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Introduction

The simplest neural ODE is

ẋ(t) = σ (Ax(t) + b) , t ∈ [0,T ],

where A ∈ Rn,n, b ∈ Rn and σ : R → R is a smooth activation
function that acts entry-wise such that σ′(R) ⊂ [m, 1], m > 0.

Integrating with the Euler method with constant step size h yields

xk+1 = xk + hσ (Axk + b) , k = 0, 1, . . .

Using suitable numerical methods, we can build a neural network that
preserves some properties of the differential equation, e.g. stability.
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Preliminary definitions

The symmetric part of a matrix A is

Sym(A) =
A+ A⊤

2
.

The logarithmic 2-norm of a matrix A is

µ2(A) = λmax (Sym(A)) .

The positive part of a real-valued function f is defined as

(f (x))+ = max(0, f (x)).

Given 0 < m ≤ 1, define

Ωm = {D ∈ Dn,n : m ≤ Dii ≤ 1 ∀i = 1, . . . , n}.
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Stability (1/2)

We wish, for any two solutions x1(t) and x2(t), that the bound

∥x1(t)− x2(t)∥2 ≤ C∥x1(0)− x2(0)∥2, ∀t ∈ [0,T ],

is satisfied for a moderately sized constant C > 0.

Let f (t, x) = σ (Ax + b). The bound above is satisfied if there exists
µ ∈ R such that

⟨f (t, x)− f (t, y), x − y⟩2 ≤ µ∥x − y∥22

for all x , y ∈ Rn and t ∈ [0,T ]. Then C = eµT .
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Stability (2/2)

The neural ODE satisfies the one-sided Lipschitz condition with

µ = max
D∈Ωm

µ2 (DA) ,

(see Guglielmi et al., 2024).

Then

∥x1(t)− x2(t)∥2 ≤ eµt∥x1(0)− x2(0)∥2, ∀t ∈ [0,T ],

is satisfied, therefore the neural ODE (2)

1. might be slightly unstable if µ ≤ c , with c > 0 small;
2. is non-expansive if µ ≤ 0;
3. is contractive if µ < 0.

We are interested in cases 2. and 3.
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Optimal stabilization

Our goal is to compute a matrix B ∈ Rn,n such that

max
D∈Ωm

µ2(DB) = δ ≤ 0 and B = argmin
M∈Rn,n

∥M − A∥F .

We write B = A+ εE , where E ∈ Rn,n, ∥E∥F = 1, and ε > 0.

Bilevel optimization

Inner level. Fixed ε > 0, we aim to minimize

Fε(E ) =
1

2

n∑
i=1

(λi (Sym(D⋆(A+ εE )))− δ)2+,

over E ∈ Rn,n, ∥E∥F = 1, with D⋆ = argmaxD∈Ωm
µ2(D(A+ εE ))

and δ ∈ R. We denote a minimum as E [ε].

Outer level. We look for the smallest zero ε⋆ of

f (ε) = Fε(E [ε]).
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Inner level

We consider E a smooth matrix valued function of t, E = E (t), and
we use the following lemma to compute d

dtFε(E (t)).

Lemma

Consider a symmetric continuously differentiable C (t) : R → Rn,n. Let
λ(t) be a simple eigenvalue of C (t) for all t and let x(t) with ∥x(t)∥2 = 1
be the associated eigenvector. Then λ(t) is differentiable with

λ̇(t) = x(t)⊤Ċ (t)x(t) = ⟨x(t)x(t)⊤, Ċ (t)⟩F .

Setting C (t) = A+ εE (t), we obtain the norm-preserving gradient
system for the functional Fε(E (t)):

Ė = −G (E ) + ⟨G (E ),E ⟩FE ,

with G (E ) =
∑n

i=1 γizix
⊤
i , xi eigenvector to λi (Sym(D⋆(A+ εE ))),

zi = D⋆xi and γi = (λi (Sym(D⋆(A+ εE )))− δ)+.
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Outer level

We seek for the zero of f (ε) = Fε(E [ε]).

Let λi [ε] and xi [ε] be the eigenvalues and the eigenvectors of
Sym(D⋆(A+ εE [ε])).

Assumption

For ε close to ε⋆ and ε < ε⋆, we assume that the eigenvalues λi [ε] of
Sym(D⋆(A+ εE [ε])) are simple eigenvalues. Moreover, E [ε], λi [ε] and
xi [ε] are assumed to be smooth functions of ε.

Newton method

εk+1 = εk −
f (εk)

f ′(εk)
, k = 0, 1, . . .

An inexpensive formula: under the given Assumption, it holds

f ′(ε) = −∥G [ε]∥F .
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Summary

Recall that
B = A+ εE ,

with E ∈ Rn,n, ∥E∥F = 1, ε > 0, and f (ε) = Fε(E [ε]).

1. Fix ε0 > 0 and k = 0.

2. Integrate the constrained gradient system for E at level ε0 to get
E [ε0].

3. While f (εk) > 0:

3.1. update

εk+1 = εk −
f (εk)

f ′(εk)
;

3.2. integrate the constrained gradient system for E at level εk+1 to
get E [εk+1];

3.3. k = k + 1.
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What do we do?

Training the neural ODE means updating A and b until a scalar
function L(A, b) is minimized. Starting from an initial guess of the
parameters A0 and b0,

Ak+ 1
2
= Ak − h∇AL(Ak , bk),

bk+1 = bk − h∇bL(Ak , bk),

where h is a sufficiently small step size.

We set
Ak+1 = Ak+ 1

2
+ ε⋆E [ε⋆],

with ε⋆ and E [ε⋆] computed according to the above-mentioned
numerical procedure to get

µ2(D⋆Ak+1) = δ ≤ 0.
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MNIST dataset

Full perturbation E
ε 0 0.01 0.02 0.03 0.04 0.05 0.06

Reference 97.29% 94.49% 89.07% 77.73% 61.95% 46.61% 34.14%
δ = 0 93.59% 89.21% 82.09% 69.84% 52.19% 35.15% 22.33%

δ = −0.1 96.97% 94.39% 90.19% 83.48% 72.83% 58.71% 42.48%
δ = −0.2 97.25% 95.48% 91.98% 86.35% 78.44% 66.26% 52.29%
δ = −0.3 96.2% 93.74% 89.5% 83.57% 74.35% 62.49% 49.61%

Diagonal perturbation E
ε 0 0.01 0.02 0.03 0.04 0.05 0.06

Reference 97.29% 94.49% 89.07% 77.73% 61.95% 46.61% 34.14%
δ = 0 97.25% 95.07% 91.63% 85.87% 75.31% 60.81% 46.21%

δ = −0.1 97.36% 95.36% 92.23% 87.48% 78.78% 66.21% 51.81%
δ = −0.2 96.95% 94.63% 91.54% 85.59% 77.17% 64.65% 50.15%
δ = −0.3 95.9% 93.27% 89.48% 83.04% 73.1% 60.31% 46.49%
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FashionMNIST dataset

Full perturbation E
ε 0 0.01 0.02 0.03 0.04 0.05 0.06

Reference 88.07% 75.17% 57.2% 38.83% 23.37% 12.59% 6.35%
δ = 0 85.33% 73.31% 57.24% 42.13% 28.33% 18.23% 11.38%

δ = −0.1 86.98% 74.6% 58.19% 43.36% 29.83% 19.11% 11.78%
δ = −0.2 86.93% 75% 59.88% 44.05% 30.38% 19.62% 12.85%
δ = −0.3 86.77% 75.4% 60.11% 44.71% 31.01% 20.44% 13.48%

Diagonal perturbation E
ε 0 0.01 0.02 0.03 0.04 0.05 0.06

Reference 88.07% 75.17% 57.2% 38.83% 23.37% 12.59% 6.35%
δ = 0 87.05% 75.92% 60.75% 45.69% 31.62% 20.41% 13.15%

δ = −0.1 87.41% 76.12% 61.33% 46.2% 32.53% 21.53% 14.24%
δ = −0.2 87.23% 76.15% 61.55% 46.44% 33.11% 22.14% 14.63%
δ = −0.3 87.18% 75.43% 60.47% 45.49% 31.8% 20.88% 13.22%
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Take home message

Our goal is to make a neural ODE contractive.

We have encountered an eigenvalue optimization problem.

We have embedded the developed algorithm in the state-of-the-art
training strategy of a neural ODE.

Numerical experiments show a significant improvement in robustness.
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Some references

N. Guglielmi, A. De Marinis, A. Savostianov and F. Tudisco,
Contractivity of neural ODEs: an eigenvalue optimization problem,
arXiv preprint arXiv:2402.13092, 2024.

R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud,
Neural ordinary differential equations, Advances in Neural Information
Processing Systems, 2018.

Thanks for your attention!
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