Stability of neural ordinary differential equations

Arturo De Marinis¹, Nicola Guglielmi¹, Anton Savostianov¹, Stefano Sicilia¹, Francesco Tudisco^{1,2}

¹Gran Sasso Science Institute (GSSI), L'Aquila, Italy

²University of Edinburgh, Edinburgh, United Kingdom

25 April 2024

Stability of neural ODEs

• The simplest neural ODE is

$$\dot{x}(t) = \sigma \left(Ax(t) + b \right), \qquad t \in [0, T],$$

where $A \in \mathbb{R}^{n,n}$, $b \in \mathbb{R}^n$ and $\sigma : \mathbb{R} \to \mathbb{R}$ is a smooth activation function that acts entry-wise such that $\sigma'(\mathbb{R}) \subset [m, 1]$, m > 0.

• The simplest neural ODE is

$$\dot{x}(t) = \sigma \left(Ax(t) + b \right), \qquad t \in [0, T],$$

where $A \in \mathbb{R}^{n,n}$, $b \in \mathbb{R}^n$ and $\sigma : \mathbb{R} \to \mathbb{R}$ is a smooth activation function that acts entry-wise such that $\sigma'(\mathbb{R}) \subset [m, 1]$, m > 0.

• Integrating with the Euler method with constant step size h yields

$$x_{k+1} = x_k + h\sigma (Ax_k + b), \quad k = 0, 1, \dots$$

• The simplest neural ODE is

$$\dot{x}(t) = \sigma \left(Ax(t) + b \right), \qquad t \in [0, T],$$

where $A \in \mathbb{R}^{n,n}$, $b \in \mathbb{R}^n$ and $\sigma : \mathbb{R} \to \mathbb{R}$ is a smooth activation function that acts entry-wise such that $\sigma'(\mathbb{R}) \subset [m, 1]$, m > 0.

• Integrating with the Euler method with constant step size h yields

$$x_{k+1} = x_k + h\sigma (Ax_k + b), \quad k = 0, 1, \dots$$

• Using suitable numerical methods, we can build a neural network that preserves some properties of the differential equation, e.g. stability.

2 Methodology

2 Methodology

• The symmetric part of a matrix A is

$$\operatorname{Sym}(A) = \frac{A + A^{\top}}{2}.$$

Image: A matrix

• The symmetric part of a matrix A is

$$\operatorname{Sym}(A) = \frac{A + A^{\top}}{2}.$$

• The logarithmic 2-norm of a matrix A is

$$\mu_2(A) = \lambda_{\max}\left(\operatorname{Sym}(A)\right).$$

• The symmetric part of a matrix A is

$$\operatorname{Sym}(A) = \frac{A + A^{\top}}{2}.$$

• The logarithmic 2-norm of a matrix A is

$$\mu_2(A) = \lambda_{\max}\left(\operatorname{Sym}(A)\right).$$

• The positive part of a real-valued function f is defined as

$$(f(x))_+ = \max(0, f(x)).$$

• The symmetric part of a matrix A is

$$\operatorname{Sym}(A) = \frac{A + A^{\top}}{2}.$$

• The logarithmic 2-norm of a matrix A is

$$\mu_2(A) = \lambda_{\max}(\operatorname{Sym}(A)).$$

• The positive part of a real-valued function f is defined as

$$(f(x))_{+} = \max(0, f(x)).$$

• Given
$$0 < m \leq 1$$
, define

$$\Omega_m = \{ D \in \mathbb{D}^{n,n} : m \le D_{ii} \le 1 \quad \forall i = 1, \dots, n \}.$$

• We wish, for any two solutions $x_1(t)$ and $x_2(t)$, that the bound

$$\|x_1(t) - x_2(t)\|_2 \le C \|x_1(0) - x_2(0)\|_2, \quad \forall t \in [0, T],$$

is satisfied for a moderately sized constant C > 0.

• We wish, for any two solutions $x_1(t)$ and $x_2(t)$, that the bound

$$\|x_1(t) - x_2(t)\|_2 \le C \|x_1(0) - x_2(0)\|_2, \quad \forall t \in [0, T],$$

is satisfied for a moderately sized constant C > 0.

• Let $f(t,x) = \sigma (Ax + b)$. The bound above is satisfied if there exists $\mu \in \mathbb{R}$ such that

$$\langle f(t,x) - f(t,y), x - y \rangle_2 \leq \mu ||x - y||_2^2$$

for all $x, y \in \mathbb{R}^n$ and $t \in [0, T]$. Then $C = e^{\mu T}$.

• The neural ODE satisfies the one-sided Lipschitz condition with

$$\mu = \max_{D \in \Omega_m} \mu_2 \left(DA \right),$$

```
(see Guglielmi et al., 2024).
```

• The neural ODE satisfies the one-sided Lipschitz condition with

$$\mu = \max_{D \in \Omega_m} \mu_2 \left(DA \right),$$

(see Guglielmi et al., 2024).

Then

$$\|x_1(t) - x_2(t)\|_2 \le e^{\mu t} \|x_1(0) - x_2(0)\|_2, \quad \forall t \in [0, T],$$

is satisfied, therefore the neural ODE (2)

- 1. might be slightly unstable if $\mu \leq c$, with c > 0 small;
- 2. is non-expansive if $\mu \leq 0$;
- 3. is contractive if $\mu < 0$.

• The neural ODE satisfies the one-sided Lipschitz condition with

$$\mu = \max_{D \in \Omega_m} \mu_2 \left(DA \right),$$

(see Guglielmi et al., 2024).

Then

$$\|x_1(t) - x_2(t)\|_2 \le e^{\mu t} \|x_1(0) - x_2(0)\|_2, \quad \forall t \in [0, T],$$

is satisfied, therefore the neural ODE (2)

- 1. might be slightly unstable if $\mu \leq c$, with c > 0 small;
- 2. is non-expansive if $\mu \leq 0$;
- 3. is contractive if $\mu < 0$.
- We are interested in cases 2. and 3.

1 Stability of neural ODEs

Our goal is to compute a matrix $B \in \mathbb{R}^{n,n}$ such that

$$\max_{D\in\Omega_m}\mu_2(DB)=\delta\leq 0\quad\text{and}\quad B=\operatorname*{argmin}_{M\in\mathbb{R}^{n,n}}\|M-A\|_F.$$

Our goal is to compute a matrix $B \in \mathbb{R}^{n,n}$ such that

$$\max_{D \in \Omega_m} \mu_2(DB) = \delta \le 0 \quad \text{and} \quad B = \underset{M \in \mathbb{R}^{n,n}}{\operatorname{argmin}} \|M - A\|_F.$$

We write $B = A + \varepsilon E$, where $E \in \mathbb{R}^{n,n}$, $||E||_F = 1$, and $\varepsilon > 0$.

Our goal is to compute a matrix $B \in \mathbb{R}^{n,n}$ such that

$$\max_{D \in \Omega_m} \mu_2(DB) = \delta \le 0 \quad \text{and} \quad B = \underset{M \in \mathbb{R}^{n,n}}{\operatorname{argmin}} \|M - A\|_F.$$

We write $B = A + \varepsilon E$, where $E \in \mathbb{R}^{n,n}$, $||E||_F = 1$, and $\varepsilon > 0$.

Bilevel optimization

Our goal is to compute a matrix $B \in \mathbb{R}^{n,n}$ such that

$$\max_{D\in\Omega_m}\mu_2(DB)=\delta\leq 0\quad\text{and}\quad B=\operatorname*{argmin}_{M\in\mathbb{R}^{n,n}}\|M-A\|_F.$$

We write $B = A + \varepsilon E$, where $E \in \mathbb{R}^{n,n}$, $||E||_F = 1$, and $\varepsilon > 0$.

Bilevel optimization

• Inner level. Fixed $\varepsilon > 0$, we aim to minimize

$$F_{\varepsilon}(E) = \frac{1}{2} \sum_{i=1}^{n} (\lambda_i (\operatorname{Sym}(D_{\star}(A + \varepsilon E))) - \delta)_+^2,$$

over $E \in \mathbb{R}^{n,n}$, $||E||_F = 1$, with $D_{\star} = \operatorname{argmax}_{D \in \Omega_m} \mu_2(D(A + \varepsilon E))$ and $\delta \in \mathbb{R}$. We denote a minimum as $E[\varepsilon]$.

Our goal is to compute a matrix $B \in \mathbb{R}^{n,n}$ such that

$$\max_{D\in\Omega_m}\mu_2(DB)=\delta\leq 0\quad\text{and}\quad B=\operatorname*{argmin}_{M\in\mathbb{R}^{n,n}}\|M-A\|_F.$$

We write $B = A + \varepsilon E$, where $E \in \mathbb{R}^{n,n}$, $||E||_F = 1$, and $\varepsilon > 0$.

Bilevel optimization

• Inner level. Fixed $\varepsilon > 0$, we aim to minimize

$$F_{\varepsilon}(E) = \frac{1}{2} \sum_{i=1}^{n} (\lambda_i (\operatorname{Sym}(D_{\star}(A + \varepsilon E))) - \delta)_+^2,$$

over $E \in \mathbb{R}^{n,n}$, $||E||_F = 1$, with $D_{\star} = \operatorname{argmax}_{D \in \Omega_m} \mu_2(D(A + \varepsilon E))$ and $\delta \in \mathbb{R}$. We denote a minimum as $E[\varepsilon]$.

• **Outer level.** We look for the smallest zero ε^* of

$$f(\varepsilon) = F_{\varepsilon}(E[\varepsilon]).$$

Inner level

• We consider E a smooth matrix valued function of t, E = E(t), and we use the following lemma to compute $\frac{d}{dt}F_{\varepsilon}(E(t))$.

Inner level

• We consider E a smooth matrix valued function of t, E = E(t), and we use the following lemma to compute $\frac{d}{dt}F_{\varepsilon}(E(t))$.

Lemma

Consider a symmetric continuously differentiable $C(t) : \mathbb{R} \to \mathbb{R}^{n,n}$. Let $\lambda(t)$ be a simple eigenvalue of C(t) for all t and let x(t) with $||x(t)||_2 = 1$ be the associated eigenvector. Then $\lambda(t)$ is differentiable with

$$\dot{\lambda}(t) = x(t)^{\top} \dot{C}(t) x(t) = \langle x(t) x(t)^{\top}, \dot{C}(t) \rangle_{F}.$$

Inner level

• We consider E a smooth matrix valued function of t, E = E(t), and we use the following lemma to compute $\frac{d}{dt}F_{\varepsilon}(E(t))$.

Lemma

Consider a symmetric continuously differentiable $C(t) : \mathbb{R} \to \mathbb{R}^{n,n}$. Let $\lambda(t)$ be a simple eigenvalue of C(t) for all t and let x(t) with $||x(t)||_2 = 1$ be the associated eigenvector. Then $\lambda(t)$ is differentiable with

$$\dot{\lambda}(t) = x(t)^{\top} \dot{C}(t) x(t) = \langle x(t) x(t)^{\top}, \dot{C}(t) \rangle_{F}.$$

Setting C(t) = A + εE(t), we obtain the norm-preserving gradient system for the functional F_ε(E(t)):

$$\dot{E} = -G(E) + \langle G(E), E \rangle_F E,$$

with $G(E) = \sum_{i=1}^{n} \gamma_i z_i x_i^{\top}$, x_i eigenvector to $\lambda_i (\text{Sym}(D_*(A + \varepsilon E)))$, $z_i = D_* x_i$ and $\gamma_i = (\lambda_i (\text{Sym}(D_*(A + \varepsilon E))) - \delta)_+$.

• We seek for the zero of $f(\varepsilon) = F_{\varepsilon}(E[\varepsilon])$.

(日)

- We seek for the zero of $f(\varepsilon) = F_{\varepsilon}(E[\varepsilon])$.
- Let λ_i[ε] and x_i[ε] be the eigenvalues and the eigenvectors of Sym(D_{*}(A + εE[ε])).

- We seek for the zero of $f(\varepsilon) = F_{\varepsilon}(E[\varepsilon])$.
- Let λ_i[ε] and x_i[ε] be the eigenvalues and the eigenvectors of Sym(D_{*}(A + εE[ε])).

Assumption

For ε close to ε^* and $\varepsilon < \varepsilon^*$, we assume that the eigenvalues $\lambda_i[\varepsilon]$ of $\operatorname{Sym}(D_*(A + \varepsilon E[\varepsilon]))$ are simple eigenvalues. Moreover, $E[\varepsilon]$, $\lambda_i[\varepsilon]$ and $x_i[\varepsilon]$ are assumed to be smooth functions of ε .

- We seek for the zero of $f(\varepsilon) = F_{\varepsilon}(E[\varepsilon])$.
- Let λ_i[ε] and x_i[ε] be the eigenvalues and the eigenvectors of Sym(D_{*}(A + εE[ε])).

Assumption

For ε close to ε^* and $\varepsilon < \varepsilon^*$, we assume that the eigenvalues $\lambda_i[\varepsilon]$ of $\operatorname{Sym}(D_*(A + \varepsilon E[\varepsilon]))$ are simple eigenvalues. Moreover, $E[\varepsilon]$, $\lambda_i[\varepsilon]$ and $x_i[\varepsilon]$ are assumed to be smooth functions of ε .

Newton method

$$\varepsilon_{k+1} = \varepsilon_k - \frac{f(\varepsilon_k)}{f'(\varepsilon_k)}, \quad k = 0, 1, \dots$$

- We seek for the zero of $f(\varepsilon) = F_{\varepsilon}(E[\varepsilon])$.
- Let λ_i[ε] and x_i[ε] be the eigenvalues and the eigenvectors of Sym(D_⋆(A + εE[ε])).

Assumption

For ε close to ε^* and $\varepsilon < \varepsilon^*$, we assume that the eigenvalues $\lambda_i[\varepsilon]$ of $\operatorname{Sym}(D_*(A + \varepsilon E[\varepsilon]))$ are simple eigenvalues. Moreover, $E[\varepsilon]$, $\lambda_i[\varepsilon]$ and $x_i[\varepsilon]$ are assumed to be smooth functions of ε .

Newton method

$$\varepsilon_{k+1} = \varepsilon_k - \frac{f(\varepsilon_k)}{f'(\varepsilon_k)}, \quad k = 0, 1, \dots$$

• An inexpensive formula: under the given Assumption, it holds

$$f'(\varepsilon) = - \|G[\varepsilon]\|_F.$$

Stability of neural ODEs

Recall that

$$B=A+\varepsilon E,$$

with $E \in \mathbb{R}^{n,n}$, $||E||_F = 1$, $\varepsilon > 0$, and $f(\varepsilon) = F_{\varepsilon}(E[\varepsilon])$.

A (1) > A (2) > A

Recall that

$$B = A + \varepsilon E,$$

with $E \in \mathbb{R}^{n,n}$, $||E||_F = 1$, $\varepsilon > 0$, and $f(\varepsilon) = F_{\varepsilon}(E[\varepsilon])$.

1. Fix $\varepsilon_0 > 0$ and k = 0.

- (日)

- 4 ∃ ▶

Recall that

$$B = A + \varepsilon E,$$

with $E \in \mathbb{R}^{n,n}$, $||E||_F = 1$, $\varepsilon > 0$, and $f(\varepsilon) = F_{\varepsilon}(E[\varepsilon])$.

- 1. Fix $\varepsilon_0 > 0$ and k = 0.
- 2. Integrate the constrained gradient system for *E* at level ε_0 to get $E[\varepsilon_0]$.

Recall that

$$B = A + \varepsilon E,$$

with $E \in \mathbb{R}^{n,n}$, $||E||_F = 1$, $\varepsilon > 0$, and $f(\varepsilon) = F_{\varepsilon}(E[\varepsilon])$.

- 1. Fix $\varepsilon_0 > 0$ and k = 0.
- 2. Integrate the constrained gradient system for *E* at level ε_0 to get $E[\varepsilon_0]$.
- 3. While $f(\varepsilon_k) > 0$:

Recall that

$$B = A + \varepsilon E,$$

with $E \in \mathbb{R}^{n,n}$, $||E||_F = 1$, $\varepsilon > 0$, and $f(\varepsilon) = F_{\varepsilon}(E[\varepsilon])$.

- 1. Fix $\varepsilon_0 > 0$ and k = 0.
- 2. Integrate the constrained gradient system for *E* at level ε_0 to get $E[\varepsilon_0]$.
- 3. While $f(\varepsilon_k) > 0$:
 - 3.1. update

$$\varepsilon_{k+1} = \varepsilon_k - \frac{f(\varepsilon_k)}{f'(\varepsilon_k)};$$

Recall that

$$B = A + \varepsilon E,$$

with $E \in \mathbb{R}^{n,n}$, $||E||_F = 1$, $\varepsilon > 0$, and $f(\varepsilon) = F_{\varepsilon}(E[\varepsilon])$.

- 1. Fix $\varepsilon_0 > 0$ and k = 0.
- 2. Integrate the constrained gradient system for *E* at level ε_0 to get $E[\varepsilon_0]$.
- 3. While $f(\varepsilon_k) > 0$:
 - 3.1. update

$$\varepsilon_{k+1} = \varepsilon_k - \frac{f(\varepsilon_k)}{f'(\varepsilon_k)};$$

3.2. integrate the constrained gradient system for *E* at level ε_{k+1} to get $E[\varepsilon_{k+1}]$;

Recall that

$$B = A + \varepsilon E,$$

with $E \in \mathbb{R}^{n,n}$, $||E||_F = 1$, $\varepsilon > 0$, and $f(\varepsilon) = F_{\varepsilon}(E[\varepsilon])$.

- 1. Fix $\varepsilon_0 > 0$ and k = 0.
- 2. Integrate the constrained gradient system for *E* at level ε_0 to get $E[\varepsilon_0]$.
- 3. While $f(\varepsilon_k) > 0$:
 - 3.1. update

$$\varepsilon_{k+1} = \varepsilon_k - \frac{f(\varepsilon_k)}{f'(\varepsilon_k)};$$

3.2. integrate the constrained gradient system for E at level ε_{k+1} to get $E[\varepsilon_{k+1}]$;

3.3. k = k + 1.

Arturo De Marinis

→ Ξ →

Stability of neural ODEs

2 Methodology

What do we do?

• Training the neural ODE means updating A and b until a scalar function $\mathcal{L}(A, b)$ is minimized. Starting from an initial guess of the parameters A_0 and b_0 ,

$$\begin{aligned} A_{k+\frac{1}{2}} &= A_k - h \nabla_A \mathcal{L}(A_k, b_k), \\ b_{k+1} &= b_k - h \nabla_b \mathcal{L}(A_k, b_k), \end{aligned}$$

where h is a sufficiently small step size.

What do we do?

• Training the neural ODE means updating A and b until a scalar function $\mathcal{L}(A, b)$ is minimized. Starting from an initial guess of the parameters A_0 and b_0 ,

$$\begin{aligned} &A_{k+\frac{1}{2}} = A_k - h \nabla_A \mathcal{L}(A_k, b_k), \\ &b_{k+1} = b_k - h \nabla_b \mathcal{L}(A_k, b_k), \end{aligned}$$

where h is a sufficiently small step size.

We set

$$A_{k+1} = A_{k+\frac{1}{2}} + \varepsilon^{\star} E[\varepsilon^{\star}],$$

with ε^* and $E[\varepsilon^*]$ computed according to the above-mentioned numerical procedure to get

$$\mu_2(D_\star A_{k+1}) = \delta \leq 0.$$

• Full perturbation E

ε	0	0.01	0.02	0.03	0.04	0.05	0.06
Reference	97.29%	94.49%	89.07%	77.73%	61.95%	46.61%	34.14%
$\delta = 0$	93.59%	89.21%	82.09%	69.84%	52.19%	35.15%	22.33%
$\delta = -0.1$	96.97%	94.39%	90.19%	83.48%	72.83%	58.71%	42.48%
$\delta = -0.2$	97.25%	95.48%	91.98%	86.35%	78.44%	66.26%	52.29%
$\delta = -0.3$	96.2%	93.74%	89.5%	83.57%	74.35%	62.49%	49.61%

• Diagonal perturbation E

ε	0	0.01	0.02	0.03	0.04	0.05	0.06
Reference	97.29%	94.49%	89.07%	77.73%	61.95%	46.61%	34.14%
$\delta = 0$	97.25%	95.07%	91.63%	85.87%	75.31%	60.81%	46.21%
$\delta = -0.1$	97.36%	95.36%	92.23%	87.48%	78.78%	66.21%	51.81%
$\delta = -0.2$	96.95%	94.63%	91.54%	85.59%	77.17%	64.65%	50.15%
$\delta = -0.3$	95.9%	93.27%	89.48%	83.04%	73.1%	60.31%	46.49%

• Full perturbation E

ε	0	0.01	0.02	0.03	0.04	0.05	0.06
Reference	88.07%	75.17%	57.2%	38.83%	23.37%	12.59%	6.35%
$\delta = 0$	85.33%	73.31%	57.24%	42.13%	28.33%	18.23%	11.38%
$\delta = -0.1$	86.98%	74.6%	58.19%	43.36%	29.83%	19.11%	11.78%
$\delta = -0.2$	86.93%	75%	59.88%	44.05%	30.38%	19.62%	12.85%
$\delta = -0.3$	86.77%	75.4%	60.11%	44.71%	31.01%	20.44%	13.48%

• Diagonal perturbation E

ε	0	0.01	0.02	0.03	0.04	0.05	0.06
Reference	88.07%	75.17%	57.2%	38.83%	23.37%	12.59%	6.35%
$\delta = 0$	87.05%	75.92%	60.75%	45.69%	31.62%	20.41%	13.15%
$\delta = -0.1$	87.41%	76.12%	61.33%	46.2%	32.53%	21.53%	14.24%
$\delta = -0.2$	87.23%	76.15%	61.55%	46.44%	33.11%	22.14%	14.63%
$\delta = -0.3$	87.18%	75.43%	60.47%	45.49%	31.8%	20.88%	13.22%

• Our goal is to make a neural ODE contractive.

- Our goal is to make a neural ODE contractive.
- We have encountered an eigenvalue optimization problem.

- Our goal is to make a neural ODE contractive.
- We have encountered an eigenvalue optimization problem.
- We have embedded the developed algorithm in the state-of-the-art training strategy of a neural ODE.

- Our goal is to make a neural ODE contractive.
- We have encountered an eigenvalue optimization problem.
- We have embedded the developed algorithm in the state-of-the-art training strategy of a neural ODE.
- Numerical experiments show a significant improvement in robustness.

- N. Guglielmi, A. De Marinis, A. Savostianov and F. Tudisco, *Contractivity of neural ODEs: an eigenvalue optimization problem*, arXiv preprint arXiv:2402.13092, 2024.
- R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, *Neural ordinary differential equations*, Advances in Neural Information Processing Systems, 2018.

- N. Guglielmi, A. De Marinis, A. Savostianov and F. Tudisco, *Contractivity of neural ODEs: an eigenvalue optimization problem*, arXiv preprint arXiv:2402.13092, 2024.
- R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, *Neural ordinary differential equations*, Advances in Neural Information Processing Systems, 2018.

Thanks for your attention!