

On the growth of parameters of approximating neural networks

MARTIN HOLLER AND ERION MORINA

Contact: erion.morina@uni-graz.at Research Group: Mathematics of Data Science Department of Mathematics and Scientific Computing University of Graz

Motivation 1)

Empirical risk minimization is a fundamental task in the field of deep learning: For regular $f : [0, 1]^d \rightarrow [0, 1]$ determine a network $f_{N,L}$ of width N, depth L and predefined architecture minimizing the empirical risk based on SGD:

$$\mathbb{E}(\|f_{N,L} - f\|_{L^{1}([0,1]^{d},\mathbb{P})}).$$
(1)

Controllability of (1) is provided by **full error analysis** [JW23]:

 $\mathbb{E}(\|f_{N,L} - f\|_{L^{1}([0,1]^{d},\mathbb{P})}) \leq \mathbf{A}(N,L) + \mathbf{G}(N,L,K)c^{L+1} + \mathbf{O}(N,L,M)c$

generalization error approximation error optimization error with K random initializations of SGD, M i.i.d. training samples and c bounding parameters of $f_{N,L}$.

Modified deep approx. result in [LSYZ21] - polynomial growth 5)

Approximation. For $f \in C^q([0,1]^d)$ with Lipschitz constant \tilde{L} there exist ReLU feed forward neural networks $f_{N,L}$ of width $\mathcal{W}(f_{N,L}) = O(N \log N)$ and depth $\mathcal{D}(f_{N,L}) = O(L^2 \log L)$ such that for some C > 0

 $\|f_{N,L}-f\|_{L^{\infty}([0,1]^d)} \leq C \|f\|_{C^q([0,1]^d)} N^{-2q/d} L^{-2q/d}.$

Network. For e_i the *i*-th canonical unit vector, $f_{N,L} = \psi_d^{N,L}$ is constructed by

 $\psi_{i+1}^{N,L}(x) = \text{median}(\psi_{i}^{N,L}(x - \delta e_{i+1}), \psi_{i}^{N,L}(x), \psi_{i}^{N,L}(x + \delta e_{i+1}))$

with $0 < \delta \leq d^{-1}\tilde{L}^{-1}N^{-2q/d}L^{-2q/d}$ such that $\psi_0^{N,L}(x) = \sum \varphi^{N,L}(\frac{1}{\alpha!}\phi_\alpha^{N,L}(\Psi^{N,L}(x)), P_\alpha^{N,L}(x-\Psi^{N,L}(x)))$

In practice. Choose K and M large enough to minimize (1).

Issue. *c* depends on norm of network parameters.

Growth of parameters 2)

Realization map for class of neural networks \mathcal{F} and class of parameters Θ

 $\mathcal{R}: \Theta \to \mathcal{F}$ $\theta \mapsto \mathcal{N}_{\theta}.$

Width and depth. For $\mathcal{N} \in \mathcal{F}$ of width N and depth L denote

 $\mathcal{W}(\mathcal{N}) = \mathcal{N}$ and $\mathcal{D}(\mathcal{N}) = \mathcal{L}$.

Growth of parameters. For $\|\cdot\|_{\infty}$ the supremum norm on Θ , consider

$$\mathcal{P}: \mathcal{F} \to [0, \infty)$$

$$\mathcal{N} \mapsto \min_{\theta \in \Theta: \ \mathcal{R}(\theta) = \mathcal{N}} \|\theta\|_{\infty}.$$
(2)

• By standard arguments minimum in (2) is attained and $\mathcal P$ well defined.

• For $\tilde{\theta} \in \Theta$ with $\mathcal{R}(\tilde{\theta}) = \mathcal{N}$ it holds $\mathcal{P}(\mathcal{N}) \leq \|\tilde{\theta}\|_{\infty}$.

$\|\alpha\|_1 \leq q-1$

where the ReLU FFNN

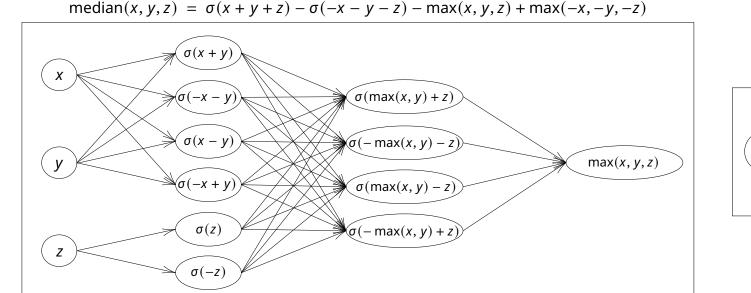
• $\Psi^{N,L}$ realize projections of subcubes of $[0, 1]^d$ to one corner of subcube

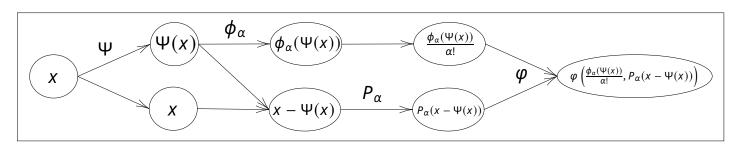
• $P_{q}^{N,L}$ approximate multinomials of order at most q-1

• $\phi_{\alpha}^{N,L}$ achieve fitting partial derivatives of f of order at most q-1 at the corners of the subcubes to which $\Psi^{N,L}$ projects

• $\varphi^{N,L}$ approximate binomials

Architectures.





Theorem [**★**] (Polynomial growth of parameters). It holds true that $\mathcal{P}(f_{N,L}) = O(\max(N^{(6q-3)/d}L^{(6q-2)/d}, NL(N+L^2))).$

Objective 3)

Approximation. For $f \in \mathcal{X} \hookrightarrow \mathcal{Y}$ there exist $f_{N,L} \in \mathcal{F}$ of width $\mathcal{W}(f_{N,L}) = w(N)$ and depth $\mathcal{D}(f_{N,L}) = d(L)$ for some increasing $w, d : \mathbb{N} \to \mathbb{N}$ such that

> $||f_{N,L} - f||_{\mathcal{Y}} \le ||f||_{\mathcal{X}} \alpha_{\mathcal{X}}(N,L)$ (3)

where $\alpha_X : \mathbb{N}^2 \to [0, \infty)$ decreases in both components - to zero in at least one.

Goal. Determine asymptotical behavior of growth of parameters $\mathcal{P}(f_{N,L})$.

Issue. Networks expandable, describing same network with smaller parameters.

Remedy. Consider network architectures with (nearly) optimal approximation results w.r.t. width/depth/number of nonzero parameters.

Questions. • Do $f_{N,L}$ as in (3) with (nearly) optimal approximability of f w.r.t. width and depth exist such that $\mathcal{P}(f_{N,L})$ grows polynomially in N, L?

- Difference between shallow/deep approximation results?
- Role of activation function of architecture?

The shallow approx. result in [M96] - exponential growth **4)**

Assumptions. • For simplicity d = 1 and $f \in C^q((-1, 1))$ for $q \ge 2$.

• Existence of $b \in \mathbb{R}$, $\delta > 0$ and $\sigma \in C^{\infty}((b \pm \delta))$ with $\sigma^{(p)}(b) \neq 0$ for $p \in \mathbb{N}_0$.

Approximation. For some C > 0

Comparison to existing literature 6)

For $f \in C^q([0, 1]^d)$ under normalized width and $\epsilon > 0$:

Result	Width	Depth	Approximation	Growth of parameters	Activation
Th. [★]	O(N)	O(L)	$O(N^{\frac{-2q}{d(1+\epsilon)}}L^{\frac{-q}{d(1+\epsilon)}})$	$O(N^{\frac{6q-3}{d}}L^{\frac{3q-1}{d}} \vee N^2L^{3/2})$	ReLU
[BNPS23]	O(N)	<i>O</i> (1)	$O(N^{-q/d})$	<i>O</i> (1)	ReQU
[DLM21]	O(N)	3	$O(N^{-q/d})$	$O(N^{(d+q^2)/2})$	tanh
[L21]	O(N)	<i>O</i> (1)	$O(N^{-2q/d})$	$O(N^{(16q+2d+9)/d})$	$\frac{1}{1 + \exp(-x)}$

• Except for [BNPS23] the growth of parameters of Theorem $[\star]$ is slower in most cases (in particular $d \ge 3$).

Result	Nonzero weights	Approximation	Growth of parameters	Activation
Th. [★]	O(W)	$O(W^{-q/d})$	$O(W^{rac{9q-4}{2d}ee rac{7}{4}})$	ReLU
[GR21]	O(W)	$O(W^{-q/d})$	$O(W^{4+2q/d})$	RePU, soft+,

• Growth of parameters of Theorem $[\star]$ is slower if $18q \leq 7d + 8$. For 18q > 7d + 8 only if $5q \le 8d + 4$.

Significance 7)

$$\|f_N - f\|_{L^{\infty}((-1,1))} \leq C N^{-q} \|f\|_{C^q((-1,1))}.$$

Network.

$$f_N(x) = \sum_{0 \le r \le p \le k \le 2N} C_{r,p,k} \sigma(h(2r-p) \cdot x + b)$$

with $C_{r,p,k}$ trigonometric coefficients depending on f, b, δ, N and h certain step size decreasing to zero for increasing N. Note that $\mathcal{W}(f_N) = O(N)$.

Theorem (Exponential growth of parameters). For • $f^{(q)}$ absolutely continuous and $f^{(q+1)}$ discontinuous • activation $\sigma(x) = \exp(-x^2)$ or $\sigma(x) = (1 + \exp(-x))^{-1}$ Exponential growth of parameters follows, i.e., there exists $(N_l)_l \subset \mathbb{N}$, c > 0: $\mathcal{P}(f_{N_l}) \gtrsim c^{N_l}$.

• Polynomial rates achievable for growth of parameters for (nearly) optimal feed forward neural network approximation

• Direct consequences for **full error analysis** and neural network training

• Obtained growth for analyzed deep approximation result slower compared to literature for **high dimensional input** (except for [BNPS23] with ReQU)

References 8)

[BNPS23] D. Belomestny, A. Naumov, N. Puchkin, and S. Samsonov. Simultaneous approximation of a smooth function and its derivatives by deep neural networks with piecewise-polynomial activations. Neural Networks, 2023.

[DLM21] T. De Ryck, S. Lanthaler, and S. Mishra. On the approximation of functions by tanh neural networks. Neural Networks, 2021. [GKP20] I. Gühring, G. Kutyniok, and P. Petersen. Error bounds for approximations with deep relu neural networks in W^{s,p} norms. Analysis and Applications, 2020. [GR21] I. Gühring and M. Raslan. Approximation rates for neural networks with encodable weights in smoothness spaces. Neural Networks, 2021. [JW23] A. Jentzen and T. Welti. Overall error analysis for the training of deep neural networks via stochastic gradient descent with random initialisation. Applied Mathematics and Computation, 2023.

[L21] S. Langer. Approximating smooth functions by deep neural networks with sigmoid activation function. Journal of Multivariate Analysis, 2021. [LSYZ21] J. Lu, Z. Shen, H. Yang, and S. Zhang. Deep network approximation for smooth functions. SIAM Journal on Mathematical Analysis, 2021. [M96] H. Mhaskar. Neural networks for optimal approximation of smooth and analytic functions. Neural Computation, 1996.