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Abstract

We focus on a machine learning approach for quantum graphs, i.e. metric graphs
with an associated differential operator.

In our case the differential equation is a nonlinear drift-diffusion equation.
Computational methods for quantum graphs require a careful discretization of the
differential operator that also incorporates the node conditions, in our case
Kirchhoff-Neumann conditions. Traditional numerical schemes are rather mature
but have to be tailored manually when the differential equation becomes the
constraint in an optimization problem.

We train physics-informed DeepONet models on a simple reference graph and
show how to combine them for the solution of quantum graphs.

Example: Road network map with modeling metric graph

(a) A street network in Chemnitz, Saxony,
Germany. Image from Google maps. Central
point coordinates: 50.83, 12.90.

(b) A metric graph modeling a compact
road network within the left road network.
Empty circles are interior vertices while
filled ones depict exterior ones.
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Quantum Graph Model: PDE, initial conditions ...

Given a graph Γ = (V , E) consisting of vertices v ∈ V and edges e ∈ E with
associated lengths ℓe > 0, we consider the non-linear drift-diffusion equation

∂tρe = ∂x(ϵ ∂xρe − f (ρe)), for all x ∈ (0, ℓe), e ∈ E ,

with f (ρ) = ρ (1 − ρ) and initial conditions

ρe (0, x) = uinit
e (x) , for all x ∈ (0, ℓe), e ∈ E .

... and coupling conditions

Furthermore, there hold homogeneous Kirchhoff-Neumann cond’s and continuity∑
e∈Ev

Je(v) ne(v) = 0 and ρe(v) = ρe′(v), for all e, e′ ∈ Ev, v ∈ VK ⊂ V ,

with Je = −ϵ ∂xρe + f (ρe) and flux boundary conditions (inflow and outflow)∑
e∈Ev

Je(v) ne(v) = −uinflow
v (t) (1 − ρv) + uoutflow

v (t) ρv, for all v ∈ VD := V \ VK.
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1st step – Learning an edge surrogate model on a reference graph by physics-informed DeepONets
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Figure: Illustration of random GP training data.

Figure: Illustration of PIDeepONet taken from [1].

Learning of an operator approximation Gθ(u)(y) by
minimization of

Lphysics(θ; u, y) + Linit(θ; u, y) + Lflow(θ; u, y)

using 5K training samples, 10K steps of ADAM,
no Kirchhoff-Neumann and continuity cond’s here.

Figure: Example solution on reference edge by FVM (left), PI
DeepONet (middle), abs. difference (right)

Result 1st step: Approximation of the nonlinear
drift-diffusion operator which maps

(u, y) =
(
(uinflow, uoutflow, uinit), (t, x)

)
7→ ρ̂u

e(t, x)

for (t, x) ∈ [0, 1] × [0, 1], i.e., its solution on reference
edge.
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2nd Step – Applying the model to more complex graphs and ensuring coupling conditions (KN, continuity, in-/outflow)
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Figure: Model metric graph with known (solid black) and
unknown data (dashed red).

Learning unknown flow parameters z ∈ Rm×nt with
m =

∑
v∈VK

|Ev| by minimization of∑
v∈VK

∑
e,e′∈Ev

(ρ̂u(z)
e (v) − ρ̂

u(z)
e′ (v))2

︸ ︷︷ ︸
continuity loss

+
∑
v∈VK

(∑
e∈Ev

(Ĵu(z)
e (v) ne(v)

)2

︸ ︷︷ ︸
Kirchhoff-Neumann loss

+ λ
∑
v∈VK

∑
e∈Ev

∥zv,e∥2
H1︸ ︷︷ ︸

regularization

▶ approach allows for solution of inverse problems
by incorpation of measured data

▶ faster and more flexible than PINN approach
considered in [3]. Figure: Solution on model graph at t = 0.25 and t = 0.75 by

FVM (left), PI DeepONet (middle), abs. difference (right)
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