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Introduction

» The governing Partial Differential Equation (PDE). We study
the Poisson equation

—Aué =f in (),

(P) on 0f).
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» () is an open bounded connected set in R”

» f € H Q) is the source term

» ul is the unique solution in H}(S2) of the Poisson problem

The solution ug’-c2 of the Poisson problem (P) is defined as the unique
solution of the variational problem

(Op) iInf{T(Q, u), u € Hy(Q)},

_ 1
with 7(.0) = 5 [ [Vul? = (£, by ey Yo € Q@)

» The shape optimization problem. Introduce the Dirichlet energy
£, a shape functional given by

E(Q) = inf

T, u).
ueH}(Q)

Note that £(Q2) = J (£, ug’-fz) Minimizing the Dirichlet energy within
sets of given volum Vj > 0 is a prototypal problem in shape optimization.
It reads

(Op) Inf{E(Q), Q bounded set of R", such that |Q| = Vj}.

» Objective. Solve this problem with a Neural Network (NN). We
mention some of NNs advantages in the following non-exhaustive list.

1. Automatic Differentiation (AD) avoids truncation errors;

2. Parametric set of of source terms, or computational domains, thanks to Monte-
Carlo integration;

3. Mesh-free: work on very complex topologies

4. Parallel code: joint gradient descent on several mutually dependent networks
thanks to NNs. We train a network representing the solution of the PDE, and
another network representing the computational domain.

1. PINNs and DeepRitz
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We want to solve the problem (P) in a fixed shape with a PINN. For that,
we minimize the following loss function [1]

Vo e 1 ,
Jpoe(?) = - > 51V vp(xi)[" = F(xi)v(x),
=

» 0 is the trainable set of parameters of the PINN;
> vy = auy is the approximation of the solution of (P);
» ug is the PINN;
» «is a C°° function, such that 769(204 =0
(for instance,if Q is a disk, a(x,y) =1—x — y);
» N is the number of the {x,-}ll-vzl collocation points.
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1.1. Numerical results

For the first simulation, in 2D, we solve the Poisson equation (P) in
an annulus, with the source term f = exp (1 — (x/2)? — (2y)?). The 4
layers of the network have 10, 20, 20 and 10 neurons respectively and
the learning rate is 5.1073. We compare it to a Finite Element Method
(FEM) simulation done with FreeFem++ with a 500 x 500 mesh.
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2. Symplectic NNs (SympNets)
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This work is concerned with geometric optimization. In R?, the
volume-preserving differentiable maps are the symplectic maps
(one can think of the flow of a Hamiltonian ordinary differential equation).

Objective: Train a symplectic NN to transform a disk into a given shape.
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1.2. What about the parametric problem?

Consider a source term P which depends on parameters 1 € M. The
parameteric problem (PP) can still be solved for a slightly larger but
comparable computation time. The parameteric Poisson problem then
reads

—AuP(x; p) = P(x; ),
uP(x; p) =0,

for (x; u) € Q2 x M,

PP
(P") for (x; 1) € 092 x M.

» M is the space of parameters;
» fP:Q x M — R is the parametric source term.

We train the loss function JP with {x;, Mi},l'vzl c QxM

N
Vo 1
jﬁDE(ﬁ; {Xi,/ii},l'vz1) Y E :{g\VVg\z - f"vé’}(x,-;ui),
i=1

Solution de I'EDP tensorisée, 1 =0.75 Solution de 'EDP tensorisée, p =1.0
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Same simulation
parameters In a
potatoid, f(x,y; u) =

0.075

exp (1= (x/p)? = (1y)?)
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2.1. Principle of SympNets

» Architecture

Definition (shear maps): One of the simplest families of symplectic
transformations from R29 into R2 is called “shear maps’, and is defined

as follows
in(5) = (7)o () = (4 wvint)
Py y ' ‘down] y, Y + VViown(x) )’

e CI(RY,R), and VV : R? — R is the gradient of V.

Lemma [2]: Any symplectic map can be approximated by the composition
of several shear maps.

Theorem [2]: Let g > 0 be the depth of the NN, and 2d the dimension
of the state space (here d = 1). We define U/K;, the approximation
of VV in terms of an activation function o, a vector b € R9, a matrix
K € Mg24(R) and a € RY a vector, and diag(a) = (3;0;)1</ j<g, as

follows

where Vup/down

A

0K ab(X) = K'diag(a)o(Kx + b).
We define the gradient modules G, and Gyon to approximate f,, and

fdown
(X + @(Y)) . (X) _
y : own | ,

ur (;) - (y + ﬁ(x)) |

These functions are called gradient modules because oy , 4 is able to
approximate any V V.
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To learn a given symplectic map 7Tgpiective With @ SympNet T, we minimize
with respect to w the following loss function [2]

» Loss function

N
Ts(w, {xiHl1) = > 1 Tu(xi) — Topjective(x1)] %
=1

where w are trainable weights and {x,-}ll-\/:1 are N collocation points.

» Can we make it parametric?
We propose to introduce K, € Mg, (R) (with ny, the number of
parameters) and replace ok , p(x) with [4]

5K,Ku,a,b(X; u) =K' o(Kx + b+ Ky,u).
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2.2. Numerical results

Here, we trained a SympNet to learn the parametric family of symplectic

maps 7, = S}L o SEL, with
S}L (X, v ) = (x — py? +0.3 sin(%) — 0.2sin(8y), y)
Sii(x,yip) = (x, y+0.2ux +0.12 cos(x))

Hausdorff error: 2.08¢-02, p =1.781484842300415 lIl—)I-ausdm‘I'f error: 2.70e-02, 1 =1.5169286727905273 Hausdorff error: 2.15e-02, @ =1.2276651859283447
. 1.09

sdorfl error: 2.25e-02, p =0.5376667976379395 superposition of learned shapes

Hausdorff error: 2.33¢-02, p =0.9348259568214417 Hau

The SympNet was trained with 4 up and down networks, a width g =5
and with a learning rate equal to 102,

3. Shape optimization with NNs
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3.1. Solving a PDE in a shape generated by a
symplectic map

Objective: Train a SympNet and a PINN to transform a circle into the
optimal shape for the Dirichlet energy.

Lemma [4]: Let T be a differentiable map and ur € H&(TC), such that
w=uyoT € H&(C). If uT is the solution of (P), then w is solution of

—div(AVw) :?, in C;

w = 0, on C.

(Pr)

1. A:C—R= J}l - J7" is a uniformly elliptic metric tensor;
2. Jr = DT the Jacobian matrix of 7 in the canonical basis of R?;
3. f=Ffo7T :C — R the source term.

The previous problem can be formulated in a weaker sense, as the following
optimization problem:

1 -
(Op,) inf{i/CAVW-VW—/CfV, w=uroT € H&(C)}

Remark: In spirit, we compute a shape derivative of 7.

N
Vo L (1 _
T (0.0, (i u)} ) = Z{gl“wvw,w Vvgl - fwve,w}(xf'? i)

3.2. Shape optimization loss function

We want to solve the problem (Op). For that, we minimize the following
parametric loss function [4]

=1

\ 4

6 and w the trainable weights for the PINN and the SympNet;
Vg w : X € C = a(x)ug(Twx) + B(x) € R the solution of the
Poisson problem set in 7,C;

T, : R?9 — R29 the SympNets;

A, = J7_-W1 : J7_-wt the metric tensor:

up : T,,C — R the PINN;

a:C— R a C* function that vanishes on OC:

f,:x €Cr— (foTy,)(x)€R.

\ 4
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3.3. Numerical results

Theorem [3]: The problem (Op) has a unique solution (Q*, u*). The

first order optimality condition reads: Vu™ - n is constant a.e. on 0Q".
For the numerical simulation, we take standard NNs settings in this section.
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> f(x.yin) = exp (1= (x/n)’ = (wy)’)
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In this case, we simulta-

neously plot the optimality
conditions for Ml = [0.5, 1.5].
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3.4. Ongoing work: the Bernoulli overdetermined
problem

We now minimize the Dirichlet energy for

—Au=0 in 2
(B) u=1 on I;;
u=20 on [ e.

Our numerical strategy remains to learn a symplectic map T, minimizing
the Dirichlet energy. To handle the boundary OI';, we compute T.; 1K [4].

C
/Tw\
T,C
C
/
/

For the numerical simulations, we take standard NNs settings, and K is

an ellipse of parameters (a = 0.6, b = 1/0.6).
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Ongoing work and perspectives

» Publish the open source code GeSONN (GEometric Shape
Optimization with Neural Networks)

» Investigate GeSONN for the compliance loss function
» Adapt GeSONN to the other equations
» Fixed point algorithm
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