High-Resolution Image Segmentation with a U-Net-Based Segmentation
CNN on Multiple GPUs

Introduction

Most semantic image segmentation models focus on low- tation by combining strategies from Domain Decomposi- with existing U-Net variants lies in their large memory re-
resolution images, neglecting the challenges posed by tion Methods (DDMs) with machine learning, aiming to quirements, making them unsuitable for high-resolution
high-resolution datasets due to extremely high GPU mem- optimize memory usage while conserving accurate seg- applications. In our novel approach, we integrate the
ory constraints. Conventional approaches to processing mentation results. U-Net architecture with a divide-and-conquer spatial do-
high-resolution images, such as down-sapling or patch main decomposition strategy. Our approach enables the
cropping, often lead to the loss of either fine-grained de- Our proposed approach (see Figures 1, 2, and 3) builds memory-efficient segmentation of high-resolution images
tails or global contextual information. In this work, we upon the U-Net architecture, a well-established CNN for while minimizing communication overhead.

address the challenge of high-resolution image segmen- image segmentation tasks. However, the main challenge
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Figure 1: Global overview of the proposed model for four Figure 2: Proposed architecture for the encoder-decoder Figure 3: Proposed communication network architecture.

subdomains. architecture.

Experimental setup Qualitative results

true mask proposed with comm. proposed without comm. Baseline U-Net

We evaluate the proposed model architecture on a synthetic dataset (see Figure 5) and
a realistic dataset (see Figure 6) to answer the following questions:

« Memory efficiency: What are the memory requirements for the proposed archi-
tecture compared to the U-Net architecture? (See Figure 4)

« Communication network: What is the role of the communication network?
(See Figure 7)

« Accuracy: What is the accuracy of the generated segmentations, quantitatively
and qualitatively? (See Figures 5, 6 and Table 1)

Figure 5: From left to right: true mask, mask predicted w/ communication module, mask predicted

Memory efficiency and accuracy w/o communication module, and mask predicted by baseline U-Net.

Our study indicates that our model architecture requires slightly more memory per de-
vice compared to a baseline U-Net. However, in contrast to the baseline U-Net, our
method incorporates a communication module, facilitating the transfer of contextual
information among devices (see Figure 4).
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Figure 6: From left to right: true mask, mask predicted w/ communication module, mask predicted

oo e oo = w/o communication module, and mask predicted by baseline U-Net.
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Figure 4: Peak memory usage per GPU during training for the proposed model and the U-Net.
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proposed w/o communication 0.7025 0.6474 0.6631 Figure 7: loU score as a function of the number of feature maps communicated for different U-Net
Table 1: Mean loU score for the DeepGlobe Satellite Segmentation Dataset depths for the synthetic dataset. Class 0: background, Class 1: line segment, Class 2: circle.
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