On the growth of parameters of approximating neural networks
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1) Motivation 5) Modified deep approx. result in [LSYZ21] - polynomial growth
Empirical risk minimization is a fundamental task in the field of deep learning: Approximation. For f € CY([0, 1]%) with Lipschitz constant L there exist ReLU
For regular f : [0,1]9 — [0, 1] determine a network fy, of width N, depth L feed forward neural networks fy; of width W (fy,) = O(N log N) and depth
and predefined architecture minimizing the empirical risk based on SGD: D(fn1) = O(L?log L) such that for some C > 0

EClfrve = flloonee)). (1) | v = Flli=ro,79) < CHf”cq([oA]d)N_Zq/dL_Zq/d-
Controllability of (1) is provided by full error analysis [JW23]: Network. For e; the i-th canonical unit vector, fy , = g’L Is constructed by
_ 1 < L+1 , . , , ,
E(llfne = flloonepy) < AN, L) "'f(N’ L;K)C 7 ?(N’i’ M)E Y0 (x) = median(PF(x — 8ei), Y (x), Pt (x + Sejyr))
approximation error  generalization error  optimization error . —17=1p=29/d | —2q/d
. < q q
with K random initializations of SGD, M 1.1.d. training samples and ¢ bounding with 0 < 5N_L aLoN : ?UCDLthat -
parameters of fi,. gt = ), @M ga (W), Pt (x = W (X))
laf[1<g—1 '

In practice. Choose K and M large enough to minimize (1). where the ReLU FENN
Issue. ¢ depends on norm of network parameters. - WN:L realize projections of subcubes of [0, 1]9 to one corner of subcube

2) Growth of parameters . P2t approximate multinomials of order at most g — 1

"t achieve fitting partial derivatives of f of order at most g — 1 at the corners
Realization map for class of neural networks # and class of parameters © of the subcubes to which WYVt projects
R: O —>F - 'L approximate binomials
0 — NQ.

Width and depth. For N € ¥ of width N and depth L denote Architectures.

median(x, y,z) = a(x+y+2z) —o(—x —y —z) —max(x, y,z) + max(—x, -y, —2)

WN)=N and DN)=L.
Growth of parameters. For || - || the supremum norm on ©, consider
P:. F — [0,00) (2)
N min |0
0cO: R(6)=N
- By standard arguments minimum in (2) is attained and # well defined.
.For 8 € © with R(8) = N it holds P(N) < [|8]|w. Theorem [x] (Polynomial growth of parameters). It holds true that

P(fy1) = O(max(N©I737/d(8a=2)/d N (N + [2))).
3) Objective

Approximation. For f € X < Y there exist fy, € F of width W (fy,) = w(N) 6) Comparison to existing literature
and depth D(fy,) = d(L) for some increasing w,d : N — N such that For f € C9([0. 119 under normalized width and € > 0
[ fve = flly < |[fllxax(N, L) (3)
where ax : N> — [0, o) decreases in both components - to zero in at least one. Result Width Depth Approximation Growth of parameters Activation
_12-:’6 ;-?-e 243 24 2 3/2

Goal. Determine asymptotical behavior of growth of parameters P (fy..). Th. [*x] O(N) O(L) O(N@waLaa) O(N-a L a v N°L>?)  RelU

- . [BNPS23] O(N) O(1) O(N~9/9) 0(1) ReQU
Issue. Networks expandable, describing same network with smaller parameters. [DLM21]  O(N) 3 O(N-9/9) O (N (@+3)/2) tanh
Remedy. Consider network architectures with (nearly) optimal approximation [L21]  O(N) O(1) O(N—24/%) O (N (16q+2d+9)/d) 1

T+exp(—x)

results w.r.t. width/depth/number of nonzero parameters. - Except for [BNPS23] the growth of parameters of Theorem [*] is slower in

Questions. - Do fy ; asin (3) with (nearly) optimal approximability of f w.r.t. width most cases (in particular d > 3).
and depth exist such that £ (fy 1) grows polynomially in N, L?

Result Nonzero weights Approximation Growth of parameters Activation

- Difference between shallow/deep approximation results? oq—. 7
Sole of activation f . P R Th. | *] O(W) O(W‘Q/d) O (W=7 V7) RelLU
ole of activation function of architecture: GR1] oOW) O (W3l O (Wil RePU. softe. .
4) The shallow approx. result in [M96] - exponential growth - Growth of parameters of Theorem [*] is slower if 18g < 7d + 8.

For 18g > 7d + 8 only if 59 < 8d + 4.
Assumptions. - For simplicityd =1 and f € C9((-1,1)) forg > 2.

+Existenceof b € R, > 0and g € C*((b £ 6)) with a® (b) # 0 for p € Ny. 7) Significance

Approximation. For some C > 0 - Polynomial rates achievable for growth of parameters for (nearly) optimal

v = Fllie(=1,1)) < CN_quHCq((—Lﬂ)- feed forward neural network approximation
Network. - Direct consequences for full error analysis and neural network training
fu)= Y Crpua(h(2r=p)-x+b) . o
0<r<p=k<2N - Obtained growth for analyzed deep approximation result slower compared to
with C, , x trigonometric coefficients depending on f, b, 8, N and h certain step literature for high dimensional input (except for [BNPS23] with ReQU)

size decreasing to zero for increasing N. Note that W (fy) = O(N). 8) References

Theorem (Exponential growth of parameters). For

[BNPS23] D. Belomestny, A. Naumov, N. Puchkin, and S. Samsonov. Simultaneous approximation of a smooth function and its derivatives by deep neural networks

o f(CI) a bSO lUte ly cO nt| nuous a nd f(q+1 ) d |SCO nt| nuous with piecewise-polynomial activations. Neural Networks, 2023.

[DLM21] T. De Ryck, S. Lanthaler, and S. Mishra. On the approximation of functions by tanh neural networks. Neural Networks, 2021.
. . 2 —1 [GKP20] I. Giihring, G. Kutyniok, and P. Petersen. Error bounds for approximations with deep relu neural networks in W*” norms. Analysis and Applications, 2020.
- activation g(x) = exp(—x<) ora(x) = (1 + exp(—x))

[GR21] I. Giihring and M. Raslan. Approximation rates for neural networks with encodable weights in smoothness spaces. Neural Networks, 2021.
[Jw23] A. Jentzen and T. Welti. Overall error analysis for the training of deep neural networks via stochastic gradient descent with random initialisation. Applied

Exponential growth of parameters follows, i.e., there exists (N;); C N, ¢ > 0: Mathematics and Computation, 2023
[L21] S. Langer. Approximating smooth functions by deep neural networks with sigmoid activation function. Journal of Multivariate Analysis, 2021.
Nl [LSYZ21] J. Lu, Z. Shen, H. Yang, and S. Zhang. Deep network approximation for smooth functions. SIAM Journal on Mathematical Analysis, 2021.
N) < C .

[M96] H. Mhaskar. Neural networks for optimal approximation of smooth and analytic functions. Neural Computation, 1996.



