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Topic

In lithography, wafer heating induces unwanted deformations that must be compensated in a feedforward man-
ner. Accurately resolving non-linear and history-dependent effects typically requires time-consuming iterative
solvers, making real-time computation challenging; see Figure 1. Recent advances demonstrate that physics-
informed neural networks (PINNs) [3, 4] can serve as efficient surrogate models, trained without the need for
extensive simulation data. However, applying these networks at full wafer scale while capturing local, high-
frequency effects with sufficient accuracy remains a significant challenge.
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Figure 1: Light induced deformation and slip of the wafer

Figure 2: Example wafer deformation with fields shown with a grid

Walfers are exposed in repeating, partially rectangular regions called fields, as shown in Figure 2. Domain
decomposition-based neural network methods are especially promising for capturing such localized effects. In
the context of neural networks, domain decomposition can be implemented using classical iterative techniques [1]
or by embedding decomposition principles directly into the neural network architecture [2]. The aim of this
master thesis and internship project is to develop a neural network model and training strategy based on
domain decomposition principles that can accurately predict time-dependent, non-linear wafer deformation.
The ultimate goal is to create a surrogate model that is general, accurate, and fast enough for real-time use.

For this position, it is expected that the candidate onboards at ASML and is present at least 2
days/week in Eindhoven/Veldhoven offices. An intern allowance is also offered per ASML intern
policy.

Contact

Are you interested or do you have any questions? Send an email to Alexander Heinlein (a.heinlein@tudelft.nl)
and/or Ozan Celik (ozan.celik@asml.com).
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