Physics-Informed LIF Inversion for Full-Field Temperature and Scalar Transport in
Convective Jet Flows

Introduction

Quantitative temperature measurements using Laser-Induced Fluorescence (LIF) in
convective flows commonly rely on multi-dye or multi-camera configurations to mitigate
the effects of non-uniform illumination, dye concentration variations, and optical
distortions. In many applied research environments, including Deltares, a Dutch
knowledge institute, such experimental setups are impractical due to limitations in
facilities, costs, or operational constraints. Accurate temperature characterization of
buoyant jets and thermal plumes remains essential for environmental flow assessment
and model validation. One relevant example is aquathermia, a low-carbon heating and
cooling solution in which thermal discharge to surface water is constrained by the
environmental impact of low-temperature effluent. Reliable laboratory-scale
measurements are therefore required to understand plume dynamics, heat spreading
and mixing, and to validate in-house developed numerical models. These models can
then be applied by engineers to design renewable energy solutions that are both effective
and environmentally sustainable.

Machine learning techniques, notably neural networks, enable the learning of complex
patterns in data. A modern development is the incorporation of physical knowledge, in
particular mathematical descriptions of physics in the form of loss functions based on
differential equations, known as physics-informed machine learning, and in particular
physics-informed neural networks (PINNSs) [1,4,6]. These methods can be employed
for both forward and inverse problems; in this project, we focus on the inverse problem
of flow reconstruction from LIF measurements.

This project investigates whether physics-informed machine learning can be used to
improve temperature reconstruction from constrained LIF measurements by explicitly
enforcing the governing transport equations during the inversion process.
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Figure 1 Example of LIF measurement providing concentration and temperature measurements from an image.

Objective



The objective of this MSc project is to evaluate the feasibility and accuracy of a physics-
informed approach, for example using physics-informed neural networks (PINNs;
[1,4,6]) or physics-informed neural operators (PINOs; see [5,7]), for reconstructing full-
field temperature distributions from single-dye, single-camera LIF data in convective
flows; neural operators extend neural networks from function approximation to
mappings between function spaces.

The project is a numerical feasibility and proof-of-concept study, with the following
goals:

e Develop a simplified numerical model of a two-dimensional (buoyant) jet,
including a temperature advection—-diffusion equation augmented with a forward
model of the LIF signal that accounts for temperature dependence, dye
concentration effects, and spatially varying illumination. This model will be used
to generate synthetic data for testing and validating the machine learning
methodology.

e Implement a physics-informed inversion framework that enforces the
temperature transport equation during the reconstruction from synthetic LIF
intensity data.

e Assess reconstruction accuracy and robustness relative to conventional per-
pixel calibration methods under non-ideal measurement conditions.

The project does not aim to replace existing LIF calibration methods, but rather to
investigate whether physics-informed machine learning can enhance current
temperature reconstruction techniques in constrained measurement conditions.

Methodology

e Conduct a literature review of physics-informed approaches applied to inverse
problems in experimental fluid mechanics and scalar transport.

e Develop a numerical test case of a buoyant jet by solving the temperature
advection-diffusion equation.

e Generate synthetic LIF intensity fields using a simplified forward model that
relates temperature and dye concentration to measured fluorescence.

e Implement a physics-informed inversion framework that reconstructs the
temperature field from sparse or degraded LIF intensity data while enforcing the
governing transport equation.

e Investigate the ill-posedness of the inverse problem and study the role of
regularization, including both classical and physics-informed techniques, as well
as potential algorithmic improvements in physics-informed machine learning.

e Evaluate and validate the reconstruction by comparing the results to reference
temperature fields and to those obtained using conventional calibration
approaches.



What do we expect?

e Background in fluid mechanics, partial differential equations (PDEs), and
numerical methods for PDEs.

e Experience with machine learning, as well as implementation in Python (e.g.,
PyTorch and/or JAX).

Why join Deltares?

In addition to developing professionally with us with this challenging project, we also
offer:

e Anopen, inclusive and collaborative culture.
e The opportunity to work with researchers from one of the knowledge institutes for
applied research (TO2) in the Netherlands.

Contact

If you are interested in this project and/or have further questions please contact
Alexander Heinlein A.Heinlein@tudelft.nl, and Mike van Meerkerk
Mike.vanMeerkerk@Deltares.nl.
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