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Pitfalls to avoid while using multiobjective optimization
for machine learning

Junaid Akhter1

1 University of Paderborn
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Recently, there has been an increasing interest in exploring the application
of multiobjective optimization (MOO) in machine learning (ML), the reason
being the numerous situations in real-life applications where multiple objectives
need to be optimized simultaneously. A key aspect of MOO is the existence
of a Pareto set rather than a single optimal solution, illustrating the inherent
trade-offs between objectives. Despite its potential, there is a noticeable lack
of satisfactory literature that could serve as an entry-level guide for ML practi-
tioners who want to use MOO. Hence, our goal in this paper is to produce such
a resource. We critically review previous studies, particularly those involving
MOO in deep learning (using Physics-Informed Neural Networks (PINNs) as
a guiding example), and identify misconceptions that highlight the need for a
better grasp of MOO principles in ML. Using MOO of PINNs as a case study,
we demonstrate the interplay between the data loss and the physics loss terms.
We highlight the most common pitfalls one should avoid while using MOO tech-
niques in ML. We begin by establishing the groundwork for MOO, focusing on
well-known approaches such as the weighted sum (WS) method, alongside more
complex techniques like the multiobjective gradient descent algorithm (MGDA).
We emphasize the importance of understanding the specific problem, the ob-
jective space, and the selected MOO method, while also noting that neglecting
factors such as convergence can result in inaccurate outcomes and, consequently,
a non-optimal solution. Our goal is to offer a clear and practical guide for ML
practitioners to effectively apply MOO, particularly in the context of DL.



Geometric Shape Optimization for Dirichlet Energy
With Physics Informed and Symplectic Neural

Networks

Amaury Bélières Frendo1
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In this work, we are interested in optimizing the boundary of a given domain
under a volume constraint, with respect to the solution of a partial differential
equation. We focus on the numerical aspect of this question, and we propose to
apply recent approaches based on neural networks. For simplicity, the problem
under consideration is the minimization of the Dirichlet energy for the Poisson
equation in R2. We first quickly recall results on the mathematical analysis of
this problem. We select physics-informed neural networks to approximate the
solution of the Poisson equation in a given shape. To represent the shape with
a neural network, we parametrize a volume-preserving transformation from an
initial shape to an optimal one. Both processes are combined in a single opti-
mization algorithm, which only relies on minimizing one physical loss function,
the Dirichlet energy. We conclude with the presentation of the open source code
and its numerical validation.

Joint work with: Emmanuel Franck, Victor Michel Dansac, Yannick Privat



Multi-scale hydraulic-based graph neural networks:
generalizing rapid flood mapping to irregular meshes

and time-varying boundary condition
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Deep learning models emerged as viable alternatives to rapid and accurate
flood mapping, overcoming the computational burden of numerical methods. In
particular, hydraulic-based graph neural networks present a promising avenue,
offering enhanced transferability to domains not used for the model training.
These models exploit the analogy between finite-volume methods and graph neu-
ral networks to describe how water moves in space and time across neighbouring
cells. However, existing models face limitations, having been exclusively tested
on regular meshes and necessitating initial conditions from numerical solvers.
This study proposes an extension of hydraulic-based graph neural networks to
accommodate time-varying boundary conditions, showcasing its efficacy on ir-
regular meshes. For this, we employ multi-scale methods that jointly model
the flood at different scales. To remove the necessity of initial conditions, we
leverage ghost cells that enforce the solutions at the boundaries. Our approach
is validated on a dataset featuring irregular meshes, diverse topographies, and
varying input hydrograph discharges. Results highlight the model’s capacity to
replicate flood dynamics across unseen scenarios, without any input from the
numerical model, emphasizing its potential for realistic case studies.



A physics-informed DeepONet model for the solution of
quantum graphs

Jan Blechschmidt1
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In this talk we focus on a machine learning approach for quantum graphs,
i.e. metric graphs with an associated differential operator. In our case the dif-
ferential equation is a drift-diffusion model. Computational methods for quan-
tum graphs require a careful discretization of the differential operator that also
incorporates the node conditions, in our case Kirchhoff-Neumann conditions.
Traditional numerical schemes are rather mature but have to be tailored man-
ually when the differential equation becomes the constraint in an optimization
problem. Recently, physics informed deep operator networks (DeepONets) have
emerged as a versatile tool for the solution of partial differential equations from
a range of applications. We train physics-informed DeepONet models on a sim-
ple reference graph and show how to combine them for the solution of quantum
graphs.

Joint work with: Jan-Frederik Pietschmann, Tom-Christian Riemer, Martin
Stoll, Max Winkler



Nonlinear joint spectral radius of cone order preserving
functions

Piero Deidda1
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A Neural Network can be seen as a discrete switched system that alternates
maps from a class of nonlinear functions following a switching rule that is not
known a-piori, but is determined by the training. In particular, stability prop-
erties of the NN can be studied in terms of the stability of the corresponding
nonlinear switched system. Motivated by applications in machine learning, we
study the stability of nonlinear switched systems that alternate homogeneous
nonlinear functions that preserve the ordering induced by a cone. Such maps,
admitting the notion of spectral radius, allow us to generalize, from the linear
to the nonlinear case, the study of the joint spectral radius (JSR) of the system.
In particular, we first prove that the value of the JSR yields information about
the stability of the system. Hence, we investigate the properties of the nonlinear
JSR, tracing analogies and differences from the linear case. Finally, we present
an algorithm devoted to computing the nonlinear JSR.

Joint work with: Nicola Guglielmi, Francesco Tudisco.



Hybrid Newton method for the acceleration of well
events handling in the numerical simulation of CO2

Storage

Antoine Lechevallier1
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Numerical simulations are crucial for solving multi-phase flow equations in
CO2 injection sites. However, simulating fluid flow in porous media is highly
demanding computationally, often requiring several hours on an HPC cluster for
a single injection scenario in a large CO2 reservoir. Well events, like opening and
closure, pose significant challenges due to their sudden impact on the system,
necessitating a drastic reduction in time step size to solve resulting nonlinear
equations accurately. Yet, these events tend to exhibit spatial and temporal
similarities, determined by factors such as injection conditions, reservoir state,
boundary conditions, and porous media parameters.

This thesis work aims to employ recent advancements in physics-informed
deep learning to mitigate the impact of well events in numerical simulations of
multiphase flow in porous media. In practice, we suggest a hybrid method that
complement the conventional nonlinear solver with a machine-learning model
while maintaining numerical reliability. Our approach involves customizing the
hybrid Newton methodology, which predicts a global initialization for Newton’s
method closer to the solution. We employ the Fourier Neural Operator machine-
learning model for this prediction task.



On the growth of parameters of approximating neural
networks

Erion Morina1
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This talk focuses on the analysis of fully connected feed forward ReLU-
neural networks as they approximate a given, smooth function. In contrast to
conventionally studied universal approximation properties under increasing ar-
chitectures, e.g. in terms of width or depth of the networks, we are concerned
with the asymptotic growth of the parameters of approximating networks. Such
results are of interest, e.g., for computing generalization errors or for proving
consistency results for neural network training. The main result of our work is
that, for a ReLU architecture which is known to achieve an optimal approxima-
tion error, the realizing parameters grow at most polynomially. The obtained
rate with respect to normalized network size is compared to existing results and
shown to be superior in most cases, in particular for high dimensional input.

Joint work with: Martin Holler (University of Graz).



An introduction to the lowest-order Neural
Approximated Virtual Element Method

Moreno Pintore1

1 Inria, Sorbonne University
moreno.pintore@inria.fr

Thanks to the rapidly growing interest in Scientific Machine Learning, nu-
merous numerical methods relying on deep neural networks have been proposed
by the scientific community in the last few years. One of such methods is the
Neural Approximated Virtual Element Method (NAVEM), a polygonal method
to solve partial differential equations (PDEs) recently introduced in [1]. The
method combines the nonlinear properties and the efficiency of a neural net-
work with the flexibility and the accuracy of the more classical Virtual Element
Method (VEM) [2].

The VEM is a polygonal method relying on virtual functions, i.e. functions
that are not known in a closed form. Therefore, suitable polynomial projec-
tors and stabilization terms are necessary to evaluate the differential operators
characterizing the PDE and to retrieve the coercivity of the discrete problem.
The NAVEM replaces such unknown virtual basis functions by suitable neural
network-based approximations with similar functional properties. This way, it
is possible to define a new polygonal method without any projection or sta-
bilization, which are problem-dependent and may limit the model accuracy in
case of strongly anisotropic PDEs.

In order to approximate the local VEM basis functions, we employ linear
combinations of suitable basis functions, where the coefficients are predicted by
a deep neural network. This way, it is also possible to reduce spurious oscil-
lations and discontinuities in the local and global basis functions respectively,
and improve the NAVEM stability as a consequence. Two-dimensional numeri-
cal tests on distorted quadrilateral meshes and on Voronoi meshes are proposed
to validate the method accuracy and flexibility.

Joint work with: Stefano Berrone, Oberto Davide, and Teora Gioana (Po-
litecnico di Torino).
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Randomized Neural Networks with Petrov–Galerkin
Methods for Solving Linear Elasticity problem

Yong Shang1
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We develop the Randomized Neural Networks with Petrov-Galerkin Meth-
ods (RNN-PG methods), which use the Petrov-Galerkin variational framework,
where the solution is approximated by randomized neural networks and the test
functions can be employed in a flexible choice. Unlike conventional neural net-
works, the parameters of the hidden layers of the randomized neural networks
are fixed randomly, while the parameters of the output layer are determined
by the least squares method, which can effectively approximate the solution.
We also develop mixed RNN-PG methods for linear elasticity problems, which
ensure the symmetry of the stress tensor and avoid locking effects. We compare
RNN-PG methods with different methods on several examples, and the numer-
ical results demonstrate that RNN-PG methods achieve higher accuracy and
efficiency.



High-resolution image segmentation with U-Net-based
segmentation CNN on multiple GPUs

Corné Verburg1
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We introduce a novel approach for segmenting high-resolution images across
multiple GPUs, by combining the U-Net architecture with domain decompo-
sition strategies. Our approach partitions high-resolution input images into
non-overlapping patches, each stored and processed independently on differ-
ent GPUs. A communication network facilitates global communication across
subdomains, using deep, encoded feature maps, leading to minimal memory
overhead.

Our method makes it possible to process high-resolution images across mul-
tiple GPUs without losing detailed contextual information or sacrificing global
information from other patches. In contrast, the memory overhead due to com-
munication is minimal. Extensive evaluation across diverse datasets, includ-
ing synthetic data, Inria Aerial Images, and DeepGlobe Satellite Segmentation
Dataset, demonstrates good performance compared to the baseline U-Net, par
ticularly in consistently accurate class predictions along boundaries.


