
Physics-Informed LIF Inversion for Full-Field Temperature and Scalar Transport in 
Convective Jet Flows 

Introduction 

Quantitative temperature measurements using Laser-Induced Fluorescence (LIF) in 
convective flows commonly rely on multi-dye or multi-camera configurations to mitigate 
the e9ects of non-uniform illumination, dye concentration variations, and optical 
distortions. In many applied research environments, including Deltares, a Dutch 
knowledge institute, such experimental setups are impractical due to limitations in 
facilities, costs, or operational constraints. Accurate temperature characterization of 
buoyant jets and thermal plumes remains essential for environmental flow assessment 
and model validation. One relevant example is aquathermia, a low-carbon heating and 
cooling solution in which thermal discharge to surface water is constrained by the 
environmental impact of low-temperature e9luent. Reliable laboratory-scale 
measurements are therefore required to understand plume dynamics, heat spreading 
and mixing, and to validate in-house developed numerical models. These models can 
then be applied by engineers to design renewable energy solutions that are both e9ective 
and environmentally sustainable. 

Machine learning techniques, notably neural networks, enable the learning of complex 
patterns in data. A modern development is the incorporation of physical knowledge, in 
particular mathematical descriptions of physics in the form of loss functions based on 
di9erential equations, known as physics-informed machine learning, and in particular 
physics-informed neural networks (PINNs) [1,4,6]. These methods can be employed 
for both forward and inverse problems; in this project, we focus on the inverse problem 
of flow reconstruction from LIF measurements. 

This project investigates whether physics-informed machine learning can be used to 
improve temperature reconstruction from constrained LIF measurements by explicitly 
enforcing the governing transport equations during the inversion process. 

 
Figure 1 Example of LIF measurement providing concentration and temperature measurements from an image. 

Objective 



The objective of this MSc project is to evaluate the feasibility and accuracy of a physics-
informed approach, for example using physics-informed neural networks (PINNs; 
[1,4,6]) or physics-informed neural operators (PINOs; see [5,7]), for reconstructing full-
field temperature distributions from single-dye, single-camera LIF data in convective 
flows; neural operators extend neural networks from function approximation to 
mappings between function spaces. 

The project is a numerical feasibility and proof-of-concept study, with the following 
goals: 

• Develop a simplified numerical model of a two-dimensional (buoyant) jet, 
including a temperature advection–di9usion equation augmented with a forward 
model of the LIF signal that accounts for temperature dependence, dye 
concentration e9ects, and spatially varying illumination. This model will be used 
to generate synthetic data for testing and validating the machine learning 
methodology. 

• Implement a physics-informed inversion framework that enforces the 
temperature transport equation during the reconstruction from synthetic LIF 
intensity data. 

• Assess reconstruction accuracy and robustness relative to conventional per-
pixel calibration methods under non-ideal measurement conditions. 

The project does not aim to replace existing LIF calibration methods, but rather to 
investigate whether physics-informed machine learning can enhance current 
temperature reconstruction techniques in constrained measurement conditions. 

Methodology 

• Conduct a literature review of physics-informed approaches applied to inverse 
problems in experimental fluid mechanics and scalar transport. 

• Develop a numerical test case of a buoyant jet by solving the temperature 
advection–di9usion equation. 

• Generate synthetic LIF intensity fields using a simplified forward model that 
relates temperature and dye concentration to measured fluorescence. 

• Implement a physics-informed inversion framework that reconstructs the 
temperature field from sparse or degraded LIF intensity data while enforcing the 
governing transport equation. 

• Investigate the ill-posedness of the inverse problem and study the role of 
regularization, including both classical and physics-informed techniques, as well 
as potential algorithmic improvements in physics-informed machine learning. 

• Evaluate and validate the reconstruction by comparing the results to reference 
temperature fields and to those obtained using conventional calibration 
approaches. 



What do we expect? 

• Background in fluid mechanics, partial di9erential equations (PDEs), and 
numerical methods for PDEs.  

• Experience with machine learning, as well as implementation in Python (e.g., 
PyTorch and/or JAX). 

Why join Deltares? 

In addition to developing professionally with us with this challenging project, we also 
o9er: 

• An open, inclusive and collaborative culture. 
• The opportunity to work with researchers from one of the knowledge institutes for 

applied research (TO2) in the Netherlands. 

Contact 

If you are interested in this project and/or have further questions please contact 
Alexander Heinlein A.Heinlein@tudelft.nl, and Mike van Meerkerk 
Mike.vanMeerkerk@Deltares.nl.  
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