
Geometric shape optimization for Dirichlet energy with
physics-informed and symplectic neural networks

A. Bélières–Frendo1, E. Franck2, V. Michel-Dansac2, Y. Privat3

1IRMA, Université de Strasbourg, CNRS UMR 7501, 7 rue René Descartes, 67084 Strasbourg, France
2Université de Strasbourg, CNRS, Inria, IRMA, F-67000 Strasbourg, France

3Université de Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France

The authors acknowledge the financial support
of the ExaMA project.

Introduction

▶ The governing Partial Differential Equation (PDE). We study
the Poisson equation

(P)
{

−∆uf
Ω = f in Ω,

uf
Ω = 0 on ∂Ω.

▶ Ω is an open bounded connected set in Rn

▶ f ∈ H−1(Ω) is the source term
▶ uf

Ω is the unique solution in H1
0 (Ω) of the Poisson problem

The solution uf
Ω of the Poisson problem (P) is defined as the unique

solution of the variational problem
(OP) inf{J (Ω, u), u ∈ H1

0(Ω)},

with J (Ω, u) = 1
2

∫
Ω

|∇u|2 − ⟨f , u⟩H−1(Ω),H1
0 (Ω), ∀u ∈ H1

0(Ω).

▶ The shape optimization problem. Introduce the Dirichlet energy
E , a shape functional given by

E(Ω) := inf
u∈H1

0 (Ω)
J (Ω, u).

Note that E(Ω) = J (Ω, uf
Ω). Minimizing the Dirichlet energy within

sets of given volum V0 > 0 is a prototypal problem in shape optimization.
It reads

(OD) inf{E(Ω), Ω bounded set of Rn, such that |Ω| = V0}.

▶ Objective. Solve this problem with a Neural Network (NN). We
mention some of NNs advantages in the following non-exhaustive list.

1. Automatic Differentiation (AD) avoids truncation errors;
2. Parametric set of of source terms, or computational domains, thanks to Monte-

Carlo integration;
3. Mesh-free: work on very complex topologies
4. Parallel code: joint gradient descent on several mutually dependent networks

thanks to NNs. We train a network representing the solution of the PDE, and
another network representing the computational domain.

1. PINNs and DeepRitz

We want to solve the problem (P) in a fixed shape with a PINN. For that,
we minimize the following loss function [1]

JPDE (θ) = V0
N

N∑
i=1

1
2|∇vθ(xi)|2 − f (xi)v(xi),

▶ θ is the trainable set of parameters of the PINN;
▶ vθ = αuθ is the approximation of the solution of (P);
▶ uθ is the PINN;
▶ α is a C∞ function, such that γ∂Ω

0 α = 0
(for instance,if Ω is a disk, α(x , y) = 1 − x − y);

▶ N is the number of the {xi}N
i=1 collocation points.

1.1. Numerical results
For the first simulation, in 2D, we solve the Poisson equation (P) in
an annulus, with the source term f = exp (1 − (x/2)2 − (2y)2). The 4
layers of the network have 10, 20, 20 and 10 neurons respectively and
the learning rate is 5.10−3. We compare it to a Finite Element Method
(FEM) simulation done with FreeFem++ with a 500 × 500 mesh.

−1.0 −0.5 0.0 0.5 1.0

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

PINNs

0.00

0.01

0.02

0.03

0.04

0.05

0.06

−1.0 −0.5 0.0 0.5 1.0

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

FEM

0.00

0.01

0.02

0.03

0.04

0.05

0.06

−1.0 −0.5 0.0 0.5 1.0

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Error

0.000

0.001

0.002

0.003

0.004

1.2. What about the parametric problem?

Consider a source term f p which depends on parameters µ ∈ M. The
parameteric problem (Pp) can still be solved for a slightly larger but
comparable computation time. The parameteric Poisson problem then
reads

(Pp)
{

−∆up(x ; µ) = f p(x ; µ), for (x ; µ) ∈ Ω × M;
up(x ; µ) = 0, for (x ; µ) ∈ ∂Ω × M.

▶ M is the space of parameters;
▶ f p : Ω × M → R is the parametric source term.

We train the loss function J p with {xi , µi}N
i=1 ∈ Ω × M

J p
PDE

(
θ; {xi , µi}N

i=1
)

= V0
N

N∑
i=1

{
1
2|∇vp

θ |2 − f pvp
θ

}
(xi ; µi),

−1.5 −1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Solution de l’EDP tensorisée, µ =0.5

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

−1.5 −1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Solution de l’EDP tensorisée, µ =0.75

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

−1.5 −1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Solution de l’EDP tensorisée, µ =1.0

0.025

0.050

0.075

0.100

0.125

0.150

0.175

−1.5 −1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Solution de l’EDP tensorisée, µ =1.25

0.025

0.050

0.075

0.100

0.125

0.150

0.175

−1.5 −1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Solution de l’EDP tensorisée, µ =1.5

0.025

0.050

0.075

0.100

0.125

0.150

0.175 Same simulation
parameters in a
potatoïd, f (x , y ; µ) =
exp

(
1 − (x/µ)2 − (µy)2

)
.

2. Symplectic NNs (SympNets)

This work is concerned with geometric optimization. In R2, the
volume-preserving differentiable maps are the symplectic maps
(one can think of the flow of a Hamiltonian ordinary differential equation).

Objective: Train a symplectic NN to transform a disk into a given shape.

2.1. Principle of SympNets
▶ Architecture

Definition (shear maps): One of the simplest families of symplectic
transformations from R2d into R2d is called “shear maps”, and is defined
as follows

fup

(
x
y

)
=

(
x + ∇Vup(y)

y

)
; fdown

(
x
y

)
=

(
x

y + ∇Vdown(x)

)
,

where Vup/down ∈ C1(Rd ,R), and ∇V : Rd → Rd is the gradient of V .
Lemma [2]: Any symplectic map can be approximated by the composition
of several shear maps.
Theorem [2]: Let q > 0 be the depth of the NN, and 2d the dimension
of the state space (here d = 1). We define σ̂K ,a,b the approximation
of ∇V in terms of an activation function σ, a vector b ∈ Rq, a matrix
K ∈ Mq,2d(R) and a ∈ Rq a vector, and diag(a) = (aiδij)1≤i ,j≤q, as
follows

σ̂K ,a,b(x) = K tdiag(a)σ(Kx + b).
We define the gradient modules Gup and Gdown to approximate fup and
fdown

Gup

(
x
y

)
=

(
x + σ̂K ,a,b(y)

y

)
; Gdown

(
x
y

)
=

(
x

y + σ̂K ,a,b(x)

)
.

These functions are called gradient modules because σ̂K ,a,b is able to
approximate any ∇V .

Input Output

...

▶ Loss function
To learn a given symplectic map Tobjective with a SympNet Tω, we minimize
with respect to ω the following loss function [2]

JS(ω, {xi}N
i=1) =

N∑
i=1

|Tω(xi) − Tobjective(xi)|2,

where ω are trainable weights and {xi}N
i=1 are N collocation points.

▶ Can we make it parametric?
We propose to introduce Kµ ∈ Mq,nµ(R) (with nµ the number of
parameters) and replace σ̂K ,a,b(x) with [4]

σ̃K ,Kµ,a,b(x ; µ) = K t σ(Kx + b + Kµµ).

2.2. Numerical results
Here, we trained a SympNet to learn the parametric family of symplectic
maps Tµ = S1

µ ◦ S2
µ, with{

S1
µ : (x , y ; µ) 7→ (x − µy 2 + 0.3 sin(y

µ) − 0.2 sin(8y), y)
S2

µ : (x , y ; µ) 7→ (x , y + 0.2µx + 0.12 cos(x))

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

−1.5

−1.0

−0.5

0.0

0.5

Hausdorff error: 2.08e-02, µ =1.781484842300415

fixed point optimal shape

GeSONN optimal shape

−1.5 −1.0 −0.5 0.0 0.5 1.0

−1.5

−1.0

−0.5

0.0

0.5

1.0
Hausdorff error: 2.70e-02, µ =1.5169286727905273

fixed point optimal shape

GeSONN optimal shape

−1.5 −1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0
Hausdorff error: 2.15e-02, µ =1.2276651859283447

fixed point optimal shape

GeSONN optimal shape

−1.5 −1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Hausdorff error: 2.33e-02, µ =0.9348259568214417

fixed point optimal shape

GeSONN optimal shape

−1.5 −1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Hausdorff error: 2.25e-02, µ =0.5376667976379395

fixed point optimal shape

GeSONN optimal shape

−2 −1 0 1

−1.5

−1.0

−0.5

0.0

0.5

1.0

superposition of learned shapes

The SympNet was trained with 4 up and down networks, a width q = 5
and with a learning rate equal to 10−2.

3. Shape optimization with NNs

3.1. Solving a PDE in a shape generated by a
symplectic map

Objective: Train a SympNet and a PINN to transform a circle into the
optimal shape for the Dirichlet energy.
Lemma [4]: Let T be a differentiable map and uT ∈ H1

0(T C), such that
w = uT ◦ T ∈ H1

0(C). If uT is the solution of (P), then w is solution of

(PT)
{

−div
(
A∇w

)
= f̃ , in C;

w = 0, on C.

1. A : C → R = J−1
T · J−t

T is a uniformly elliptic metric tensor;
2. JT = DT the Jacobian matrix of T in the canonical basis of R2;
3. f̃ = f ◦ T : C → R the source term.

The previous problem can be formulated in a weaker sense, as the following
optimization problem:

(OPT) inf
{

1
2

∫
C

A∇w · ∇w −
∫

C
f̃ v , w = uT ◦ T ∈ H1

0(C)
}

.

Remark: In spirit, we compute a shape derivative of J .

3.2. Shape optimization loss function

We want to solve the problem (OP). For that, we minimize the following
parametric loss function [4]

J
(
θ, ω, {(xi ; µi)}N

i=1
)

= V0
N

N∑
i=1

{
1
2
∣∣Aω∇vθ,ω · ∇vθ,ω

∣∣2 − f̃ωvθ,ω

}
(xi ; µi)

▶ θ and ω the trainable weights for the PINN and the SympNet;
▶ vθ,ω : x ∈ C 7→ α(x)uθ(Tωx) + β(x) ∈ R the solution of the

Poisson problem set in TωC;
▶ Tω : R2d → R2d the SympNets;
▶ Aω = J−1

Tω
· J−t

Tω
the metric tensor;

▶ uθ : TωC → R the PINN;
▶ α : C 7→ R a C∞ function that vanishes on ∂C;
▶ f̃ω : x ∈ C 7→ (f ◦ Tω)(x) ∈ R.

3.3. Numerical results
Theorem [3]: The problem (OD) has a unique solution (Ω∗, u∗). The
first order optimality condition reads: ∇u∗ · n is constant a.e. on ∂Ω∗.
For the numerical simulation, we take standard NNs settings in this section.

▶ f = 1

▶ f (x , y ; µ) = exp
(

1 − (x/µ)2 − (µy)2
)

In this case, we simulta-
neously plot the optimality
conditions for M = [0.5, 1.5].

3.4. Ongoing work: the Bernoulli overdetermined
problem

We now minimize the Dirichlet energy for

(B)


−∆u = 0 in Ω;
u = 1 on Γi ;
u = 0 on Γe.

Our numerical strategy remains to learn a symplectic map Tω minimizing
the Dirichlet energy. To handle the boundary ∂Γi , we compute T −1

ω K [4].

For the numerical simulations, we take standard NNs settings, and K is
an ellipse of parameters (a = 0.6, b = 1/0.6).

Ongoing work and perspectives
▶ Publish the open source code GeSONN (GEometric Shape

Optimization with Neural Networks)
▶ Investigate GeSONN for the compliance loss function
▶ Adapt GeSONN to the other equations
▶ Fixed point algorithm

References
[1] W. E, Y. Bing. The Deep Ritz method: A deep learning-based numerical algorithm

for solving variational problems. Commun. Math. Stat. 6:1–12, (2018).
[2] P. Jin, Z. Zhang, A. Zhu, Y. Tang and G. E. Karniadakis. SympNets: Intrinsic

structure-preserving symplectic networks for identifying Hamiltonian systems. Neural
Networks, 132:166–179, 2020.

[3] A. Henrot and M. Pierre. Shape Variation and Optimization: Geometrical
Analysis. Mathématiques & Applications, 2005.

[4] A. Bélières–Frendo, E. Franck, V. Michel-Dansac and Y. Privat. Geometric shape
optimization for Dirichlet energy with NNs. in preparation, 2024.

