, only f(¢(£ = 0)) is needed.

1. ¢ = ¢ gives the constant solution ¢(z,t) = ¢o(z) and f(q(0)) = 0.

2. q; < ¢, means that there is a higher density of traffic on the right than on the left. This higher
density on the right leads to lower speeds. As traffic moves from left to right, it follows that the
shockwave will stay a discontinuity. It is concluded that the solution has the form:

f
ﬂ%ﬂ:{m ora < st (2.13)
q- forax > st

where the shock speed s is found to be

g T = flar) (2.14)

qr — 4r
This choice for s is called the Rankine-Hugoniot condition [4]. This means the value of f(g(0))
depends on the value of s; if s > 0, then the shock moves to the right and ¢(0) = ¢;, while s < 0
yields ¢(0) = ¢,. s = 0 is impossible in this situation, as that implies f(¢;) = f(g-) which is only
possible if ¢; = g,.

3. ¢ > ¢, has multiple weak solutions, but only one physically meaningful solution; the rarefraction
wave. This means the shock will not stay a discontinuity, but it will spread out. This type of
rarefraction wave is the correct solution in this situation as it satisfies the entropy condition as
defined in [4] and [9]. Mathematically, this looks like this:

q forz < f'(q)t
q(z,t) = ¢ (f)7H(%)  for f/(q)t <z < f'(g)t (2.15)
qr forz > f'(q)t

For the Godunov method, we will need f(¢(0)). This can be found from this equation:

@ if f'(q) >0
q(0) = ¢ (f)710) if f'(@) <0< fgr) <O (2.16)
4 if f'(gr) <0

In the case of traffic models, f(q) is a concave function and (f’)~*(0) is the unique solution to
f'(q) = 0 which represents the point of maximum flux. [4, 9]

As we told before, in finite volume the domain is devided into sections x; with constant density g¢;.
On the interfaces between these sections is a Riemann problem. The Godunov scheme provides a
method to calculate the behaviour of these shockwaves. The size of the time-step k should be chosen
small enough such that the shock waves don’t interact with eachother within the time interval. After
the time-step, the flow is calculated between the sections and the density is again set to be constant in
each section. This method has proven to stay closer to the exact solution in benchmark problems than
finite-difference methods [6, 4].
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2.3.2. Pseudocode for the Godunov scheme
This pseudocode is the Godunov scheme for scalar conservation law problems [9].
Data: Some initial ¢o(x), a fundamental relation f(q) with maximum flux f(gmnq.), @ domain
and boundary values Quoundary point (t)-
Result: An approximation of the traffic flow over time.
begin
Discretize t as ¢,, size k, and x as T; size h
Discretize go(z) as ¢) = + f h 2 qo(x

for n in timerange do
for all i do
We will find ¢! at the interface between z; and ;41
if f'(¢i') > 0and f'(¢f',;) > 0then ¢ <— g}’ ;
if f'(¢i") <0and f'(¢}',) <0then ¢ < ¢}, ;
if f’(ql ) > 0and f'(qi" ;) <0 then
fai)—fai%q1)
i =43
if s > 0 then ¢ «— ¢;
if s <0then g/ < ¢, ;
if /(') <0and f'(¢f,) = 0then ¢; <— gmaa ;

S <—

for all interior i do
| gt =g = () - fla)
for all boundary points i do

L qn+1 Qz n+1)

2.3.3. Benchmark problems

To test our own implementation of the Godunov scheme, we need some way to measure the perfor-
mance against other implementations given in prior researches, and against the exact solution. In the
literature, there are multiple benchmark problems that are often used to test the numerical scheme.
Often, they are Riemann problems with a piecewise constant initial density distribution and one initial
discontinuity at x = 0. For simple conservation law models, the exact solution is known. This makes
it easy to compare different numerical schemes against each other and against the exact solution. In
[4], the first benchmark problem is

qo(z) = {

where, using the linear FR (2.4), the shock will move to the right with shock speed i:

forz <0
forz >0

[N

L fora < 1t
) =<4 4 217
q(z,1) {% fora > 1t (2.17)
The other benchmark problem in [4] is one with a rarefraction wave, with initial condition
3 forzx <0
_ )1
%0(2) {i forz >0
and for ¢ > 0 and the linear FR (2.4), this gives:
1 forz < —1t
g(z,t) = 5(1—2) for—4t <z <4t (2.18)
i forz > 1t

In [4], the Godunov scheme is compared against a few finite difference methods (central scheme, Lax-
Friedrichs scheme and upwind scheme). It concludes that the Godunov scheme stays closer to the
exact solution than the finite difference methods, as it can be seen in figure 2.4. We will choose the
Godunov scheme as a numerical approximation for the LWR model, and we will use these benchmark
problems to test our implementation of the Godunov scheme.
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Figure 2.4: Godunov and Lax-Friedrichs scheme for a rarefraction solution with » = 0.001 (left) and A = 0.01 (right). £ = 0.001
and T,,,4 = 1, and the graphs depict the density (y-axis) along a one-dimensional road (x-axis). It can be seen that the
Godunov scheme stays closer to the exact solution than the Lax-Friedrichs scheme. This plot is taken from [4, p. 37].

2.3.4. Testing the Godunov scheme

We implemented the Godunov scheme in Python following the pseudocode given in subsection 2.3.2.
The full code can be found on github.com/vossemeijssen/macroscopic_traffic_model. Trying the
benchmark problem given in equation 2.18, we obtain the results that can be seen in figure 2.5. This
shows a rarefraction wave, identical to [4].

—=- Godunov scheme h=0.001
Godunov scheme h=0.01
07 —— Exact solution

0.4 4

0.3

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Length of the road

Figure 2.5: A rarefraction solution using a custom implementation of the Godunov scheme. It can be seen that the results are
the same as [4], which are close to the exact solution.

The benchmark problem defined in equation 2.17 should return a moving shock wave with velocity
%. Again, it can be seen in figure 2.6 that our implementation yields results that are comparable to [4].
The shockwave stays intact, and moves with the correct velocity.

A last test of our implementation of the Godunov scheme considers a narrowing of the road. The
maximum capacity of the road is halved, which changes the fundamental relation in that part [4]. On a
road with length 2, we define the fundamental relations as follows:

f1(q) = q(1 = q), forz € [0,1]

f2(q) = q(1 —2q), for z € (1,2]

Given the initial conditions ¢q(«) = 0 and boundary conditions ¢;; = 0.5 and ¢, = 0, we have the neces-
sary information to model traffic on this narrowing road. In figure 2.8 we can see the modeled density
along the road. This density is similar to the modeled density in [4], which shows the implementation
of the Godunov scheme is correct.
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Figure 2.6: A shockwave solution using a custom implementation of the Godunov scheme. It can be seen that the results are
the same as [4], which are close to the exact solution.
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q

Figure 2.7: Plots of f1(q) and f2(q), that are used to model the narrowing of a road.

2.4. Machine learning

Over the past years, different Machine Learning (ML) applications have been in the center of research
in different fields, and modeling traffic has been no exception. ML emcompasses a range of tech-
niques aimed at enabling computers to learn from data and make predictions or decisions. Different
ML techniques can be applied to different parts of traffic models, which are discussed in section 2.4.1.

Neural networks, a subset of ML models inspired by the structure of the human brain, have gained
significant attention in recent years due to their ability to learn complex patterns in data. These networks
consist of connected nodes organised in layers, with each node performing a simple computation and
passing its output to nodes in the subsequent layer. Using a technique called backpropogation, we
can adjust the weights of connections between nodes. That way, a neural network is able to accurately
map inputs to outputs.

A common architecture for neural networks is the linear stack, also known as a fully connected
neural network, where layers of nodes are arranged sequentially. Here, each node in a layer is con-
nected tro every node in the subsequent layer, and every connection has some weight attachted to it.
At each node, a combination of the weighted inputs is computed, followed by the application of an acti-
vation function. Activation functions introduce non-linearity to the network, allowing it to model complex
patterns in the data. Popular activation functions include the sigmoid function, the rectified linear unit
(ReLU) function, and others.

2.4.1. Machine learning in traffic modeling: an overview

Artificial neural networks form the basis for almost all predictive models in traffic modeling [24, 1]. Com-
puter vision algorithms are used for self-driving cars or lane assisting. Other traffic forecasting models
with a longer time-frame can also use machine learning algorithms to find patterns in historical traffic
data, and use that to make predictions not unlike weather predictions. An example can be found on
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Figure 2.8: A solution modeling the narrowing of a road using a custom implementation of the Godunov scheme. These plots
show four different points in time 7". Traffic builds up in front of the narrowing after some time. It can be seen that the results
are the same as [4].

the Keras website [10], which uses a Python implementation of an LSTM to predict the traffic situation
on a single road.

We can read about the current state of deep neural networks in [21]. It recognises the ability of
deep neural networks (DNNs) to predict complex patterns due to their deep structure. Furthermore, it
notes that DNNs are common in research about traffic flow predictions.

Furthermore, [24] shows a big list of models that uses neural networks to directly predict traffic.
Most of these models use time-dependant artificial neural networks, or DNNs for the prediction of traffic
patterns. They try to predict the behaviour of traffic based on historic data.

We can also read how these forecasting models have evolved since the early 1980s. Tradition-
ally, efforts were focussing on methods to model traffic characteristics and predict anticipated traffic
conditions. They relied mostly on single-point data from highways, and were used to predict traffic vol-
umes or traffic times. We can read that the developedment of technologies in the past years, including
the availability of powerful computers and data, have enabled researchers to tackle short-term traffic
forecasting in different ways.

2.4.2. Using machine learning techniques to predict the effect of road work
The way that road work affects traffic is not well understood yet. Even though road work on highways
in the Netherlands is planned months in advance, it is not clear how much effect this work will have on
the traffic situation. For example, we don’t have a model that estimates how much total time will be
lost because of these adjustments like lane closures or speed limit reductions. This research aims to
fill that gap by creating a predictive model that can estimate how road alterations will affect traffic.
Existing literature has explored different aspects of traffic modeling and the application of predictive
models. Looking at that existing literature, it should be possible to model alterations to the road situation.
However, we have not found any study that specifically focusses on the effect of road alterations on
traffic flow. There have been other studies that focus on other effects of road work, like safety [22] and
the total global warming gas emissions [11]. This means there’s a big opportunity for new research
to develop better ways to predict how road changes will affect traffic, which cou