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Abstract Example: Road network map with modeling metric graph

We focus on a machine learning approach for quantum graphs, i.e. metric graphs
with an associated differential operator.

In our case the differential equation is a nonlinear drift-diffusion equation.
Computational methods for quantum graphs require a careful discretization of the
differential operator that also incorporates the node conditions, in our case
Kirchhoff-Neumann conditions. Traditional numerical schemes are rather mature
but have to be tailored manually when the differential equation becomes the

constraint in an optimization problem. (b) A metric graph modeling a compact

We train physics-informed DeepONet models on a Simple reference graph and (a) A street network in Chemnitz, Saxony, road network within the left road network.
show how to combine them for the solution of quantum graphs. Germany. Image from Google maps. Central Empty circles are interior vertices while
point coordinates: 50.83, 12.90. filled ones depict exterior ones.
Quantum Graph Model: PDE, initial conditions ... ... and coupling conditions
Given a graph I' = (V, £) consisting of vertices v € V and edges ¢ € £ with Furthermore, there hold homogeneous Kirchhoff-Neumann cond’s and continuity

associated lengths /. > 0, we consider the non-linear drift-diffusion equation
Y Je(v)ne(v) =0 and p.(v) = po(v), foralle, e €&, ve VeV,

Orpe = 0:(€ Oppe — f(pe)), Torallz e (0,4.),e €&, ecé,
with f(p) = p (1 — p) and initial conditions with J. = —e d,p. + f(p.) and flux boundary conditions (inflow and outflow)
Pe (07 QZ) — uienit (:I?) , forallz € (07 86)7 e €. Z Je(v) ne(v) — _uLnﬂOW(t) (1 — ,OU) =+ USUtﬂOW(t) Pus forallve Vp =V \ Vic.
ecé,

1st step — Learning an edge surrogate model on a reference graph by physics-informed DeepONets

DeepONet FVM Pl DeepONet Difference

Figure: Example solution on reference edge by FVM (left), Pl

Figure: Illustration of PIDeepONet taken from [1]. DeepONet (middle), abs. difference (right)

Learning of an operator approximation Gy(u)(y) by Result 1st step: Approximation of the nonlinear
minimization of drift-diffusion operator which maps
Lohysics(0; u, y) + Linit(0; u, y) + Laow(0; u, y) (u,y) = ((uinﬂow Uoutflow Uinit), (; CC)) — Pe(t, x)
Figure: lllustration of random GP training data. using 5K training samples, 10K steps of ADAM, for (t,z) € [0,1] x [0,1], i.e., its solution on reference
no Kirchhoff-Neumann and continuity cond’s here. edge.

2nd Step — Applying the model to more complex graphs and ensuring coupling conditions (KN, continuity, in-/outflow)

Learning unknown flow parameters z € R"*" with
m =)y |E| by minimization of
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continuity loss
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Kirchhoff-Neumann loss regularization

» approach allows for solution of inverse problems
by incorpation of measured data

» faster and more flexible than PINN approach
considered in [3]. Figure: Solution on model graph at ¢t = 0.25and ¢t = 0.75 by

FVM (left), PI DeepONet (middle), abs. difference (right)

Figure: Model metric graph with known (solid black) and
unknown data (dashed red).
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