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Representation of a 3D tensor in the CP tensor format

A full tensor w € R™*™*™ s represented as a sum of tensor

products.
The lines on the right denote vectors w; , € R™, i =1,...,r,
k=123

A= + o+
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CP tensor format linear algebra

a-wW = Za@wjy 2®QVWJV

J]_V].

where o, := {/|a] for aII v > 1. and a7 := sign(a)~/|al.

The sum of two tensors costs only O(1):

ry d ry d ry+ry
vouiv= (YQuu )+ (N ®vi] = S @w
=1 v=1 k=1 p=1 j=1 v=1

where w;, == u;, forj<r,and w;, ;= v, forr, <j<r,+r,.
The sum w generally has rank r, + r,.
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CP properties: Hadamard product

UQ vV = 2®Uj,u> ® (ZV:@Vk,y) =2 Z(>_<)l u, © vy,

=1 v=1 k=1vr=1

The new rank can increase till r,r,, and the computatlonal cost is

O(r,r,nd).
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CP properties: scalar product and norm

The scalar product can be computed as follows:

ry rv

vy = R ul Y @ vidr = 35 T [ulvin)

=1 v=1 k=1 v=1 =1 k=1 =1
Cost is O(r,r, nd).

Rank truncation via the ALS-method or Gauss-Newton-method.

The scalar product above helps to compute the Frobenius norm

luf2 := ~/{ulv)r
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Motivation 1: How to compute entropy in high dimensions?

Let € € R? be a random vector € = (&1, ..., &y) with pdf pe.
Entropy is the expectation of logarithm of pdf :

h(pe) i B (= In(pe(y))) == | ~In(pely))pely) dy. (1)

Discretise: S i) (e
supp pg = c{y € R? | pe(y) # 0} < X, [&7, 6] < RY.
Equidistant grid X, := (X1,,...,%m,.), 1 < v < d, of size M,: Vv it

holds that %, , € [¢0™™, ¢{m)],

P := Pg(X) = (Pi,... id) L= (pf()?/i,l? e 7)?/d,d)) (2)
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And the entropy

M, M,
h(P&) ~ Z T Z — |n('Di1,...,id>Pil,...,idWil,...,ida

=1 =1
where w;, __; are weights.
Sometimes can

pe(y) ~ Be(y) = > Q) o),

(=1v=1

where each py, is a function of y, in dimension v. The p;, are
evaluated on the grid vector X, for all v and ¢, giving

Py = (PZ,V()?l,I/)a e 7p€,u()?My,z/)) € RMV

A possible low-rank CP representation of the tensor P:
R d
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Motivation 2: stochastic PDEs

—V - (k(x,w)Vu(x,w)) = f(x,w), xeGcRY we

Write first Karhunen-Loeve Expansion and then for uncorrelated
random variables the Polynomial Chaos Expansion

= D VAi(x)E(w) = _Z V(%) D 6" Ha(8(w)) (6)

aeS
K M
= VAigi(x) Z Z g T T hay(67) (7)
i=1 ay=1 j=1

with multi-variate polynomlals H.,(0(w)) := Hf_l ho,(0;(w)) in iid
standard normalised Gaussians 8(w) = (01(w), ..., 04(w)), where

(w
a = (ai,...,qq) is a multi-index and the h, (Qj(w)) are uni-variate
polynomials.

How to compute f-divergences from Eq. 6 7 8 /52



Idea: Computing f-divergences if pdfs are not available?

7
too expensive
Approx. IFFT

Two ways to compute f-divergence, KLD, entropy,...
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Examples of pcf

(left) Uniform pdf, U|a, b|; (right) pcf for U(-1, 1)
(bottom) pcf of generalized Gaussian, f¢(x)oc exp%

1.0

f(x)
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Some examples of the function 7 for the f-divergence

Many common divergences, such as the KL-divergence, the Hellinger
distance, and the total variation distance, are special cases of the
f-divergence, coinciding with a particular choice of f.

Name of the divergence Corresponding f(t)
KL-divergence t log(t)

reverse KL-divergence — log(t)

squared Hellinger distance (Vt —1)°

total variation distance it —1{/2

Pearson y%-divergence (t —1)°

Neyman 2-divergence (reverse Pearson) ¢+ — 1

Pearson-Vajda y%-divergence (t— 1)

Pearson-Vajda ||%-divergence 't — 1]
Jensen-Shannon-divergence tlog(t) — (t +1)log((t +1
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Connection of pcf and pdf

The probability characteristic function (pcf ) (¢ defined:

oe(t) == E (exp(i(€[t))) = Jdpdy) exp(i(y|t)) dy =: 1/ (p¢) (1),

R
where t = (tl, o, ..., td) S Rd,

(ylt) = Zj:lyjtj' and

Fldl is the probabilist’'s d-dimensional Fourier transform.

pey) = o | p(-iCtin)ee(t)at = Fay). (@)

Fl=dl is the d-dimensional inverse Fourier transform.
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Low-rank property of FFTd and iFFTd

We try to find an approximation
R
et Z
—1v

where the ¢, (t,) are one- dlmenS|ona| functions.
Then we can get

H®Q

d
@ 906 v
v=1

S
VN
<
N———"
ht
N
<
N——"
E
)
||
I M:o

where F; ! is the one-dimensional inverse Fourier transform.
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Discrete representation of the pdf

Discrete representation of pdf and the pcf is based on equidistant

grid vectors

)?I'y,l/ — )?1,V + (iu _ 1)AXV
(with increment A, ) of size M, in each dimension 1 < v < d of R?.

V = [[%_, M, A, , trapezoidal integration rule with weights z

The whole grid is

P := pe(X) denotes the tensor P € )7, RM =: T,

dimT = [[°_{ M, =: N,
the components of which are the evaluation of the pdf p¢ on the
grid X.
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Discrete representation of the pcf

Dual grid
d
T=Xt,
v=1

t, = (tiy, - tmw) tme = 7/A,, the equi-distant spacing of the
dual grid in dimension v is 27/L,..
0eT,j°=(7 . ..Jg) ie (fo1,...,504) =0=1(0,...,0).

The pcf on the dual grid is represented through the tensor
¢ = ¢€(T) eT.

Thus, we deal with discretisations

P = pe(X)
¢ = e(T)
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Notation, Moments and Covariance

d @k ._ [k
x e RY, x¥ =) x.

Random variable (RV) £ : 2 —V = R?.
Expectation operator is denoted by E (-),

£:=E(§) = {,&w)P(dw) e RY,

£i=¢— 5

The moments X, and the central moments = of & of order k:
X.=E (g@k) c (Rd)®k
=, =F @@k) e (RY)®,
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Notation, Moments and Covariance
The covariance matrix X¢ = cov€ = Z, = X, — £ @ & € (RY)®2
The mixed and mixed central moments are denoted by
Yo =E (2 @n®)
T =E (é@k 2 ﬁ@)z) e (RY)% ® (R")®.

The covariance is also denoted as

cov(€n) =T11=Y11 - EQN
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Higher order moments

(104 e(t) = f e exp(iCEx))pe(x) dx = F19 (xpe(x)) (2)

Rd
Further, denoting the tensor of k-th derivatives by

I]_ Ik
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Second characteristic function

(cumulant generating function) whose derivative tensors of order k
are essentially the cumulants K of &, is defined as the point-wise
logarithm of the pcf :

Xe(t) := log(ye(t)) = log (I (exp(iCt[£)))) (11)

with
(i) Dxe(0) = K,
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Moment generating function

|s defined as:

Me(e) = E (exp(t]) = | exp((el)pe(x) d
£< (1) = pe(-it).

where L4(pe)(t) = { exp({—t|x))pe(x) dx is the two-sided
d-dimensional Lap/ace transform of pg. Then

D*M¢(0) = Lx®k pe(x) dx = Xy, ke Np. (12)
R
Cumulant generating function is the point-wise logarithm of the

moment generating function Mg:

Ke(t) := log(Me(t)) = log (E (exp((t[€)))) . (13)
with DFK¢(0) = K.
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Computation of Qols

For tensors P, F representing pdf p(x) and a function f(-)
evaluated on the grid, obtain

JP(X) dx ~ S(P) := %<P|1>T, (14)

where 1 = @gzl 1,; — the tensor with all ones — satisfying
r®1 =r foranyr,
1,:=(1,...,1) e R,

If F is a tensor which represents the grid-values of a function f(x),
i.e. F = f(X), then

B(F€) = | f(xipe(x) dx ~ S(FOP) = 1(FIP)r
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Computation of Qols

Differential entropy, requiring the point-wise logarithm of P:

h(p) = E (~ log(p)), ~ E (~log(P)), = —Io&(P)|P).

Then the f-divergence of p from g and its discrete approximation is
defined as

Di(pl) - E (7 (B)) CE(F(POQT),

q
- LPOQ Q)
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List of some typical divergences and distances.

Divergence

.(pl9)

KLD — DKLZ

Hellinger, (Dy)?:

Bregman, Dy:

Bhattach., Dgp:

| %'\“'_‘%D

(log(p(x)/q(x))) p(x) dx

J

(Vo - m)
(p(p(x)) — d(q(x)

og [ v/lo(x)9

= [E,(log(p/q))
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Discrete approximations for divergences above

Divergence | Approx. D,(p|/q)

KD ((og(P)|P) — (log(Q)|P)

V
(DH)Q: ﬂ<I_-,®1/2 - Q®1/2‘P®1/2 - Q@l/2>

Dy: S ((6(P) —9(Q)) — (P- Q)0 ¢'(Q))

V
DBh: — |Og <N<P®1/2‘Q®1/2>>
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Algorithms

Below we will list algorithms, which approximate f(pe(y)) by 7(P),
where the f's considered are

F(-) = {sign(-), ()7 - () log (), exp (+), ()%, - [}, (15)
k>0,
P =pe(X) =371 Ry Pj

Available methods:

1. TT-cross

2. iterative methods (e.g., Newton algorithm)

3. power series

4. quadrature rule to compute the Dunford-Cauchy contour integral
5. others (like sinc quadrature)
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Iterative methods

We want to compute f(w) for some function f : 7 — 7.

We have an iteration function ¥y,
which only uses operations from the Hadamard algebra on 7, and

which is iterated,

Vigl = Wf(Vi)

and converges to a fixed point

Ve(v.) = v.

When started with a v depending on w,
the fixed point is

lim v, =v, =V¢(v.) = f(w)
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Computing pointwise inverse w® 1.

Let F(x) :== w — x®1,

Applying Newton's method to F(x) for approximating the inverse of
a given tensor w, one obtains the following iteration function ¥ 4
with the i.c. vo = a - w to bring vq close to v, = 1:

Vo 1(v) =vO2-1—w(@®v).

The iteration converges if the initial iterate v satisfies

1 —wOvg|,e < 1.

A possible candidate for the starting value is vo = aw with

a < (1/]wlx)*.

For such a vy, the convergence initial condition |1 — aw®?||, < 1 is
always satisfied.
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Computing pointwise /w via Newton iteration
Let F(x) := x®* —w = 0.
The Newton iteration
v (v) 2%-(v+ OO w). (16)

with i.c. vo = (w + 1)/2.
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Computing pointwise /w via Newton-Schulz iteration
Let F(x) := x®* —w = 0.

Newton-Schulz iteration computes

vi = vw = w®?and v; = (yw)? ! = wo 12,

We set Vy = [yo, 20| = [a- w, 1] € T2, and the auxiliary function
Aly,z) =3-1—zQYy:

v, (12)) =2 56700 @

The iteration converges to

V. = [v v, ] = [Vyo, (v¥0)" ']
if |[1—yo|le <1, and a < 1/||w||.
Fixed point of the iteration is v = /a - \/w and
v. = (1/ya) - (Vw)o .
Obtain: v/w = (1/4/a) - v} and (VW) ! = /a - v;.
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Computing log(w)

Assume w > 0.

See [Higham'01, Higham'12].

For the algorithms to work well w has to be close to the identity 1,
which can be achieved by taking roots: for A > 0 one has

log (W)‘) = Alog w.

Truncated Taylor series (radius of convergence || x|, < 1):

— 1
log(1 — x) = —Z;-x@”
n=1

where x := 1 — w. If w is not near to the identity, then one may
. k k

use the relation log(w) = 2¥ log(w®?"), where w®Y?" — 1 as k

Increases.
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Computing power function by w — w®"

Power function by
W i— WQm = wpow(m7 W)

For m < 0 this is simply

Voow(m, w) = W o (—m, W@_l)

The recursive formula:

'm>1and odd : wOVow(m—1,w);
Voow(m, w) = < meven : Voow(Z, W) OV pou(2, w);
|m= 1: W
(18)
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Computing w©n

See Section 7 in N.Higham's book.

Assume w > 0
Newton's method for F(x) = x“™ — w = o.
The iteration function with vy = w looks like

1

Vroot(V) = —(m—1) - v+ Vou(l —m,v) O vy).

m
If m > 2, this involves a negative power

VO™ — (1 — m, v)

Algorithm converges for all w > o.

(19)
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Computing w©n

Auxiliary function A(y,z) = (1/m) - ((m+1)-1— z):

o= () - 2225 o)

where y; — w® = and z; — w®n.
The starting values are
2
Vo = [¥0,20] = [0+ 1, (@)"w] € T

with & < (||w|.//2) .

For scaling purposes it is best used with m = 2*.

(20)
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Computing w©n

Another way of computing the m-th root is Tsai's algorithm(Tsai'88,
Lorin'21), which uses the auxiliary function

By)=(2-1+(m=2)-y)O(1+(m—1)y)®

with starting value Vo = [w, 1|.

1
Then z; —» w®n,
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Computing log(w) via Gregory’s series

Converges for all w > 0.
Setting z = (1 — w) ® (1 + w)® !, one has

o0

logw = ZO2kH1), (22)

— 2k
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Computing exp w.
See book of N. Higham, Chapter 10:
r 1 QS
Urs = Z kW®k> .
<k0 kls
Here lim,_,, u, s = lims_,, u, s = exp w.

It is of advantage to use s from the series of powers of 2,

s=124,.., 2k
then the s-th power can be computed by squaring.

For the scaling the best choice is o > |w/||o.

(23)
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Four numerical tests:

1. KLD is computed with the analytical formula and the amen cross
algorithm from TT-toolbox

2. Hellinger distances is computed with well-known analytical
formulas and the amen _cross algorithm.

3. (pdf is not known analytically), the d-variate elliptically contoured
a-stable distributions are chosen and accessed via their pcfs ,

4. KLD and Hellinger distances for different value of d, n and the
parameter (.
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Example 1: KLD for two Gaussian distributions

N1 := N (1, Cq) and N, := N (uy, Cy), where
C,:=o0il, C,:= 051,

= (L1...,1.1) and gy = (L4,...,1.4) e RY,
d = {16,32,64}, and 0, = 1.5, gy = 22.1.

The well-known analytical formula is

2Dk (N1|IN2) = tr(C51Cq) + (o — pa) "Cot (o — 1) —

38 /52



Comparison of KLDs computed via two methods

Dy, computed via TT tensors (AMEn algorithm) and the analytical

formula for various values of d.

TT tolerance = 107°, the stopping difference between consecutive

Iiterations.

d 16 32 04

n 2048 12048 2048
Dy (exact) 35.08 70.16 |140.32
D« 35.08 |70.16 | 140.32
err, 4 0e-7 2.43e-5|1.4e-5
err, 1.1e-8|3.46e-8 | 8.1e-8
comp. time, sec. 1.0 5.0 18.7
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Example 2 — Hellinger distance

(for Gaussian distributions)

Dy(N1,Np)* =1 — K%(Nl,A@), where

det(Cy) det(c2>%
det (C1+C2)

- exp <é(u1 — p2) ' (Cl ; CQ) : (p1 — uz))

Ki(N1, N2) =
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Hellinger distance Dy

is computed via TT tensors (AMEn) and the analytical formula. TT

tolerance = 107°.

d 16 32 04

n 2048 12048 2048
Dy (exact) 0.999990.99999 | 0.99999
Dy 0.999920.99999 | 0.99999
err, 3.5e-b |[7.1e-b |1l.4de-4
err, 2.5e-5 |5.0e-5 [1.0e-4
comp. time, sec.|1.7 7.5 30.5

The AMEn algorithm is able to compute the Hellinger distance Dy

between two multiv. Gaussian distribes for d = {16, 32,64}, and

n = 2048. The exact and approximate values are almost identical.
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Example 3: a-stable distribution

The pcf of a d-variate elliptically contoured a-stable distribution is

given by a
e(t) = exp (i(t|p) — (t|Ct)?) .

AMEn tol.= 107°.
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Example 3: KLD between two a-stable distributions

with a1 = 2.0, ap, = 1.9 (/.1,1 =y = 0, Ci=0C,= I)

d 16 16 |16 |16 16 |16 16 |32 |32 32

n 8 16 32 64 128 |256 (512 |64 |128 256

Dy (2.0,1.9)0.0160.060.060.062 0.06/0.06/0.06|0.09/0.14|0.12

time, sec. 08 |3 3.9 14 22 161 207 |46 100 258

maxT T rank 40 57 |79 79 50 |79 |77 |80 |78 |79

mem., MB 1.8 |7 34 |54 73 158 538 |160 313 626
AMEn tol.= 107°.
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Full storage vs low-rank

For d = 32 and n = 256 the amount of data in full storage mode
would be

N = n? = 265%% ~ 1.16E77 ~ 1E78 bytes.

In T T-low-rank approximation: 626MDB, and fits on a laptop.
Assuming 1GHz notebook, the KLD computation in full mode would
require ca. 1.2[£68sec,

or more than 3E60 years,

and even with a perfect speed-up on a parallel super-computer with
say 1,000,000 processors,

this would require still more than 354 years;

compare this with the estimated age of the universe of ca. 1.4E10

years.
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Example 4: Dk (a1, ap) between two a-stable distributions

for (a1, an) and fixed d = 8 and n = 64.

(a1, ) (2.0,0.5)(2.0,1.0) | (2.0,1.5)|(2.0,1.9) (1.5,1.4) | (1.0,0.4)
Dg (a1, ap) 2.27 0.66 0.3 0.03 0.031 0.6
comp. time, sec. 8.4 7.8 7.5 8.5 11 8.7

max. I T rank |78 74 76 76 80 79
memory, MB 28.5 28.5 27.1 28.5 35 29.5

p1=pur =0 C =Cy=1.
AMEn tol.= 10712,
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Example 3: Hellinger distance Dy(as, ay)

for the d-variate elliptically contoured a-stable distribution for
a = 1.5 and a = 0.9 for different d and n.
/1,12[1,2:0, C1=C2=I.

d 16 16 |16 |16 |16 |16 32 |32 32 |32

n 3 16 32 |64 128 256 |16 32 |64 128

Dy(1.5,0.9) 0.218/0.223/0.223|0.223/0.219 1 0.223 0.180|0.176 |0.1750.176

comp. time, sec. 28 3.7 |75 |19 |53 156 |11 21 62 117

max. TTrank |79 |76 76 |76 |79 |76 75 71 |75 |74

memory, MB (7 |1r |34 |71 145 283 |34 |66 144 285

AMEn tolerance is 107°.
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Example 6: Dy vs. TT (AMEn) tolerances

TT(AMEn) tolerance 10~ [10°® [107° 107 |10 %
Dy(1.5,0.9) 0.1645/0.1817/0.176|0.1761|0.1802
comp. time, sec. 43 36 103 118 241
max. I T rank 64 75 75 78 (7
memory, MB 126|255 270 (307 322

Computation of Dy(a, ap) between two a-stable distributions

( = 1.5 and a = 0.9) for different AMEn tolerances.
n=128,d=32,u1=u220, C1=C2=I.
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Conclusion

Demonstrated that high-dim. pdfs , pcfs, and some functions of
them can be approximated and represented in a low-rank tensor data
format.

Provided numerical methods to compute

1. entropy, KLD, and f-divergences in low-rank tensor format
2. functions

F() = {sign(-), (), v/ &/ ()" log (), exp (), ()% | - [},
of pcf and pdf

3. low-rank approximations reduce the complexity and storage from
exponential O(n?) to linear in n.
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How to compute KLD and other divergences? Classical result is
given only for pdfs, which are usually unknown.

Divergence | D,( qu

KLD f log(p (x))) p(x) dx
Hellinger dist. %f (m— q(x))2 dx
Bhattacharyya | — log (J V (p(x)q(x)) dx)
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