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1) Motivation

Empirical risk minimization is a fundamental task in the field of deep learning:
For regular 𝑓 : [0, 1]𝑑 → [0, 1] determine a network 𝑓𝑁,𝐿 of width 𝑁, depth 𝐿

and predefined architecture minimizing the empirical risk based on SGD:

𝔼(∥ 𝑓𝑁,𝐿 − 𝑓 ∥𝐿1( [0,1]𝑑,ℙ)). (1)

Controllability of (1) is provided by full error analysis [JW23]:

𝔼(∥ 𝑓𝑁,𝐿 − 𝑓 ∥𝐿1( [0,1]𝑑,ℙ)) ≤ A(𝑁, 𝐿)︸  ︷︷  ︸
approximation error

+G(𝑁, 𝐿, 𝐾)𝑐𝐿+1︸           ︷︷           ︸
generalization error

+ O(𝑁, 𝐿, 𝑀)𝑐︸         ︷︷         ︸
optimization error

with 𝐾 random initializations of SGD, 𝑀 i.i.d. training samples and 𝑐 bounding
parameters of 𝑓𝑁,𝐿.

In practice. Choose 𝐾 and 𝑀 large enough to minimize (1).

Issue. 𝑐 depends on norm of network parameters.

2) Growth of parameters

Realization map for class of neural networks F and class of parameters Θ

R : Θ → F
𝜃 ↦→ N𝜃.

Width and depth. For N ∈ F of width 𝑁 and depth 𝐿 denote

W(N) = 𝑁 and D(N) = 𝐿.

Growth of parameters. For ∥ · ∥∞ the supremum norm on Θ, consider

P : F → [0,∞) (2)
N ↦→ min

𝜃∈Θ: R(𝜃)=N
∥𝜃∥∞.

• By standard arguments minimum in (2) is attained and P well defined.
• For 𝜃 ∈ Θ with R(𝜃) = N it holds P(N) ≤ ∥𝜃∥∞.

3) Objective

Approximation. For 𝑓 ∈ X ↩→ Y there exist 𝑓𝑁,𝐿 ∈ F of width W( 𝑓𝑁,𝐿) = 𝑤(𝑁)
and depth D( 𝑓𝑁,𝐿) = 𝑑(𝐿) for some increasing 𝑤, 𝑑 : ℕ → ℕ such that

∥ 𝑓𝑁,𝐿 − 𝑓 ∥Y ≤ ∥ 𝑓 ∥X𝛼X(𝑁, 𝐿) (3)

where 𝛼X : ℕ2 → [0,∞) decreases in both components - to zero in at least one.

Goal. Determine asymptotical behavior of growth of parameters P( 𝑓𝑁,𝐿).

Issue. Networks expandable, describing same network with smaller parameters.

Remedy. Consider network architectures with (nearly) optimal approximation
results w.r.t. width/depth/number of nonzero parameters.

Questions. · Do 𝑓𝑁,𝐿 as in (3) with (nearly) optimal approximability of 𝑓 w.r.t. width
and depth exist such that P( 𝑓𝑁,𝐿) grows polynomially in 𝑁, 𝐿?
• Difference between shallow/deep approximation results?
• Role of activation function of architecture?

4) The shallow approx. result in [M96] - exponential growth

Assumptions. · For simplicity 𝑑 = 1 and 𝑓 ∈ C𝑞((−1, 1)) for 𝑞 ≥ 2.
• Existence of 𝑏 ∈ ℝ, 𝛿 > 0 and 𝜎 ∈ C∞((𝑏 ± 𝛿)) with 𝜎(𝑝)(𝑏) ≠ 0 for 𝑝 ∈ ℕ0.

Approximation. For some 𝐶 > 0
∥ 𝑓𝑁 − 𝑓 ∥𝐿∞((−1,1)) ≤ 𝐶𝑁−𝑞∥ 𝑓 ∥C𝑞((−1,1)).

Network.
𝑓𝑁(𝑥) =

∑︁
0≤𝑟≤𝑝≤𝑘≤2𝑁

𝐶𝑟,𝑝,𝑘𝜎(ℎ(2𝑟 − 𝑝) · 𝑥 + 𝑏)

with 𝐶𝑟,𝑝,𝑘 trigonometric coefficients depending on 𝑓 , 𝑏, 𝛿, 𝑁 and ℎ certain step
size decreasing to zero for increasing 𝑁. Note that W( 𝑓𝑁) = O(𝑁).

Theorem (Exponential growth of parameters). For
• 𝑓 (𝑞) absolutely continuous and 𝑓 (𝑞+1) discontinuous
• activation 𝜎(𝑥) = exp(−𝑥2) or 𝜎(𝑥) = (1 + exp(−𝑥))−1

Exponential growth of parameters follows, i.e., there exists (𝑁𝑙)𝑙 ⊂ ℕ, 𝑐 > 0:

P( 𝑓𝑁𝑙
) ≳ 𝑐𝑁𝑙.

5) Modified deep approx. result in [LSYZ21] - polynomial growth

Approximation. For 𝑓 ∈ C𝑞( [0, 1]𝑑) with Lipschitz constant 𝐿 there exist ReLU
feed forward neural networks 𝑓𝑁,𝐿 of width W( 𝑓𝑁,𝐿) = O(𝑁 log𝑁) and depth
D( 𝑓𝑁,𝐿) = O(𝐿2 log 𝐿) such that for some 𝐶 > 0

∥ 𝑓𝑁,𝐿 − 𝑓 ∥𝐿∞( [0,1]𝑑) ≤ 𝐶∥ 𝑓 ∥C𝑞( [0,1]𝑑)𝑁
−2𝑞/𝑑𝐿−2𝑞/𝑑.

Network. For 𝑒𝑖 the 𝑖-th canonical unit vector, 𝑓𝑁,𝐿 = 𝜓𝑁,𝐿
𝑑

is constructed by

𝜓𝑁,𝐿
𝑖+1 (𝑥) = median(𝜓𝑁,𝐿

𝑖 (𝑥 − 𝛿𝑒𝑖+1), 𝜓𝑁,𝐿
𝑖 (𝑥), 𝜓𝑁,𝐿

𝑖 (𝑥 + 𝛿𝑒𝑖+1))

with 0 < 𝛿 ≤ 𝑑−1𝐿−1𝑁−2𝑞/𝑑𝐿−2𝑞/𝑑 such that

𝜓𝑁,𝐿
0 (𝑥) =

∑︁
∥𝛼∥1≤𝑞−1

𝜑𝑁,𝐿( 1
𝛼!
𝜙𝑁,𝐿
𝛼 (Ψ𝑁,𝐿(𝑥)), 𝑃𝑁,𝐿𝛼 (𝑥 − Ψ𝑁,𝐿(𝑥)))

where the ReLU FFNN
•Ψ𝑁,𝐿 realize projections of subcubes of [0, 1]𝑑 to one corner of subcube
•𝑃𝑁,𝐿𝛼 approximate multinomials of order at most 𝑞 − 1
•𝜙𝑁,𝐿

𝛼 achieve fitting partial derivatives of 𝑓 of order at most 𝑞−1 at the corners
of the subcubes to which Ψ𝑁,𝐿 projects
•𝜑𝑁,𝐿 approximate binomials

Architectures.
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𝑥
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𝑥 𝑥 − Ψ(𝑥)

𝜙𝛼 (Ψ(𝑥)) 𝜙𝛼 (Ψ(𝑥))
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𝜑
(
𝜙𝛼 (Ψ(𝑥))
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)Ψ

𝜙𝛼

𝑃𝛼
𝜑

Theorem [★] (Polynomial growth of parameters). It holds true that

P( 𝑓𝑁,𝐿) = O(max(𝑁(6𝑞−3)/𝑑𝐿(6𝑞−2)/𝑑, 𝑁𝐿(𝑁 + 𝐿2))).

6) Comparison to existing literature

For 𝑓 ∈ C𝑞( [0, 1]𝑑) under normalized width and 𝜖 > 0:

Result Width Depth Approximation Growth of parameters Activation

Th. [★] O(𝑁) O(𝐿) O(𝑁
−2𝑞

𝑑(1+𝜖)𝐿
−𝑞

𝑑(1+𝜖)) O(𝑁6𝑞−3
𝑑 𝐿

3𝑞−1
𝑑 ∨ 𝑁2𝐿3/2) ReLU

[BNPS23] O(𝑁) O(1) O(𝑁−𝑞/𝑑) O(1) ReQU
[DLM21] O(𝑁) 3 O(𝑁−𝑞/𝑑) O(𝑁(𝑑+𝑞2)/2) tanh

[L21] O(𝑁) O(1) O(𝑁−2𝑞/𝑑) O(𝑁(16𝑞+2𝑑+9)/𝑑) 1
1+exp(−𝑥)

• Except for [BNPS23] the growth of parameters of Theorem [★] is slower in
most cases (in particular 𝑑 ≥ 3).

Result Nonzero weights Approximation Growth of parameters Activation

Th. [★] O(𝑊) O(𝑊−𝑞/𝑑) O(𝑊9𝑞−4
2𝑑 ∨7

4) ReLU
[GR21] O(𝑊) O(𝑊−𝑞/𝑑) O(𝑊4+2𝑞/𝑑) RePU, soft+, ...

• Growth of parameters of Theorem [★] is slower if 18𝑞 ≤ 7𝑑 + 8.
For 18𝑞 > 7𝑑 + 8 only if 5𝑞 ≤ 8𝑑 + 4.

7) Significance

•Polynomial rates achievable for growth of parameters for (nearly) optimal
feed forward neural network approximation
• Direct consequences for full error analysis and neural network training
• Obtained growth for analyzed deep approximation result slower compared to
literature for high dimensional input (except for [BNPS23] with ReQU)
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