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Tsunami simulation: failure

 The simulation is not usable!

Indeed, the ocean at rest, far from the tsunami, started spontaneously producing waves.

This comes from the non-preservation of stationary solutions, hence the need to
develop numerical methods that preserve stationary solutions: so-called well-balanced
methods.
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Objectives

The goal of this work is to provide a numerical method which:

• is able to deal with generic systems of balance laws,
• can provide a very good approximation of families of steady solutions,
• is as accurate as classical methods on unsteady solutions,
• with provable convergence estimates.

To that end, we select the Discontinuous Galerkin (DG) framework.
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The shallow water equations

The shallow water equations are governed by the following PDE:
∂th+ ∂xq = 0,

∂tq+ ∂x

(
q2

h +
1
2gh

2
)

= −gh∂xZ(x).

x

u(x, t)

Z(x)

h(x, t)

• h(x, t): water depth
• u(x, t): water velocity
• q = hu: water discharge
• Z(x): known topography
• g: gravity constant
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The shallow water equations: steady solutions

The steady solutions of the shallow water equations are governed by the following ODEs:
∂xq = 0,

∂x

(
q2

h +
1
2gh

2
)

= −gh∂xZ(x).

x

Z(x)

h(x)

For the shallow water equations, if the
velocity vanishes, we obtain the lake at
rest steady solution:

h+ Z = cst.
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Finite volume method, visualized

x

y

W(x)

Wi =
1
∆x

∫ xi+ 1
2

xi− 1
2

W(x) dx + O(∆x)
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Discontinuous Galerkin, visualized

x

y

W(x)

W(xi−1/2) + O(∆x2)

W(xi+1/2) + O(∆x2)
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Discontinuous Galerkin, visualized

x

y

W(x)

W(xi−1/2) + O(∆x3)

W(xi+1/2) + O(∆x3)
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Discontinuous Galerkin: an example

On the previous slide, the data W is represented by

• a polynomial of degree 2 in each cell (Galerkin approximation),
• which is Discontinuous at interfaces between cells.

Therefore, in each cell Ωi, W is approximated by

W
∣∣
Ωi

' WDG
i := α0 + α1x + α2x2 =

2∑
j=0

αjxj,

where the polynomial coefficients α0, α1 and α2 are determined to ensure fitness
between the continuous data and its polynomial approximation.

Any polynomial of degree two can be exactly represented this way.
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Discontinuous Galerkin: polynomial basis

More generally, we define a polynomial basis ϕ0, . . . , ϕN on each cell Ωi and
approximate the solution in this basis.

A usual example is the following so-called modal basis:

∀j ∈ {0, . . . ,N}, ϕj(x) = xj.

Main takeaway: The DG scheme is exact on every function that can be exactly
represented in the basis!
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Main idea

Recall that the DG scheme will be exact on every function that can be exactly
represented in the DG basis, as soon as it is also a solution to the PDE.

Main idea
Enhance the DG basis by using the steady solution!

 If the steady solution or an approximation thereof is contained in the basis, then:

• using the exact steady solution in the basis will make the scheme exactly well-
balanced;

• using an approximation of the steady solution will make the scheme approximately
well-balanced.
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Enhanced DG bases

Assume that you know a prior W on the steady solution.

It can be the exact steady solution (W = Weq), or it can be an approximation (W ' Weq).

The goal is now to enhance the modal basis V using W:

V = {1, x, x2, . . . , xN}.

First possibility: multiply the whole basis by W

V∗ = {W, x W, x2W, . . . , xNW}.

Second possibility: replace the first element with W

V+ = {W, x, x2, . . . , xN}.
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Error estimates

We denote by:

• Wex the exact solution,
• WDG the approximate solution without prior,
• WDG the approximate solution with prior W and basis V∗.

For a DG scheme of order q+ 1, we obtain1 the following error estimates:

‖Wex −WDG‖ .
∣∣Wex

∣∣
Hq+1 ∆xq+1,

‖Wex −WDG‖ .
∣∣∣∣Wex

W

∣∣∣∣
Hq+1

∆xq+1 ‖W‖L∞ .

Conclusion of the error estimates: the prior W needs to provide a good approximation
of the derivatives of the steady solution.

1Rigorous error estimates are written in terms of the error in the projection onto both bases.
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Obtaining a prior

For very simple systems, one can use the exact steady solution as a prior.

However, in many cases, even for some simple and well-known systems, one cannot
compute the exact steady solution. Therefore, an approximation is required.

How to obtain such an approximation?

1. First possibility: use a traditional numerical approximation, obtained by classical
ODE solvers (e.g. Runge-Kutta schemes).

2. Second possibility: use a Physics-Informed Neural Network (PINN), a specifically-
trained neural network.

Next step: Present the PINNs, which will be preferred since they are mesh-less and able
to approximate solutions to parametric PDEs.
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PINNs

Remark: Neural networks are smooth functions of the inputs (provided smooth
activation functions are used!).

Since their derivatives are easily computable by automatic differentiation, they are
therefore natural objects to approximate solutions to PDEs or ODEs.

Definition: PINN
A PINN is a neural network with input x and trainable weights θ, approximating the
solution to a PDE or ODE, and denoted by Wθ(x).

Hence, the PINN Wθ will approximate the solution to the PDE

D(W, x) = 0,

with D a differential operator.
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PINNs: loss function

Ommitting boundary conditions, the problem becomes

find W such that D(W, x) = 0 for all x ∈ Ω ⊂ Rd.

Based on this observation, the PINN Wθ should approximately satisfy the above PDE, and
the problem becomes:

find θopt such that D(Wθopt , x) ' 0 for all x ∈ Ω ⊂ Rd.

The idea behind PINNs training is to find the optimal weights θopt by minimizing a loss
function built from the ODE residual:

θopt = argmin
θ

∫
Ω

‖D(Wθ, x)‖22 dx.

The Monte-Carlo method is used for the integrals, which makes the whole approach
mesh-less and able to deal with parametric PDEs.
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Parametric PINNs

A parametric PDE is nothing but the following problem:

find W such that D(W, x;µ) = 0 for all x ∈ Ω and µ ∈ P ⊂ Rm.

The parametric PINN Wθ(x;µ) should approximately satisfy the above PDE, and the
problem becomes:

find θopt such that D(Wθopt , x;µ) ' 0 for all x ∈ Ω and µ ∈ P ⊂ Rm.

The minimization problem then becomes

θopt = argmin
θ

∫
P

∫
Ω

‖D(Wθ, x;µ)‖22 dxdµ.
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Setup: the advection equation

We run experiments on the advection equation with source term, with a given initial
condition W0 : R → R:

∂tW + c∂xW = aW + bW2 for x ∈ (0, 1), t ∈ (0, T),
W(0, x) = W0(x) for x ∈ (0, 1),
W(t, 0) = u0 for t ∈ (0, T).

The steady solution Weq satisfies the BVP{
c∂xWeq − aWeq − bW2

eq = 0 for x ∈ (0, 1),
Weq(0) = u0,

whose unique solution is, with parameters µ = {a,b, c,u0} ∈ P ⊂ R4:

Weq(x;µ) =
au0

(a+ bu0)e−
ax
c − bu0

.
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PINNs as a DG prior: steady solution

We use the DG scheme to solve the advection equation with the steady solution as
initial condition. We expect the DG scheme with prior:

• to provide a better approximation of the steady solution than the classical DG
scheme (approximate well-balanced property),

• while converging with the same order of accuracy.

We report below some statistics on the gains with 1000 random sets of parameters in P,
for a DG scheme of order q+ 1.

q minimum gain average gain maximum gain

0 63.46 735.08 4571.89
1 32.22 149.38 450.74
2 6.20 54.16 118.45
3 1.55 19.54 108.10
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PINNs as a DG prior: computation time

Finally, we compare the computation time in bases V and V+. We expect the prior to:

• increase the computation time of the DG mass matrices,
• have no effect on the computation time of the main loop.

The table below shows the CPU time increase factor when using the prior, for several
values of the number n of space cells. We observe that the increase in computation time
due to the prior is negligible.

q factor, n = 10 factor, n = 40 factor, n = 160

0 1.26 1.07 1.01
1 1.15 1.01 1.00
2 1.04 1.03 1.01
3 1.07 1.00 1.01
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Perturbation of a shallow water steady solution

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

1.7 1.8 1.9 2

PINN trained on a parametric
steady solution, driven by the to-
pography

Z(x;µ) = Γ exp
(
α(r20 − ‖x‖2)

)
,

with physical parameters

µ ∈ P ⇐⇒


α ∈ [0.25, 0.75],
Γ ∈ [0.1, 0.4],
r0 ∈ [0.5, 1.25].

Left plot: initial condition, made of
a perturbed steady solution.
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Perturbation of a shallow water steady solution
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(a) classical basis
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(b) enhanced basis
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Perturbation of a shallow water steady solution
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Conclusion and perspectives

We have obtained:

• an exactly or approximately well-balanced DG scheme,
• displaying large gains on parameterized families of steady solutions,
• available for arbitrary balance laws.

Perspectives include:

• using a space-time DG method and time-dependent priors,
• replacing PINNs with neural operators for added flexibility,
• coding the method in the SciMBA framework.

Related preprint: E. Franck, V. Michel-Dansac and L. Navoret.
“Approximately WB DG methods using bases enriched with PINNs.”
git repository: https://github.com/Victor-MichelDansac/DG-PINNs
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Thank you for your attention!



PINNs: advantages and drawbacks

Once trained, PINNs with Monte-Carlo integration are able to

• quickly provide an approximation to the steady solution,
• in a mesh-less fashion,
• independently of the dimension.

However, PINNs

• have trouble generalizing to x /∈ Ω;
• are not competitive with classical numerical methods for computational fluid dy-
namics: to reach a given error (if possible), training takes longer than using a classi-
cal numerical method.

The most interesting use of PINNs, in our case, is to deal with parametric ODEs and PDEs,
where dimension-insensitivity is paramount.
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Advection equation: loss function

Thanks to the boundary ansatz and the ODE loss, the final loss function does not need
any data, and there is no competition between loss functions: we get

J(θ) =

∫
P

∫
Ω

∥∥∥c∂xW̃θ − aW̃θ − bW̃θ

2∥∥∥2
2
dxdµ,

with the ansatz
W̃θ = u0 + x Wθ,

with Wθ the result of the neural network.

In practice, we take c = 1 and make sure the steady solution is well-defined, by taking

P =
{
(a,b,u0) ∈ (0.5, 1)× (0.5, 1)× (0.1, 0.2)

}
.

Hence, the neural network is a function Wθ ∈ C∞(R× R3,R).



PINNs as a DG prior: unsteady solution

We use the DG scheme to solve an unsteady advection problem, without a source term.
We expect the DG scheme with prior:

• to provide a similar approximation of the solution than the classical DG scheme,
• while converging with the same order of accuracy.

The table below shows the gains made by using the prior, for several values of the
number n of space cells.

q gain, n = 10 gain, n = 40 gain, n = 160

0 0.80 0.81 0.81
1 1.00 1.00 1.00
2 1.00 1.00 1.00
3 1.00 1.00 1.00
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